
-
., 
., 

Rendering Nonphotorealistic Strokes with 
Temporal and Arc-Length Coherence 

Lubomir Bourdev
 

Department of Computer Science
 

Brown University
 

Submitted in partial fulfillment of the requirements for the Degree of Master of Science in the
 
Department of Computer Science at Brown University
 

<'/L/q(
{ 

Signatu Date 



Rendering Nonphotorealistic Strokes with
 
Temporal and Arc-Length Coherence
 

Lubomir Bourdev 

1.0 Objective 

This system allows for rendering a silhouette of an object in a frame-to-frame coherent 
way. The input to the system each frame is a set of silhouette pixels in a rendering of the object 
and their corresponding silhouette edges in a polygonal model (mesh) of the object. The output is 
a set of silhouette strokes. 

2.0 Introduction 

Nonphotorealistic Rendering (NPR) deals with representing pictures and animation in, as 
the name suggests, a nonphotorealistic fashion. While there is only one way to render a photo­
realistic image, in an NPR system we have the freedom to represent it in an unlimited number of 
ways. By varying the style of rendering, the image composition and the level of detail, by omitting 
or emphasizing certain parts of the drawing, we can direct the viewer's attention and convey a bias 
-- something that is not possible in photorealistic rendering systems. 

Many nonphotorealistic rendering styles benefit from "economy of line" (Markosian, 
1997) -- the picture is drawn with as few strokes as possible, omitting parts where detail is not 
needed and drawing only the "important" strokes -- usually along the silhouette of the object. In 
this paper we describe an algorithm for drawing silhouette strokes. The strokes can be rendered as 
a simple polyline, or displaced from it either by a predefined function (e.g. sine waves) or a pat­
tern read from a file. 

Our NPR system maintains a balance between temporal coherence (disallowing distract­
ing trembling of the strokes over frames) and arc-length coherence (maintaining a constant 
period of repetition of the pattern in the stroke). It is not possible to achieve both temporal and 
arc-length coherence simultaneously. For example, when an object approaches the camera, its 
strokes become longer and we need to either stretch the patterns and thus violate arc-length coher­
ence, or insert new patterns and violate temporal coherence. The right behavior depends on the 
style of rendering. For instance, arc-length coherence is very important when drawing text 
strokes, since the text may become unreadable if stretched. On the other hand simple styles, like a 
sine wave, look better when temporal coherence is preserved. 

2.1 A Straw Man Approach 

One naive, straightforward approach to the problem of rendering the silhouette of a mesh 
is as follows: 

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 2 



• render all triangles of the mesh in the frame buffer 

• check all edges and determine the set of silhouette edges 

• connect the adjacent silhouette edges into 3D silhouette strokes 

• render the silhouette strokes in the desired style. The frame buffer handles the occlusion 
problem. 

There are several problems with this straightforward 
approach. First. using the frame buffer to handle occlusion after 
a style is applied to the stroke often causes occlusion problems. 
In many styles the stroke may go behind the surface from the 
camera point of view in which cases it is not drawn (fig. 1). The 
shape of the stroke is defined on the film plane and there is not a 
right way to define it in world space 

Another problem is that, although it seems reasonable to 
assume that adjacent silhouette edges form long connected 
polylines, this is not so in practice, especially in the nearly pla­

Fig. 1 Using the frame buffer to draw nar regions, where some edges are slightly convex and others 
stroke in 3D causes occlusion problems are slightly concave. The predominant silhouette in such cases 

consists of semi-occluded edges (fig. 2). Thus the simple idea 
of connecting adjacent silhouette edges into strokes does not 
give the desired effect. Moreover if a continuous style is 
applied along such silhouette edges it would be broken into 
small discontinuous pieces. 

A third issue involves maintaining temporal coherence. 
As the object changes position and orientation with respect to 
the camera, the perceptual difference in a frame-to-frame ren­
dering of the silhouette should be minimized in most styles. In 
other words, the phase of the silhouette stroke in any region on 
the object should be maintained as much as possible across 
frames. The straightforward approach does not provide for any 

Fig. 2. The predominant silhouette consists frame-to-frame (temporal) coherence -- the strokes constantly 
of a sequence of semi-occluded convex and change their length and no phase information is preserved from 
occluded concave edges 

the previous frame. 

A fourth problem is that, just as in hand drawn illustrations, most stroke styles need to be 
defined in screen space, and not in world space as the straightforward approach does. In other 
words, the period of the pattern needs to stay constant as the object approaches or moves away 
from the camera. 

The system presented in this paper addresses these four problems. 

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 3 



3.0 Algorithm Overview 

Intuitively, to maintain temporal coherence we need to preserve the phase information (i.e. 
the locations of the "bumps" of the stroke style) across frames. What the viewer perceives as the 
same stroke in two consecutive frames, however, are in fact two different strokes and in general 
there is no easy way to associate them -- they don't necessarily span the same set of edges; some­
times a stroke is broken into several new strokes, or several strokes merge into one. The stroke or 
a part of it may disappear or a new one may appear. 

Because of this difficulty, we represent the stroke as a list of smaller units (which we call 
silhouette particles), each of which maintains local phase information and tries to "survive" and 
transfer this phase information across frames. Each silhouette particle is associated with one sil­
houette edge at a time and when its edge becomes non-silhouette, it tries to find another similar 
silhouette edge that is close to it on the film plane (see Section 6.2). Each frame the particles are 
partitioned into lists (or rings) of neighboring particles and each of those lists is used to construct 
a stroke (see Section 6.4). The phase information of a stroke is determined from the local phase 
information of its particles, their position along the stroke, and the stroke style. Once the phase at 
each point along the stroke is determined, it is used to update back the phase information for its 
particles (see Section 6.5). 

The algorithm is described in more detailed below. 

4.0 Definition of Terms 

Silhouette stroke. A 2D-polyline along the projection of the silhouette. The stroke can be 
non-periodic or periodic. A non-periodic (homogeneous) stroke is drawn as a uniform 
medium, for example a straight line. A periodic stroke is drawn by repeating a given 
pattern. The length of the pattern is called astroke period. Any position A along a 
periodic stroke corresponds to a displacement t E [0, Period) along its repeated pat­
tern. We say that the phase of the stroke at A is equal to t . Strokes can also be non­
stretching or stretching. A non-stretching stroke always preserves arc-length coherence 
-- the period of repetition of its pattern is constant along the stroke. A stretching stroke 
allows for variations in its period in order to achieve temporal coherence. This variation 
may be "smoothed" over time to achieve a balance with arc-length coherence. The speed 
of smoothing, which intuitively is the weight of temporal vs. arc-length coherence, is 
called elasticity; elasticity E [0, 1) 

Silhouette edge. An edge of the mesh that lies on the silhouette from the current point of 
view. In other words, one of its adjacent faces is front-facing and the other is back-facing. 
Each edge has a: 

• 2D direction -- a direction along the screen projection of the edge. We gather the screen 
projections of all silhouette edges and orient them counter-clockwise when observed 
from the camera point of view. 

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 4 



Let PI and P2 are particles and e3 and e2 are their corresponding edges. To consider PI 

as a prospective next (respectively previous) neighbor of P2 the following conditions are exam­

ined: 

1. P2 does not have a next neighbor 

2. P I does not have a previous neighbor
 

3,PI and P2 are adjacent
 

4. el 's particle last frame was a next neighbor of e2 's particle (in the rare case when an 

edge has more than one particle, this heuristics picks one of them and might fail) 

5. el and e2 are adjacent 

6. eI and e2 have similar directions 

7. PI'S beginning pixel is adjacent to P2 's end pixel. 

Conditions 1,2, and 3 are required -- if any of them fail, then PI cannot be a next neighbor 

of P2' We use conditions 4 and 5 in the fast decision pass -- if both of them are true, then PI 

becomes the next neighbor of P2' We perfoITIl the second pass for those pairs of particles for 

which the first pass is unsuccessful. In the second pass we evaluate conditions 4 - 7 and assign a 
weight to each of them. PI becomes the next neighbor of P2 only if the sum of the four weights is 

above a certain threshold. The weights 
and the threshold are manually 
adjusted for optimal perfoITIlance. 

B 
Although edges el and e2 are 

adjacent on figure 5, they are unlikely 
to become neighbors because of the 
sharp angle they have (violating con­
dition 6). Of course, el and e3 are not 

even considered as prospective neigh­
Fig. 6. Regions of silhouette edges covered by their particles (in black) bors since they are not adjacent (vio­
and the silhouette stroke resulting from them (in red) 

lating mandatory condition 3) 

We construct a new silhouette stroke for each doubly-linked list (or ring) of neighboring 
particles. We compute the 2D polyline of the stroke from the screen projections of the end points 
of the edge segments corresponding to each particle. If a point on the polyline is not peripheral 
then there are two edge segment end points corresponding to it and their locations are averaged 
(points A, B and C on figure 6). As indicated on the figure, although the screen projections of two 
adjacent edges may share the same endpoint, this is not always true in practice for the regions 
covered by their particles (the black segments on figure 6). The reasons for this at::e round-off 
errors caused by the rasterization (as is the case with the end of edge e2 in figure 5)as well as the 

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 9 



particular rasterization algorithm of the hardware, as explained in the Implementation Details sec­
tion. In either case those differences are smaller than a pixel size and therefore have no visual 
effect. 

6.5 Computing the phase values along a stroke 

After we connect the neighboring particles in strokes, for each stroke we need to re-evalu­
ate the phase values of its particles given their current phase values, their positions along the 
stroke and the stroke style. This step is skipped for homogeneous strokes and for strokes whose 
styles don't require temporal coherence. 

Let n denote the number of particles in a stroke, di denote the arc-length distance along 

the stroke from its beginning to the beginning of particle i (and thus do = 0), hi denote the 

phase value of particle i at the beginning of this step1, and h/ denote the new phase value of par­

ticle i, which is to be computed in this step. Let di, j = dj - di 

6.5.1 Non-stretching strokes 

Because the period anywhere along a non-stretching stroke is constant, once we compute 
ho' , we implicitly define the phase value anywhere along the stroke. To compute the initial phase 

of the stroke, ho' , we average the phases of its particles evaluated at the beginning of the stroke 

(we use only those particles whose phases are defined). 

If none of the particles has a defined phase then the stroke is "new" in the image and we 
can pick any phase as its initial one. After computing the initial phase, we can infer the rest of the 
phases: 

6.5.2 Stretching strokes 

While for non-stretching strokes we preserve arc-length coherence in full, for stretching 
ones we need to balance it with temporal coherence. Thus, for each particle we need to compute a 

1. For clarification, if the edge of particle i was a silhouette edge in the previous frame, then hi is carried over from 

the previous frame. Otherwise it is obtained as described in Section 6.2 and may be undefined for some or all par­
ticles as is the case for particlePz in fig. 5 

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 10 



r - -, 

B 

Fig. 8 Rotation of a triceratops with enabled temporal coherence. Original image (A) and after rotation around axis parallel to camera X axis (B) 

r - -, 

A B 
Fig. 9 Rotation of a triceratops with disabled temporal coherence. Original image (A) and after rotation around axis parallel to camera X axis (B) 

8.2 Future work 

The only way in the current implementation that we can achieve inexactness of the style, 
typical of hand drawn illustration, is by creating a sequence of "bumps" by hand and treating them 
as one large pattern. The problem with that approach is that, the larger the pattern is, the harder it 
is to satisfy temporal coherence. A possible future research project is finding a more elegant way 
of solving that problem, for example by maintaining a set of patterns and selecting from them at 
random. Other future projects are implementing a collection of stroke styles and building a user 
interface for creating hand-drawn patterns. 

9.0 Acknowledgments 

I would like to thank Lee Markosian and my advisor Prof. Hughes for the bright sugges­
tions they gave me and the many hours they spent on this project. Many thanks to my colleagues 
Michael Kowalski, Caroline Dahliof, Dave Bremer and Loring Holden. 

13Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 



Fig.10 Snapshots from our NPR system 

10.0 References 

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 14 



•	 L. Markosian, M. Kowalski, S. 1. Trychin, L. Bourdev, D. Goldstein, J. F. Hughes Real-Time
 
Non-photorealistic Rendering. In Proceedings ofSIGGRAPH '97,.pp. 415-420, 1997
 

•	 R. Zeleznik, K. Herndon, and J.F. Hughes. Sketch: An interface for sketching 3d meshes. In
 
Proceedings ofSIGGRAPH '96,.pp. 163-170, 1996
 

•	 J.Foley, A. van Dam, S. Feiner, and J.F.Hughes. Computer Graphics: Principles and Practice,
 
Addison-Wesley, 1992
 

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 15 


