
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-97-Mll

"Construction of an Image Mosaicing

and

Image-based Rendering System"

by

Chenghui Luo

Construction of an Image Mosaicing

and

Image-based R~ndering System

by

Chenghui Luo

Submitted in partial fulfillment of the requirements for

the Degree of Master of Science

in the Department of Computer Science at Brown University

oi~l~ °Fo ~~h~~ 00 0 000000

Advisor

May 13, 1997

Acknowledgments

I would like to take this opportunity to thank all the people who provided help in this

project. First I would like to thank my advisor John "Spike l1 Hughes for his guidance

through this project. Without his encouragement, I would have been discouraged by

those large number of images taken from a video camera. Mark Oribello helped to

take images and digitize them; Loring Holden answered some programming questions;

and Bing Chin provided helpful conversations - to all of them, I would like to say:

"Thank you!"

I would also like to thank Bob Zeleznik for his guidance in a preliminary research

project and the Computer Science Department and the graphics group for providing

a happy and pleasant environment.

Contents

Acknowledgments I

1 Introduction 1

1.1 Abstract . 1

1.2 Previous Work on Image-based Rendering 1

2 Description of Project 3

2.1 Synthetic Environments 3

2.2 Real World . 5

2.2.1 Image Acquisition. 5

2.2.2 Image Processing and Mosaicing . 5

2.2.3 View generating. . . . 9

2.3 Conclusion and Future Work. 10

11

Chapter 1

Introduction

1.1 Abstract

Traditional 3D computer graphics systems take scenes consisting of geometric prim­

itives as input. But the real world is too complex to be modeled geometrically. In

this project, we use a set of images taken from real world and render them using a

3D graphics package. This approach of image-based rendering is a convincing way to

build a virtual environment on a computer screen.

1.2 Previous Work on Image-based Rendering

Traditional 3D computer graphics systems take scenes consisting of geometric prim­

itives, e.g., cubes, cones, cylinders, spheres, ... , as input. Such an environment is

modeled by these primitives of different materials and a set of lights, and then the

rendering system computes and outputs images.

With the increasing requirements of many applications, e.g., virtual reality, this

traditional approach is not enough - the real world is not likely to be modeled by

a finite set of relatively simple geometric primitives. Naturally, people turn to data

1

directly taken from the real world, e.g. images taken by video cameras. Images

represent the real world accurately, and so it is possible to build a virtual environment

from a set of images - provided that an image-based rendering system exists.

In recent years, several image-based rendering systems have appeared. A com­

mercial product, QuickTime VR, for virtual environment navigation first appeared

at Apple Computer [1]; and an image-based rendering system based on plenoptic mod­

eling was built at UNC [6]. These two systems require some image registration work

to obtain an environment map of each point in the environment, i.e., a panoramic

projection of the whole space to a closed surface, e.g., sphere, cube, cylinder, which

encloses this point. Some systems do not require environment maps, e.g., the light

field rendering approach from Standard University [5] and the Lumigraph approach

from Microsoft Research [2], where a different representation method, light field or

Lumigraph, is used.

From these systems, one sees that the basic framework of an image-based rendering

system includes the following three necessary elements:

•	 An image acquisition system which captures images from real world.

•	 An image processing system which provides convenient representation of the

real world.

•	 A view generating system which generates new views of an environment from a

new direction or position.

2

Chapter 2

Description of Project

In this project, we explore and implement the basic but important elements of an

image-based rendering system. Our goal is to build a basic and relatively simple

system that can register images and generate views for the case that the view point

is fixed in an environment so that the degrees of freedom are only those of rotations.

2.1 Synthetic Environments

loNe first show the basic idea of image-based rendering for the easier case of synthetic

environments, i.e., environments modeled by geometric primitives. In this project, we

use Open Inventor, a 3D graphics package, to model a 3D synthetic world. To acquire

images, we set the heightAnglefield of SoPerspectiveCamera to I and aspectRatio

to 1 so that its width angle equals height angle and the film plane of the camera is a

square. Then to obtain an environment map of the center of the camera, we take 6

pictures from 6 perpendicular directions, corresponding to the positive and negative

directions of the X, Y and Z axes, to obtain 6 images of the environment. Now we do

not need to do any image processing on these images, since the 6 images cover all of

the space precisely, so they are a perfect representation of the synthetic environment ~

3

Figure 2.1: Image-based rendering of a synthetic environment. The upper row
shows three images and the bottom left shows an image from image-based rendering.
The bottom middle is an image with noises and the bottom right a modified cube.

with no holes or redundancies.

To generate new views from the a new direction, we just need to construct another

synthetic environment, where the same camera that is used before is placed at the

center of a cube and all the 6 images are texture mapped to the 6 faces of the cube.

Then views from this camera in the cube correspond to views in the original synthetic

environment. Notice that here we just use 6 images as inputs to recover the original

synthetic environment. So the basic steps of image-based rendering are fairly simple

for this case. An example is shown in Figure 2.1.

As Figure 2.1 (bottom middle) shows, sometimes there are noisy pixels at edges

of a cube, due to the z-buffer rendering algorithm of Open Inventor. To avoid this, it

is necessary to give the cube a small exterior offset (bottom right of the above figure)

4

so that seamless alignment of views is achieved.

2.2 Real World

For the case of real world data, we use a video camera to acqUIre Images and

GPlmageCanvas of GP, a 2D graphics package, to process images. To generate new

views, we use SoPerspectiveCamera and SoExaminerViewer of Open Inventor.

2.2.1 Image Acquisition

To acquire images of the real world from a point, we set a video camera on a fixed

tripod so that the only movement of the camera is rotation. We first rotate the

camera horizontally through 3600 and then raise and lower the view vector to capture

images in other directions. In this project, images are taken from Spike's office.

After images are taken, we digitize them by using commercial software, such as

QuickTime video system, to obtain frames that the computer can access.

2.2.2 Image Processing and Mosaicing

In our approach, we use an environment map to represent real world, so we need to

mosaic images together, since images taken as above have common parts and we need

to match them.

We use a well-known, basic observation that the common part of two images,

taken from the same point in two different directions, can be projected from one to

the other by a 3 by 3 matrix [4, 9, 3]:

x' ma mI m2 x

y' m3 m4 ms Y

w' m6 m7 ma w

5

where the vector [x, Y, w] is the homogeneous coordinates of a point in the 2D film

plane. Since constant multiples of a vector represent the same point on the 2D plane,

we can fix one element of the matrix, e.g., ms = 1, so that the projection between

two images correspond to a single matrix. Then the correspondence of the pixels can

be represented by the following two formulas:

I.e.,

Depending on whether user interaction is required, there are two kinds of ways to

find the matrix M: a manual or an automatic one. A manual method is to specify 4

corresponding points (Xi, Yi) and (X'i, y'd in two images (Figure 2.2 shows an example)

and then solve a linear system of 8 unknowns m = [mo, ml, ... , m+

Xl YI 1 -XIX\ -YIX\

X2 Y2 1 -X2 X'2 -Y2X'2

X3 Y3 1 -X3X'3
,

-Y3X 3

X4 Y4 1 -X4 X'4 -Y4X'4

Xl YI 1 -XIY\ -YIy'l

X2 Y2 1 -x2y'2 -Y2y'2

X3 Y3 1 -X3y'3 -Y3y'3

X4 Y4 1 -X4y'4 -Y4y'4

mo

ml

m2

m3

m4

ms

m6

m7

x\

X'2

X'3

X'4

y'l

y'2

y'3

y'4

where the empty spaces are all O. This method is basic and straightforward and

generally works. But it has a drawback: it is very sensitive to even small errors of

the corresponding pixels.

6

Figure 2.2: Image mosaicing using manual correspondence. The 8 black spots
indicate correspondence of 4 pairs of pixels.

Another manual method is to use transparency, which is supported in Open In-

ventor ,to find the matrix M. We can first put two images at an initial position in 3D

by texture mapping them to two rectangles, and then use a virtual track ball manipu­

lator to rotate, or a handle box manipulator to translate, one of the two pictures until

one sees them match well. Then we use a write action to save the transformation

of that image. This method is not very accurate, but it is simple and intuitive. In

practice, it is not bad. Another similar method is to use image features or image

clues at the boundary of one image to match them, without using transparency. An

example is shown in Figure 2.3.

The basic idea of automatic mosaicing, as described by Szeliski [8], is to find the

fundamental matrix M by minimizing an error function (sum of squared differences

of intensities) between the two images:

E(m) = L[I'(X'i, y';) - I(Xi, Yi)J 2 = L er
i i

where i is taken over all pixels of the image to be mapped and I'(X'i, y'd is the

intensity of pixel (X'i, y'd in the other image, which can be approximated by bilinear

resampling.

To minimize this error function, we apply the Levenberg-Marquardt algorithm

[7, 8J. Thus we need to compute an approximate Hessian matrix A=(ajk) and a

7

Figure 2.3: Image 'mosaicing using image features. The upper row shows two
original images and the lower row the mosaiced image.

weighted gradient vector b = (bj) :

where

aej aej ax' aej ay'-----+--­am' - ax' am' ay'am"J J J

d aei aI' b . d b h d'/X f' .. f d'an -a = -a can e approXImate y t e Illerence 0 mtensItIes 0 a Jacent two
x' x'

pixels.

Let matrix A~ = (ajk) be as follows:

if j =I k

if j = k,

then the Levenberg-Marquardt algorithm is:

Given an initial guess for the set of fitted m, compute E(m).

Pick a modest value for ,x, say ,x = 0.001.

While (E(m) > a threshold or iteration number < some constant) {

Solve the linear system A~<5m = b for 15m.

8

Figure 2.4: User interface of image mosaicing.

Evaluate E(m +<Sm).

If E(m +<Sm) ~ E(m),

increase A by a substantial factor. say 10;

Else decrease A by a substantial factor.

and update the trial solution m +- m +<Sm.

}

This algorithm works well if two images have enough common parts, i.e., camera

does not move too much. Otherwise, a global image registration must be done, but

currently this is not further explored in this project.

Refer to Figure 2.4 for the user interface of this image mosaicing process.

2.2.3 View generating

Once images are well mosaiced, just as the synthetic case, we can texture map the

mosaiced image to a cube or a cylinder. Then by placing a camera at the center of

a cube or a cylinder and manipulating it, we can see new views from new directions.

For images obtained by horizontal spinning, we use a cylinder. Figure 2.5 shows the

mosaiced image of horizontal spinning of Spike's office and two shots from image-based

rendering.

9

Figure 2.5: Horizontal spinning of Spike's office. The lower row shows two shots
from image-based rendering.

2.3 Conclusion and Future Work

In this project, we investigated the basic framework of image-based rendering and

implemented it by building a practical system. Image mosaicing is also applied to

obtain an environment map. In practice, we find that the combination of a 2D and a

3D graphics package is very convenient and helpful: the 2D graphics package performs

image mosaicing and processing, and the 3D graphics package performs image-based

rendering. This is in real time on SGI workstations, thanks to SGI's special texture

mapping hardware.

Currently this project has some known drawbacks. The biggest one is that some­

times the images are not well mosaiced due to the approximations in the algorithm

and big intensity gradient between boundaries of adjacent images. Careful global

registration should be a solution to fix this problem.

Another problem is to improve the speed of the automatic mosaic process. Cur­

rently we have used recursive increments to replace multiplications, but due to many

times of bilinear resamplings and the complexity of the linear system, the speed is

not fast enough. Typically, to mosaic two images of resolution of 100 by 100 takes

10

about 2 to 3 minutes.

One interesting question may be to simplify the computation of the matrix M.

We tried to decouple it into translations and rotations, but did not succeed. If this

succeeds, the mosaic process will be faster.

Finally, a better device such as a pivot instead of just a tripod is more desirable for

image acquisition through a video camera. The accuracy of image mosaicing depends

on the accuracy of the original images.

11

Bibliography

[1] S. Chen, QuickTime VR - An Image-Based Approach to Virtual Environment

Navigation, Computer Graphics (Proc. SIGGRAPH'95), pp. 29-38.

[2] S. Gortler, R. Grzeszczuk, R. Szeliski, M. Cohen

Graphics (Proc. SIGGRAPH'96), pp. 43-54.

The Lumigraph, Computer

[3] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint,

MIT Press, Cambridge, Mass., 1993.

[4] P. Heckbert, Fundamentals of Texture Mapping and Image Warping, Masters

Thesis, Dept. of EECS, UCB, Technical Report No. UCB/CSD 89/516, 1989.

[5J M. Levoy, P. HanrahanLight Field Rendering, Computer Graphics (Proc. SIG­

GRAPH'96), pp. 31-42.

[6J L. McMillan, Plenoptic Modeling: An Image-Based Rendering System, Com­

puter Graphics (Proc. SIGGRAPH'95), pp. 39-46.

[7J W. Press et al., Numerical Recipes in C: The Art of Scientific Computing, 2nd

edition, Cambridge Univ. Press, Cambridge, England, 1992.

[8] R. Szeliski, Video Mosaics for Virtual Environments, IEEE Computer Graph­

ics and Applications, Mar. 1996, pp. 22-30.
",..

12

[9] L. Westover, Footprint Evaluation for Volume Rendering, Computer Graphics

(Proc. SIGGRAPH'90).

13

