
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-97-M15

"The Performance of Large Software Systems: A Case Study"

by

Peng Dai

The Performance of Large Software

Systems: A Case Study

Peng Dai

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for

the degree of Master of Science in the Department of

Computer Science at Brown University

May 1997

. Doeppner Jr.

Advisor

Introduction

1. Introduction

May 15,1997

As the size of a software system increases,so do the complexityand frequency of
interactionbetween its components and thus the chances of a mismatchfrom the per­
formanceperspective. Things are even worse when these componentsare from librar­
ies that were developed at differenttimes and for variouspurposes.It requiresa lot of
effort to optimize the overallperformanceof these components. Sometimes, when
optimizationis achievedunder one condition, it fails miserably when the condition
changes.Therefore,effectivetools aiding in the understandof softwaresystems, espe­
cially those large ones, are desirable.

The performancestudy of large software systemsmay be canied out at twodifferent
levels.Studiesat the higher level imposes little requirementon the semantics of the
target system. Analysesare conductedonce the caller-calleerelationshipand the cost
of variousfunction calls are known. An example is the Paradynparallel performance
measurement tool developedby MilJeret.al.[Ill. The other approach is to make full
use of the semanticsof the systembeing studiedand combine them with the function
call data to provide semantically relevant results. The second approachrequiresinti­
mate knowledgeof the system,and is thereforeconsideredat a lower level. Examples
making use of this approachincludeJakiela's distributed database study[IOl and vari­
ous other case studies.

The benefit of the first approachis obvious. It has less dependenceon the targetsys­
tems, and therefore, has a widerapplication.However, the lack of relevantsemantic
knowledge sometimesmakes the results coming out of this approachhard to under­
stand. In other words, the results it producesmay not necessarilyanswer the question
programmersare interestedin most - why the application is not as fast. The second
approach exchanges generalityfor more relevantresults. In this sense, the two
approaches somehow complements each other.

In this paper,we focus on how to use the semanticknowledge we gainedfrom our
experiencewith the DistributedComputingEnvironment, or DCE, to diagnoseperfor­
mance anomalies encountered by variousapplications.

We start with the introductionof a couple of instrumentation techniques in section2,
whichare used later in our study. These techniquesinclude interpositioning and large­
scale instrumentation.

In the section that follows, a brief introductionof DeE is provided. Afterthat, we
presentboth an architectural and a component-wise look at the system wehave devel­
oped for performanceanalysis.Weconcludethis section with someinteresting results
we found by applying the tools to sampleapplications.

Finally, we summarize the work we have done so far and discuss the potential direc­
tions along which the current work might be extended.

The Performanceof Large SoftwareSystems: A Case Study lof42

Instrumentation Techniques May 15, 1997

FIGURE 1. Shared Library Dependency Graph

The technique results in a breadth-first ordering of all dependencies, as shown below.

First Last

FIGURE 2. Shared Library Mapping

Symbol lookups are performed by searching in each object, starting with the dynamic
executable, and progressing through each shared library in the same order in which
they are mapped. As we will see later, it is this mechanism of searching for a symbol
that enables interpositioning. Before that, let us first take a closer look at how symbols
are processed by the runtime linker.

2.1.3. SymbolResolution and Relocation Processing

When a function call is made or a variable is assigned to, the symbolic name of either
the function or the variable has to be translated to the in-memory address in order for
the operation to be realized. This process is generally referred to as relocation.

Consider the following example of relocation. In an object file, the section
named. f 00 contains several references to symbol bar. For each reference, there is a
corresponding record in a special section. rela. foo that describes how relocation
is to be performed once the in-memory address of bar is known. The information in
the record includes the location of the symbol reference, the type of the relocation to
be performed, and an index in the symbol table pointing to the symbol being refer­
enced. During the link-editing or runtime linking, depending on the nature of symbol
and the containing object file, each relocation record is processed to update the sym­
bolic reference to reflect the in-memory address of the symbol bar. Without reloca­
tion, the execution of instructions in a executable could not be properly carried out.
The relocation process is described in the following figure.

The Performance of Large Software Systems: A Case Study 3 of 42

Instrumentation Techniques May 15,1997

2.1.4. Interpositioning

With the above background introduction on symbol processing, we are now ready to
introduce the interpositioning technique.

As we said, the first time a global function defined in one of the shared library depen­
dencies of the dynamic executable is called upon, the control is transferred to the runt­
ime linker through the . p I t entry, which then looks for the function definition in the
chain of dependencies. If one definition of the function is found, the search is satis­
fied. Therefore, if more than one instances of the same function definition exists in
multiple dependencies, the first instance will interpose on all other.

faa ();

executable libl.so~ lib2.so lib3.so

FIGURE 5. Interpositioning

This technique provides us almost unlimited capabilities to interpose existing func­
tion definition, thus either modifying or enhancing the original functionality, without
even touching the shared library that contains it. We could achieve this by either
relink the dynamic executable with interposing library being put before the inter­
posed, or by using the command line interface discussed later.

One caveat, if any, is that this technique fails to deal with static or local functions
whose referencing uses relative addressing.

2.1.5. Runtime Linking Command-line Interface

To successfully link relocatable object files and archive or shared libraries together to
form an executable, the link-editor has to be informed of the path of the participating
objects. In the case of archive or shared library, the path canbe supplied with the - L
command-line option. In the same vein, the runtime linker has to be aware of the loca­
tion of the shared libraries that are recorded as dependencies during link-editing and
have to be located again during process initialization and execution. Another com­
mand-line option -R is used just to record these so-called runpathes.

The order in which the shared library dependencies are recorded is significant. As we
have seen above, the interpositioning technique depends heavily on it. Careful
thought has to be exerted during link-editing to make sure the shared library depen­
dencies are supplied in the right order. Commands that will help display the shared
library dependencies in the order they were recorded include Ldd and dump.

The runtime linker also allows additional objects to be introduced during process ini­
tialization. The environment variable LD_PRELOAD can be initialized to shared
library or relocatable object file name, or a string of file names separated by white
space. These objects will be mapped after the dynamic executable and before any
shared library dependencies.

The Performance of Large Software Systems: A Case Study 5 of 42

May 15, 1997 Instrumentation Techniques

The functionality of the function foo in libfoo. so can be augmented by preload­
ing a library libnewfoo . so which contains a new definition of function foo as fol­
lows.

#include <dlfcn.h>
#include <stdio.h>

double foo (int i)
{

static double (*fptr) (int i) 0;

if (fptr == 0) {
fptr = (double (*) (int))

dlsym (RTLD_NEXT,"fo(i");

if (fptr == NULL)
abort ();

fprintf (stderr, "Input: val.ue ... %d", i);

return (*fptr) (i);

FIGURE 7. Function foo Definition

Finally, the above code fragment is placed into the shared library 1 ibnewf00 . so,
which is then preloaded during the initialization of bar.

$ cc -0 libnewfoo.so -G -K pic newfoo.c
$ LD_PRELOAD=./libnewfoo.so bar

FIGURE 8. Interposing Function foo

2.2. Large Scale Instrumentation

Needless to say, the new interpositioning technique makes instrumenting existing
applications much easier without compromising the execution speed. To instrument
the functions in one of the shared library dependencies of the dynamic executable, all
we need to do is to generate, for each target function, an interposing unit, including a
front end, which is an entry point exposed to the executable, an event generator, dis­
patcher, and processor, as shown in the following figure. The front end is a function
with the same name as the back end, or the target function. The event generator may
emit event record at various stages of the execution of the back end. Typically, these
events represent the start, end, or exception status. The event dispatcher serves as a
link between the front end and the event processor by examining the event and pass­
ing it on to the appropriate processor.

The Performance of Large Software Systems: A Case Study 70f42

Instrumentation Techniques May 15,1997

With the trace record defined above, we will be able to identify any function unambig­
uously. In case when two functions in different shared libraries share the same name,
the most significant byte helps distinguish them. Even when two functions with the
samename are defined in the same shared library, which is possible if at least one of
them is static, we can make them out by assigning different facility codes to them.

In addition, the least significant op bit provides a simple characterization of the criti­
cal execution points, namely, start, end, and exception. It may not be as comprehen­
sive as the traditional tracing technique can cover, which may place trace points
virtually anywhere in the source code. But this is a limitation imposed by the interpo­
sitioning technique, not the trace record definition.

Last but not the least, the size of the trace record dramatically reduces the amount of
bookkeeping and the overhead of processing. For example, the space required to
maintain a function call stack using trace record can be roughly one order of magni­
tude less than using function names. And comparing stack elements is simply integer
comparison instead of the more lengthy string comparison:

The Performance of Large Software Systems: A Case Study 9 of 42

May 15, 1997

The model of computation DCE supplies is quite straightforward. A server decides
which services it is willing to provide. Once the decision is made, an interface, which
is basically a set of procedure declarations, bas to be prescribed to describe how the
services canbe accessed. The interface serves as a contract between the client and the
server. The client has to satisfy the terms of the contract in order to obtain help from
the server. In DCE, an interface is written in a special language called the Interface
Definition Language, or IDL. The compiler for the IDL generates from the interface a
C header file, which contains the C language correspondent of the operation declara­
tions, and special object files called stubs, which incorporate the machinery for com­
munication to and from the remote party. The automated stub generation from the
much simpler interface definition very much alleviates the programmer from the
drudgery of laying down the frame of communication for each remote service.

client stub

IDL
common header

server stub

FIGURE 12. Interface Definition

After putting down the interface, the server may advertise the services by registering
the interface with the directory service. A client. after locating the server providing
the matching services, can invoke the services by making an RPC to the specific
server. An RPC hides the details of network communication to simplify the applica­
tion code. Such details include converting data between formats for different systems,
converting application data structures to streams of bytes and back, detecting commu­
nication errors, possibly locating the right server instance and necessary security
checks. Most of the details are handled inside the stub code which is automatically
generated from an IDL file containing the interface description.

The following figure shows the layers of code an RPC goes through. The client appli­
cation starts an RPC by making a local procedure call to the client side stub, which in
turn communicates with the server side stub using the facilities provided by the runt­
ime library. The server's RPC runtime library receives the RPC request and hand over
the client information to the server stub which invokes the manager in the server
application.

The Performance of Large Software Systems: A Case Study 11 of42

Distributed Computing Environment - A Case Study May 15,1997

mission of input parameters and waits for the first packet containing the response to
be deliveredback by calling rpc_call_transceive. Following that, additional
response data are unmarshaled in the call to rpc_ss_ndr_unmar_interp.
Finally, the RPC is completely with a call to rpc_call_end. In case an exception
is reported in any of these calls, it is caught and the RPC is finalized with a call to
rpc_call_end.

binding handle

parameter list

output

FIGURE 14. Inside the Client RPC

The protocol independent calls, such as rpc_call_start,
rpc_call_transceive, and rpc_call_end, eventually calls the corre­
sponding protocol dependent version, whose name contains the protocol tag. For
example, in case of TCP, they are rpc_cn_call_start,
rpc_cn_call_transceive, and rpc_cn_call_end; in case ofUDP, dg
is substituted for cn instead. The protocol information contained in the bindinghan­
dle decides which is used. Although the names all look similar, the functionality can
differ dramatically.

In case the binding handle returned from CDS or passed as a parameter is not fully
bound, which means the end point is missing, a separate RPC has to be made to the
RPC daemon running on the server machine to resolve it. Conditionally,if the client
requests a secure RPC, it is time now to contact the security server to obtain the
authentication ticket on behalf of the client. No matter what the underlying protocol
is, the above actions have to be carried out if necessary.

The differences protocols may cause come next. If the RPC is using TCP as the mes­
sage transport, an association between the client and the server has to be established
before the call. An association is the application correspondent of a transportconnec­
tion, which contains specific information that two communicating applications have
agreed upon. In case of an RPC, the information may include the security contextand
the presentation syntax. Included in an association is a thread, which is named
receiver for it is responsible for receiving and dispatching incoming packets. Negoti­
ating an association could be potentially time consuming; this is why DCE has
decided to optimize the process. An association and its underlying connection is
established when one does not exist; but it preserves after the RPC that initiated it fin-

The Performance of Large Software Systems: A Case Study 13 of 42

Distributed Computing Environment - A Case Study May 15, 1997

tor thread is notified and given the request. In the latter case, the listener thread, which
listens for incoming connection request, reinitializes an unused association control
block and wakes up its receiver, if one is available, or creates one from scratch. The
receiver thread, when started, performs the same action as it is in the former case.
After the call request, which is the first packet for a certain call, is handled, the
receiver thread waits for further packets for the call and handles them accordingly. If
the packet represents a cancel request and the executor thread has already started exe­
cuting it, a cancellation will be delivered to it; otherwise, the original call request is
dequeued and the receiver along with the association is freed. Normally, the executor
thread detaches from the receiver thread and the association by calling
rpc_cn_call_end or rpc_dg_call_end, from when on the receiver is free
to accepting another RPC request. The server side flow of control in a typical connec­
tion-oriented RPC is shown in the following figure.

The Performance of Large Software Systems: A Case Study 15 of 42

Distributed Computing Environment - A Case Study May 15,1997

has an associated authentication identity that is fixed for its lifetime. In other words,
each different authentication identity requires a unique activity ID.

The first time the client calls a server, a new client connection is created along with
the activity ID. The activity ID is transmitted to the server which caches it for later
reference. The server then calls back to the client to ask for its authentication identity,
which is dubbed WAY for "Who Are You". After acquiring the authentication identity
of the client, the server stores it with the previously obtained activity ID so that any
subsequent call using the same activity ID does not incur a WAY authentication. In
summary, servers identify clients by activity IDs and their associated authentication
identity. Since only server cached activity IDs canprevent WAYauthentication call­
back, the client is encouraged to keep using existing activity IDs whenever possible.
The sequence number in the client or server connection provides a means to imple­
ment non-idempotent calls. It is part of the purpose of WAYcallback if unknown and
is also cached by servers together with the activity ID and authentication identity.

Another important use of activity ID is when the underlying communication is shared
among various ongoing RPCs. Its uniqueness allows the packets going through the
shared channel to be dispatched properly.

In addition to the client and server connections, other data structures, such as client
call handle and server call handle are used to provide both on-going RPC and inter­
RPC cache of useful information. The relationship between various data structures
used to implement a connectionless RPC is shown in the following figure.

Jl
,I:l

~ callback server call handle=
.~...
y other client specific info
~ = = common infoQ
U... =

call rep

sendlrecv buffer

other common info
~
= Q
:c y common info
~ = = callback client call handle Q
U

other server specific info '"
~

FIGURE 17. Data Structures for Connectionless RPC

An RPC using UDP as the underlying protocol starts with the allocation of a client
call handle by calling ccall_all DC if one does not exist in the binding handle
parameter or the existing one contains a different authentication identity or the socket
included is disabled; otherwise, the existing one is reinitiaIized with updated per-call
information, such as interface id and operation number. Inside ccall_alloc, a ref­
erence to a datagram socket is first obtained. Failure to obtain a socket leads to early

The Performance of Large Software Systems: A Case Study 17 of 42

.S:l
0

~

:E

~
'" ~

DistributedComputing Environment - A Case Study May 15,1997

On the server side, the listener thread is waiting in pthread_Select. It is awaken
by incoming packets on the datagramsocket. It then uses the activity ID contained in
the packetheader to locate the correspondingserver call handle. If this is the first time
the client has ever used the same activity ID to contact the server, it will not be found
in the cache. Therefore, a new server call handle will be created and the activity ID be
cached. Thelistener then dispatches and handles the packet according to its content.
Possible actions include rpc_dg_do_request for call request,
rpc_dg_do_quit for quit request, rpc_dg_do_ack for acknowledgment
request, rpc_dg_do-ping for ping request. In case of a call request, the call
request is either handed over to an executor thread or enqueued on the call-waiting
queue, depending on the availability of an idle executor thread. An executor thread
starts executing by calling rpc_dg_execute_call. After interface lookup and
object type inquiry are done, it checks whether the client authentication identity has
been verified. If the activity ID and its associatedauthentication identity is cached,
nothing needs to be done; otherwise,a WAY callback has to be performed before the
stub is entered.

Executor Thread

rpC_Cll_calCexecutor

server stub

Listener Thread

FIGURE 19. Server Side Connectionless RPC Implementation

The Performance of Large Software Systems: A Case Study 19 of 42

Distributed Computing Environment - A Case Study May 15,1997

FIGURE 20. Name Service Request Handling Mechanism

When multiple threads in the application make simultaneous requests to the name ser­
vice, a lock has to beacquired to write to the cdsclerk socket. A complete request has
to be written before the lock may be released for others to use. One thread in the
cdsclerk is constantly reading the socket for incoming request. It also manages a pool
of request handler threads. Before a request handler thread completes the current
request, it checks to see if there are more in the request queue before it exits. If all
request handler threads are busy when a request comes in, a new one will be created
by the master reader thread. The interaction between the application and the cdsclerk
is shown in the following figure.

Socket Reader """lock/write .~I- Request _
Application Threads

Request Queue

read

enqueue

Request Handlers

FIGURE 21. Application and Cdsclerk Interaction

3.2.5. DeE Security

DCE security is based upon MIT Kerboro secret key approach. The runtime supports
secured RPC by calling security server to acquire authentication information on
behalf of the client when it is informed to. The server has to implement its own secu­
rity policy which depends on the authentication information embedded in the call
packet from the client.

3.3. System Overview

In the following, we will start from an architectural overview of the performance
monitoring system and proceed with a detailed look at the assortment of components,
including the functionality they provide, the techniques used during their construc­
tion, and the motivation behind the them.

3.3.1. Architecture

The architecture of an instrumented DCE application is shown in the following figure.
The standard DCE facilities are provided indirectly to the application using object­
oriented technology. The idea is that the application first constructs one or more
objects representing a DCE service or utility, and then invoke the object member

The Performance of Large Software Systems: A Case Study 21of42

Distributed Computing Environment - A Case Study May 15, 1997

Next, let us take a look at how an instrumented DCE application is to be linked and
the shared libraries involved in the linking. Suppose the application serves requests
over the interface f 0 o. It will be linked against the following libraries in the order
provided: libifoo, libfoo_sstub, libtempl, Li.bdce t hr-ead, libd­
wrpc, 1 ibdwexcep, and 1 ibinterp, before the standard system libraries, where
1 ibi f 00 is automatically generated to interpose the server stubs, 1 ibfoo_ss tub
contains the server stubs, 1 ibtempl is a generic template library, 1 ibdcethread
and libdwrpc provides object-oriented support, libdwexcep deals with DEC
exceptions, and 1 ibinterp contains the main instrumentation. Although hidden
from the programmer, libinterp is linked against 1 ibmon, which processes trace
events and communicate with the display, and 1 i bdwexcep. The shared library
component hierarchy is illustrated in the following figure.

)'!::::::!III:!!i~illl!ii!ii!iii:iiiliii

, ...i,,,,,,,,,,,,,,,,,,,,,,,,:i"I:IiiJ:I:iI(::::.'..I.p'!!.. !:_.·.:,:,:mii~ii:l.,::!.,p,!.,!.,,:.:,:

::::;t~:::::::::}::::!:

-ldee
..................:.... ' ::::: ;::;:::::::;:;:;:::::;;.:.;

::}~I~.~i~· •• ·j·1

::!!j:ji:illl!:",,·,·:,
!ilill!!!ilill~II~li:;:::;",:

-lthread

-ldee _ .._._ .

··tIao[~.:.~ ..l
-lthread

-lresolv

-ldl

-lsoeket

-lnsl

FIGURE 23. DCE Application Shared library Component Hierarchy

The Performance of Large Software Systems: A Case Study 23 of 42

Distributed Computing Environment - A Case Study May 15, 1997

3.3.3. Interpositioning library

The shared library 1 ibinterp provides the machinery to intercept function calls
from the application to the DCE runtime. When a function call is intercepted for the
first time, the next symbol in the dependency list is looked up and stored as a static
variable for use in subsequent calls. The call to the original function is arranged after
facilities are set up for the purpose of tracing. Currently, trace points are placed both
before the call and after. Besides, exceptional conditions are monitored and excep­
tions thrown from the call are caught, recorded, and reraised.

FIGURE 24. Interpositioning

The tracing facilities invoked from inside libinterp is provided by another shared
library, 1 ibmon. An instrumented DCE application is not required to be linked
against 1 ibmon explicitly. Instead, it is referenced by the application implicitly as
part of the dependencies of libinterp.

The design of the tracing facilities, include trace event logging, processing, and dis­
playing, is centered around the core object model, of which the concept of an observ­
able and an observer is the comer stone. An observable, as the name suggests,
describes any object that can be observed. A number of attributes are attached to an
observable. In addition, an observable is given an identity called object key, which
distinguishes itself from other observables, and an optional character name. The task
of tracing, as prescribed in this model, is to control the creation and deletion of the
observables, and computing the attribute values from the relevant trace events. An
observer is the counterpart of an observable on the display. It includes the attribute
values and the interface component and has the same object key as the observable it is
observing. The correspondence between an observable and an observer is shown in
the following figure. Examples of an observable include threads, sockets, processes,
etc.

The Performance of Large Software Systems: A Case Study 25 of 42

References May 15, 1997

Appendix C: Grammar Used for Automatic IDL Conversion
%{
#ifndef IDLGRAMMAR_HEADER
#define IDLGRAMMAR_HEADER

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <iostream.h>
#include <fstream.h>
#include "IDLAst.H"
#include "IDLInterp.H"

extern char *yytext;
int yyparse ();
int yylex ();
int param_count 0;
%}

%token ID
%token STAR
%token COMMA
%token LPAREN
%token RPAREN
%token EXTERN
%token SEMICOLON
%token ARRAYBOUND

%union {
unsigned short intval;
char *string;
class IDLAstIdNode *id;
class IDLAstBoundNode *bound;
class IDLAstTypeNode *tp;
class IDLAstFuncTypeNode *ftp;
class IDLAstParamNode *parameter;
class IDLAstParamListNode *parameters;
class IDLAstOpNode *op;
class IDLAstOpListNode *ops;

%type <string> ID ARRAYBOUND

%type <intval> pointer type-pointer

%type <tp> type

%type <bound> bound array_bound

%type <id> type_id name param_name

%type <parameter> param

%type <parameters> param-list

%type <op> decl

%type <ops> decl_list

%start start

%{

#endif

%}

%%

start:
decl_list
{

IDLAstNode: :declare ();
iidl ->header () « *$<ops>l « endl;

The Performance of Large Software Systems: A Case Study 39 of 42

http:iostream.h

References May 15,1997

sprintf (buf , "arg%d" , ++param_count);
$<id>$ = new IDLAstldNode (buf);

type:
type_id type-pointer
{ $<tp>$ = new IDLAstTypeNode ($<id>l, $<intval>2); }

type_id:
ID
{ $<id>$ new IDLAstldNode ($<string>l); }

type-pointer:
pointer
{$<intval>$ $<intval>l;

I
{$<intval>$ o;}

pointer:
STAR

$<intval>$ I;}

STAR pointer

$<intval>$ = $<intval>2 + 1; }

array_bound:
bound

$<bound>$ $<bound>l;

$<bound>$ NULL;}

bound:
ARRAYBOUND
{ $<bound>$ = new IDLAstBoundNode ($<string>l); }
I bound ARRAYBOUND
{

$<bound>l->addBound ($<string>l);

$<bound>$ = $<bound>l;

void

yyerror (const char *s)

printf ("Error: %s\n", s);

The Performance of Large Software Systems: A Case Study 41 of 42

