
Rapid Silhouette Rendering of Implicit Surfaces

by

David Bremer

Brown University

Department of Computer Science

Master's Project

May 1998

Submitted in partial fulfillment of the requirements for the Degree of Master of Science in the
Department of Computer Science at Brown University.

I
I

. Hughes, Project Advisor)

Contents

1 Background 1

2 Silhouette Rendering 1

3 Previous Work 4

4 The Algorithm 4

4.1 Overview.......... 4

4.2 Notation and assumptions 4

4.3 Silhouette Finding 5

4.3.1 Ray-surface intersection. 5

4.3.2 Silhouette point finding 6

4.3.3 Silhouette Tracing. 7

4.4 Occlusion Testing . 8

4.5 Rendering . 8

4.5.1 Silhouette Edges . 8

4.5.2 Interior Shading 9

5 Efficiency considerations 9

5.1 Approximate Tracing 9

5.2 Choosing good rays to shoot 12

6 Timing 12

7 Limitations and Future Work 12

8 Final Notes 13

9 References 13

A Software Design 14

A.l Important System Classes. 14

A.2 Flow of Control . 17

II

I
I

/ <,
\./ \./ \./ \./ \/ \! \! \

!
I
 \

\

\
\
\

\.

<,

I

I

I

/
/

/
/'<,

Figure 1: Example implicit surface consisting of the set of all points in space whose temperature is exactly
110 degrees.

1. BACKGROUND

An implicit surface is a 2D surface within a 3D space. The surface is defined as the set of all 3D
points that satisfy an equation of the form f(x, y, z) = 0, for some function f. For example, suppose
that there is a function t(x, y, z) which reports the temperature at a point (x, y, z) in a room, and
suppose that there is a burning candle sitting on a table in the room. The set of all points in space
at which the temperature is exactly 110 degrees would form a surface around the flame of the candle.
See Figure 1. So the function defining this implicit surface would be f(x, y, z) = t(x, y, z) - 110 = O.

Implicit surfaces have several characteristics that make them desirable as a representation for
models in computer graphics. If the defining function is continuous, then the surface itself will
generically be continuous. Many types of implicit surfaces are very smooth, which makes them the
best representation of certain kinds of models. They are also useful in certain types of animation,
because simple techniques exist for nicely squashing and stretching the models, and for topology­
changing deformations.

However the length of time needed to render implicit surfaces often makes their use impracti­
cal. Current rendering methods include ray-tracing, volume rendering, polygonization followed by
polygon rendering, and particle rendering [2], none of which can be done very well at interactive
rates. Currently, the best choice among these for interactive rendering is sampling the function at a
low resolution and then rendering a few polygons or particles on the surface. However, this method
is unsatisfactory because it gives a very rough approximation to the surface's true shape. See the
SIGGRAPH '97 video conference proceedings for [12] for an example of both a polygonizer and a
particle renderer that run at interactive rates for small models.

2. SILHOUETTE RENDERING

Inspired by nonphotorealistic rendering (NPR) techniques, [9, 10, 3, 14, 11, 13, 7] especially inter­
active NPR for rapid display of complex polyhedral objects [7], we applied an alternative style of
rendering to implicit surfaces.

Our basic approach concentrates computational resources on drawing the surface's silhouette
quickly and accurately from a given viewpoint, with hidden lines removed. Additionally, a little
curvature information is displayed near the silhouette and on the interior of the rendering. Example
results of the algorithm, showing off the available features, are shown in Figure 2.

1

Figure 2: Several models rendered with our nonphotorealistic renderer. (a) A bunny, III the modeler. (b)
The bunny rendered without the modeling aids. (c) A duck. (d) A "vase."

2

Figure 3: The effects of failing to removing occluded silhouettes on our bunny model.

While standard rendering techniques require that at least the entire surface, if not a whole 3D
volume, be traversed to make a rendering, our silhouette edge-drawing approach needs only to trace
the silhouette curve or curves, allowing the rendering to take place much faster, and/or to be done
more carefully than, say, a rough polygonization. With this algorithm, good rendering can often
occur at interactive or near-interactive rates.

This new approach makes good use of computational resources. Although we only draw a few
lines on the screen to represent a whole surface, we are giving the eye the visual cues which seem
most important to it in perceiving shape. These cues are the position and size of each part of the
object relative to others, as well as a bit of curvature information near the silhouettes and across the
whole surface. The silhouette lines provide a way to distinguish the surface from the background
and to show a little of the surface's shape, with relatively little computational effort. In addition,
occluded portions of silhouette edges are culled, because occlusion is among the most important
cues our visual system gets regarding the position of parts of the surface relative to one another. It
seems that everyone realizes from an early age that if one part of an object is in front of another, the
closer part occludes the farther [6, 5], so we felt it absolutely necessary to cull out occluded parts of
the silhouette. See Figure 3. In addition, we show a little information about the surface curvature
near the silhouette and on the interior of the rendering. It does give a little shape from shading,
which is filled in slowly instead of immediately.

For small models, our algorithm's rendering speed is comparable to that of a coarse polygonizer
or point renderer, such as the one shown by Stander and Hart [12]. For large models the algorithm
should prove to be asymptotically faster, although no longer real-time. For similar reasons, our
algorithm would also be asymptotically faster than a volume renderer, which must traverse a whole
3D volume, or at least the whole surface, before producing an image. Because of the asymptotic dif­
ference in rendering time, future research might focus on better methods offairly fast non-interactive
rendering of complex implicit surfaces.

The last common method of implicit surface rendering is ray tracing. Ray tracing does seem to
give a good feeling of object shape and position, but it is just not fast enough to be useful as a tool
for visualizing a model-such as is needed in a modeling program. In the time it takes to generate one
nice, ray-traced view of the model, it could be seen from many points of view using our algorithm.

3

3. PREVIOUS WORK

As mentioned to earlier, our work was primarily inspired by recent work in non-photorealistic ren­
dering (NPR). NPR in general describes any method of drawing a simple abstraction of a complex
model in order to highlight important details, or to add extra information or feeling [13]. There are
at least two big benefits to rendering this way. The first is the perceptual gain-being able to get
more information or feeling from an image or series of images. The other is related to efficiency-we
can sometimes save computational expense by computing and rendering only a select portion of a
model which is felt to be the most important. Since implicit surfaces are expensive to render at all,
we focused on using NPR to make the algorithm fast. Future work in the other area might include
shading the whole surface in an expressive way, such as with a pen-and-ink style, and providing a
visual way to identify cusps, singularities, or other interesting parts of the model.

Our work was directly inspired by the work of Markosian et. al. [7] which produces a silhouette­
rendering of a polygonal model. After seeing it, we tried to adapt the idea of rendering only outlines
to the problem of implicit surface rendering.

But that work was not the first to produce line drawings of surfaces. An early line drawing
application was developed by Scott Roth [8]. It draws just object outlines, but does so with a ray­
tracing algorithm. Similarly, it was developed to give a speed improvement over regular ray-tracing,
which it obtains because it is not required to evaluate lighting equations. Unlike the other work, it
was designed to operate on eSG models constructed from a few implicitly defined primitive shapes
(cubes, spheres, cones, and cylinders).

As a side note, there is a rendering style called contour line drawing which bears a superficial
resemblance to ours. This method slices planes through the implicit surface and draws the curves
formed by the intersection. [2] The big difference between that method and ours is that it uses curves
across the whole surface, in order to show the surface shape, whereas ours draws far fewer curves
and does so just to indicate the surface's outline.

4. THE ALGORITHM

4.1. Overview

We need algorithms to find the silhouette edges and information for shading, to test the edges for
occlusion, and to draw the edges and shading info. However if while examining the model, the user
pauses for a moment, the algorithm need not waste time recomputing silhouettes.

Figure 4 shows the process schematically. The pseudocode is as follows:

For each frame

If the camera has moved or the model has changed

Find new silhouette edges and shading info

Test edge sections for occlusion

Draw the edges and shading strokes

Else

Look for missed edges and additional shading info

Draw all edges and shading strokes

4.2. Notation and assumptions

We assume that the surface model, 5, that we are rendering is the zero-set of a twice continuously
differentiable function f on R 3 . To make the explanation simpler, suppose that the solid bounded
by the surface is the region in which f < 0, which causes gradients to point away from the surface
rather than inward.

In order to make the algorithm work with a wide variety of model representations, it treats the
implicit function defining the model as a "black box" from which it only needs to be able to get,

4

Figure 4: Rays from the film plane are traced along the view direction until they hit the surface. Then we
trace in the direction of the view-plane projection of the gradient to try to find a silhouette. Once one is
found, we trace along it.

at any point, the function value, the gradient, and the Hessian (matrix of second derivatives) of the
function.

We further assume that the virtual camera is orthographic with view direction v, that all points
on the film plane are outside the object (i.e., f > 0 on the film plane), and that the surface S lies
entirely within some known region of space (a sphere of radius 20 about the origin in our particular
implementation) .

We denote points and vectors by boldface letters; the point x has coordinates Xl, x2 and X3.

We also assume, to make ray-surface intersection easier, that there is a constant K > 0 such that
at every point x, the gradient of i,

8f 8f 8f
'Vf(x) = (~(x), ~(x), ~(x))

UXI UX2 UX3

has magnitude bounded by K. Finally, we denote the Hessian of i, the matrix of second partial
derivatives, by H i, so that

Hf(x) = [

4.3. Silhouette Finding

Silhouette finding is a three-step process:

1. Locate a point on the surface through ray-surface intersection

2. Trace along the surface to a point on a silhouette

3. Trace out the silhouette

4.3.1. Ray-surface intersection

We apply a modification of Kalra and Barr's [2] implicitization algorithm to do ray-surface intersec­
tion: the idea is that for functions with bounded gradients, we can search for ray-surface intersections
by stepping along a ray and be guaranteed to miss no intersection: if, while searching for an inter­
section along the ray p +tv, we are at location x, then we can take a step of size f(x) / K to location
x' = x + (f(x)/K)v and be confident that f(x') 2: O. We search along rays from the eye until the
function value is nearly zero, and call the resulting point a surface point. If the search proceeds far
enough, our assumption that the surface lies within a bounded region of space lets us terminate the
search. In this case, the silhouette finding process does not continue with silhouette point finding,
but rather with ray-surface intersection using a different ray.

5

SC';'VProjectlon of Vf(p)

Imageplane

Irection
tomove

VI

Figure 5: When we reach a point p of the surface, we find a tangent vector whose screen projection is in the
same direction as that of the gradient (that tangent vector's called where), and move in that direction to
find a silhouette.

Figure 6: When a view ray hits the interior of the surface (shown in cross-section here), the surface normal
(show in bold) points back towards the eye. When the view ray grazes the silhouette of the surface, the view
ray and the surface normal are orthogonal.

4.3.2. Silhouette point finding

When we find a ray-surface intersection, we try to use it to locate a silhouette by walking along the
surface in the direction of the screen-projection of the gradient at each point (see Figure 5).

We take the ray-surface intersection p, compute the function gradient at p, and use this to find
a tangent vector in the plane spanned by v and V't, i.e., we let: 1

F() = V'f(p) X (v X V'f(p))
p IIV' f(p)11 2

The vector field F is tangent to the surface and lies in the plane spanned by v and V'f(x). We
trace along this vector field until the dot product of v and V'f changes sign, which indicates that
we have passed a silhouette. A silhouette point is a point of the surface where the tangent plane
contains the view direction; it may be obscured by some other part of the surface, but we call it a
silhouette point nonetheless. In the mathematical literature, it's sometimes called a "fold point."
See Figure 6.

So far, we have just described the vector field to be integrated, not the method of integration.
See Section 5 for a description of the integration method.

Often, after a few silhouettes have been traced out, the point found will lie on one of the sil­
houettes already traced out. So before proceeding, we test to see if this is just such a point. See
Figure 7.

1 The division by the square of the gradient is designed to make the vector field independent of the scale of j: if
we replace j with a j , the vector field is unchanged.

6

Interior ofsurface

Viewrays

'h::,...-t---Surtace NOlTTlal (bold)

Silhouette Point

Viewray

Figure 7: A new silhouette point, shown in grey, should be tested to see if it lies on a silhouette edge that
was already traced out, to avoid recomputing the position of a silhouette edge.

Silhouettes are represented as 3D polylines. We do a proximity test between the found point
and all the silhouette points which may be near it. (These points are stored in a hash table based
on location in three-space.) All the points in the polyline are approximately (; units apart, so if the
found point is within (; units of any found point, it is discarded, and the silhouette finding process
starts over with a new ray-intersection.

4.3.3. Silhouette Tracing

A curve h : n --+ n 3 lies on the silhouette of the surface S viewed along v if

• h(t) E S for every t, and

• The tangent plane to the level surface at h(t) contains v for every t.

These two conditions can be rephrased as

f(h(t)) 0

ytVf(h(t)) O.

Rather than try to solve for h(t) analytically, we instead use this implicit description to determine
the tangent vector of h, from which we can determine h by numerical integration.

Differentiating each equation with respect to t, applying the chain rule, and using w to denote
h'(t), we get

Vf(h(t))· h'(t)
ytHf(h(t))h'(t)

0

0,

i.e.,

V f(h(t))w
ytHf(h(t))w

0

O.

Thus the tangent vector to a silhouette curve must be orthogonal both to the gradient at its base­
point, and to the product of the Hessian at the basepoint with the view direction. This makes it
proportional to the cross product of these:

w ex Vf(h(t)) X ytHf(h(t)).

We can therefore trace along a silhouette by computing

7

~CUSP

~Silhouette

Figure 8: A cusp occurs at the end of a silhouette. A slight "hook" is conventionally drawn at the cusp to
indicate its shape.

and finding an integral curve for this vector field. Of course, at locations where w = 0 the tracing
process stagnates. This happens, for example, at cusps like the one shown in Figure 8. Our silhouette
tracing algorithm starts from a silhouette point, found previously, and traces out the silhouette until
the tracing process stagnates or returns to the starting point; if it stagnates, we return to the starting
point and trace in the other direction. Section 5 discusses the details of the tracing scheme.

We must also take care not to keep tracing past the starting point. We take a series of steps along
the curve of size L After each step, we find the distance between the new point and the starting
point. If the distance is less than e, tracing stops and the 3D polyline is closed.

4.4. Occlusion Testing

The silhouette curves are recorded as 3D polylines. We test the vertices of the silhouette for occlusion
by first checking every nth (4th in our implementation) vertex for occlusion, and then, for those
between which occlusion status changes, testing the intervening vertices as well. To check occlusion
of a single vertex of a silhouette polyline, we start at the vertex, move back towards the film plane
from it, and do a ray-surface intersection test back into the scene. If the ray intersects the surface
at a place much closer to the film plane than our vertex, we declare the vertex invisible; otherwise
it's visible.

Note that because of numerical issues, the ray may not intersect the surface exactly at the
silhouette vertex (which may, indeed, not actually lie exactly on the surface), so the "much closer"
test is important. Unfortunately, if the true silhouette is just barely obscured by some nearer piece
of surface, and the silhouette vertex happens to still seem to be visible, we draw still the silhouette.

4.5. Rendering

4.5.1. Silhouette Edges

The silhouette edges could be simply drawn as polylines, as would be done in a basic implementation.
But, to convey extra information about the surface's shape near the silhouette, we alter the drawing
style based on the local curvature. At a point p of the silhouette, the Hessian can be used to
determine the curvature of the surface in the "heading-into-the-distance" direction. To be more
precise, if we consider the plane through p spanned by the gradient and the view direction, its
intersection with S is a curve. The gradient to S is normal to this curve, and the rate of change
of this normal in the view direction is proportional to the curvature of the curve. But the rate of
change of the normal as we move the basepoint in some direction u through the point p is simply
u'H I(p); to compute its component in the view direction, we take the inner product with the view
vector. We can therefore compute the curvature in the view direction as v t H I(p)v. Unfortunately,
this computation depends on the scaled I; we normalize it by dividing by the magnitude of the

8

...,:.

..•.... , .•..•J;--:.•.

...... ..' ./'

~. :: ' ... '

........
"::":'.

....:...;....
;;""'-t :)f

~ ; . .. // / "/:. i~

Figure 9: The silhouette drawing style varies with the surface curvature. The tip of the bunny's left arm is
drawn with tightly spaced lines, whereas the lines defining its torso are widely spaced.

gradient of f. Hence we compute
v t Hf(p)v

K(p) = II\7f(p)11

for points on the silhouette, and use it to help us draw shading near the silhouettes to indicate
curvature.

So we draw not just the silhouette but several parallel copies of it, with the inter-copy spacing
proportional to 1/K(p), Thus tightly-curved sections get closely-spaced curves, and areas of shallow
curvature get widely-spaced ones. See Figure 9.

We could also experiment with stroke styles as did Markosian et al [7].

4.5.2. Interior Shading

Interior shading strokes are drawn using a very simple lighting model - we assume that the light
in the scene is arriving from behind the virtual camera, and that the surface is diffuse, so that the
illumination is proportional to the dot-product of the view direction and the (unit) surface normal.
At interior points, when a ray strikes the surface, we immediately compute the gradient at the
intersection point so that we can start searching for a silhouette. We use this computed gradient to
determine two additional things:

• the direction v x \7f that's tangent to the curve of constant illumination (isophote), and

• the lightness s of the surface (11~~f1) at the intersection point.

We then pick a color Js\bg + (1 - Isl)db, where bg is the background color (a neutral gray) and db is
a dark blue, and draw a short stroke in this color, tangent to the isophote.

These "free" shading lines accumulate as rays are shot at the surface in search of silhouette edges,
and help convey the interior shape of the surface. See Figure 10.

5. EFFICIENCY CONSIDERATIONS

5.1. Approximate Tracing

In both silhouette finding and silhouette tracing, we need to "walk along" the implicit surface,
guided by a vector field. In each case the general algorithm we use is Euler integration: p is

9

Figure 10: Several images of the same model, with progressively more strokes filled in. Note the light strokes
on places perpendicular to the view direction, such as the bunny's nose, and dark strokes near silhouette
edges.

/

/

/

/

I
I

I

\

\ \

\ \

\ \

-,\

/' / / ,/ /' /' ./ ­
\

/ / / /'" " '\

-, \ \

-,
/"' ­

/ / -- "-
\

\ I
I I I

...... /' /-,

-, -,

\

--,/

......

/ I / /
\ \ \

/ / /
\ \ \

I I /
\ \ \

I I II I I
I I I II I I
\ \ \ \I I I
\ \ \ \

I / /
\ \ \ \

/ / /
\ \ \

I

, -, -, -, -, \
'" ./ ­ -,
/'

-, \
/

-,

-/' /'

-, -, \ \

\ \ \ \

\ \ \ \
\ \ \ \
I I I I
I I I I
/ I I I
I I / /

/ / / /

.. / .If /' / / I'" /
-- /

/ / / / / /-,\ '\ '\ ~ " "­

Figure 11: (a) When the tangent field to a family of circles is integrated with Euler integration, the result
is a growing spiral. (b) When we add a penalty term for distance from the starting circle, the result is a
non-diverging circle (albeit slightly displaced from the starting point's circle).

replaced by p + EF(p), where F is the vector field, and E is some small number. This approach is
notoriously unstable; using it to walk along the circumference of a circle (i.e., along the vector field
F(x, y) = (-y, x)) leads to the sort of spiral shown in Figure l1(a). But if in addition to knowing
that we want to be guided by a vector field, we have some other constraint, we can use this to help
stabilize the process. For example, in silhouette finding, we know that we not only want to move
along the surface in the direction determined by the gradient and view direction, we also want to
remain on the surface. By adding a "penalty" term to the vector field - a term that's zero on the
surface, but drives us back to the surface when we're off it - we can ensure that the integral curves
don't wander too far. In the case of the tangent vector field to the circle, we can use the vector field
G(x, y) = K * (x 2 + y2 - 1) * (-x, -V) as a "corrector" field; when we add this to F, the integral
curves, even with Euler integration, now lie close to the circle rather than following a diverging
spiral (see Figure 11(b)). This idea is closely related to the constraint-satisfaction method in Barzel
and Barr's "Dynamic Constraints" work [1]. The constant K determines the degree of penalty for
falling off the circle: if K is small, the curve will not stay close; if K is made too large, however, the
curve can oscillate across the circle.

In the case of silhouette finding, we know that we want to remain on the surface as we search for
a silhouette. Our first implementation took small steps and then, at the end of each step, did a ray­
surface intersection to "fall back" onto the surface. Our revised version instead uses the stabilization

10

method: instead of using the vector field

F() = V f(x) x (v x V f(x))
x Ilvf(x)112

defined on the surface, we define (on all of 'R. 3) the vector field

F() = V f(x) x (v x V f(x)) - f(x)V f(x)
x IIVf(x)112 .

The additional term - -1{~~)(~f1I(:) - is a field that points towards the surface at all points of space.
Hence when Euler integration takes our curve off the surface, the additional term tries to coax it
back onto the surface. Just as in the case of the spiraling circle, the correction is imperfect: the
"stabilized" path still does not lie exactly on the surface. But it does not diverge from it either, and
the expensive ray-surface intersection is eliminated. By the way, this is just a specialized type of
predictor-corrector integrator; the novelty is in its application to finding silhouettes for isosurfaces.

For the case of silhouette tracking, our initial corrector takes the predicted location and does a
ray-surface intersection (moving in the negative gradient direction) to fall back to the surface, and
then a silhouette-finding operation to fall back to the silhouette. In the current implementation, these
two steps use the same algorithms that initially are used to find the surface and then a silhouette
point. In this system, on reaching a cusp the corrector no longer returns the right value, which is
why tracing stops at cusps.

We have since implemented a corrector like the one described for silhouette finding. The pictures
here, however, use the original method, since we have not thoroughly tested the new corrector. For
this new corrector, we have two additional constraints: we want to find integral curves of the vector
field

G(p) = Vf(p) x vtHf(p)

on the surface, but Euler integration will wander off the surface and off the silhouette curve. Again,
we can add a correction of the form -1f~~\~f1I;:) to keep the curve on the surface. We can also add a
correction to keep the curve running along the silhouette: just as adding - fV f tends to drive f to
zero, we can add -gVg, where g(p) = v· V f(p) to drive g to zero, i.e., to drive us onto a silhouette.
This expression simplifies to

-(v· V f(p))vtH f(p)·

Fortunately, Vf and H f are already computed in getting the basic vector field to walk along.
In summary, we find an integral curve of

1
x (v x V f(p)) - f(p)V f(p)IIVf(p)1I 2 (V f(p)

-K * (v Vf(p))vtHf(p))

and it will not only follow the silhouette, but ifit (because of Euler steps) wanders from the silhouette,
will be driven back towards it.

In our initial tests, setting K to 1 has led to some oscillatory behavior; K = 0.5 seems to work
well, however.

As an alternative to Euler integration, we could use Runge-Kutta integration. Runge-Kutta
integration requires more computation for each step, but diverges much more slowly from the ideal
curve than Euler integration, allowing bigger steps to be taken. But both methods still diverge, so
regardless of which we use, we would still want to take advantage ofthe special correction information
available to us, which lets us pull the curve directly back toward the surface or curve on which it
should lie. Future work might include testing to see if, and how much, the speed gained from
Runge-Kutta's bigger steps offsets the cost of extra computation.

11

5.2. Choosing good rays to shoot

Our algorithm begins by shooting rays from the film plane along the view direction (orthogonal to
the film plane in our implementation) into the scene, hoping to find silhouettes. The silhouette­
finding algorithm can easily get stuck in "valleys" in the surface, so some rays produce nothing of
interest. On the other hand, a ray that falls near a silhouette will rapidly lead to productive results.
Because we are trying to render at interactive speeds, we have some confidence that inter-frame
differences in the image are small, so silhouettes in a frame are likely to be near their locations in
the previous frame. Thus former silhouette points are good candidates for ray-starting-points in the
current frame. If we displace these points slightly "inward" along the surface normal, then surface
(or camera) translations are less likely to cause them to miss the surface when they're re-shot. We
therefore, in choosing rays to shoot in each frame, preferentially select starting points that lie on
silhouettes from previous frames; we also use some randomly chosen rays, in hopes of finding new
silhouettes that may appear far from any previous silhouette.

6. TIMING

Initial timing tests for an execution that involves frequent camera motion suggest that the bulk
(60%) of the algorithm's time is spent determining silhouette curves. Of this, half (30%) is spent
shooting rays, many of which miss the surface (although this depends on the screen-area occupied by
the surface), a quarter (15%) on silhouette-finding, and the remaining quarter on silhouette tracing.

Another 30% is spent on occlusion testing, virtually all of it in ray-surface intersection compu­
tations.

The remaining 10% is spent drawing the shapes, doing object-creation in Java3D, and handling
thread synchronization and other tasks unrelated to the algorithm.

By contrast, during a model-creation session, about 80% of the time was spent determining
silhouette curves (70% ray-shooting, 10% silhouette-finding, 20% silhouette-tracing), and about
20% doing occlusion testing. A small amount was spent creating a drawing shapes in Java3D.

7. LIMITATIONS AND FUTURE WORK

The algorithm described here has some serious limitations. We require that t, V'f and H f all be
available at all points of the model that we render. For sampled data, these might be provided
by performing some tricubic interpolation of the samples, although we have not implemented this.
Further, our ray-surface intersection requires the bound on the gradient magnitude, although it
could be replaced with some other method if no such bound is available.

The occlusion testing uses only samples of the silhouettes, hence is prone to small errors. If we
knew that we had computed all silhouettes, and projected them to 2D, we could apply the methods
used by Markosian et al. [7] instead. It may well turn out that this is more efficient, because it would
drastically reduce the number of ray-surface intersection tests we need to perform. Furthermore, it
would allow us to do 2D region-fill operations to make the surface interior be a different color from
the background, which would presumably help in indicating the object's shape.

There are two additional cues to the shape that could probably be shown by using a perspective
camera: motion parallax and the fact that objects diminish in size with increasing distance from
the viewer. The first, and maybe also the second, seem most effective in a system like ours which
views models at interactive rates. The current implementation uses only an orthographic camera;
replacing it with a perspective camera is a small change, but the vector v, which is constant for
an orthographic camera, becomes dependent on the viewed point for a perspective camera, which
would add some modest computation.

Our system cannot render texture maps on the surfaces, and indeed, since we sample as few
points on the surface as we can, we see no way to include this.

We would also like to push the limits of NPR further. For example, the rendering near cusps,
where silhouette edges disappear, has a disappointing (to us) appearance, with the "shading curves"
fanning out. Hand-drawn cusps like the one in Figure 8 present a far more attractive appearance,

12

and we'd like to somehow copy this. It would be nice to be able to find and detect other interesting
features, such as sharp edges and singularities. In addition, we might experiment with a slower
version of the algorithm which would draw shading across the whole surface, perhaps in a pen-and­
ink style.

The tradeoff between step size and speed is only partly successful: if we increase the step size
too much, we either spend excessive time in the explicit correctors (re-intersect surface, re-find
silhouette) or the implicit correctors can fail because the assumption that the point is not far from
the surface, so that gradient forces can bring it back on, fails.

As mentioned earlier, it would be good to try other methods of integrating the silhouette curve,
such as with Runge-Kutta integration, to see if we can make a gain in efficiency.

Our use of Java3D is unsatisfactory: it seems foolish to create curves in 3-space so that a 3D
renderer can redraw them for us in 2D. But with the optimizations in Java3D, it appears (at least
on our Sun workstations) to be faster to do this than to draw directly in 2D.

8.	 FINAL NOTES

The project can be executed from the directory /u/djb/impl. Once there, type java Illus3D to
produce an environment in which you can create a surface, or type java Illus3D [file].blob to view
one of the sample models.

9.	 REFERENCES

[1]	 Ronen Barzel and Alan H. Barr. A modeling system based on dynamic constraints. In John Dill,
editor, Computer Graphics (SIGGRAPH '88 Proceedings), volume 22, pages 179-188, August
1988.

[2]	 Jules Bloomenthal, editor. Introduction to Implicit Surfaces. Morgan Kauffman Publishers,
Inc., 1997.

[3]	 Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, and David H.
Salesin. Computer-generated watercolor. In Turner Whitted, editor, SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages 421-430. ACM SIGGRAPH, Addison Wesley,
August 1997. ISBN 0-89791-896-7.

[4]	 David P. Dobkin, Silvio V. F. Levy, William P. Thurston, and Allan R. Wilks. Contour tracing
by piecewise linear approximation. ACM Transactions on Graphics, 9(4):389-423, 1990.

[5]	 E. Bruce Goldstein. Sensation and Perception. Brooks/Cole Publishing Company, 1996.
[6]	 Victoria Interrante. Perceiving and representing shape and depth. SIGGRAPH 97 Course Notes

for Principles of Visual Perception and Its Applications in Computer Graphics, August 1997.
[7]	 Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev, Daniel Gold­

stein, and John F. Hughes. Real-time nonphotorealistic rendering. In Turner Whitted, editor,
SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 415-420. ACM SIG­
GRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7.

[8]	 Scott D. Roth. Ray casting for modeling solids. Computer Graphics and Image Processing,
18(2):109-144,1982.

[9]	 Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and David H. Salesin. Interactive pen­
and-ink illustration. In Andrew Glassner, editor, Proceedings of SIGGRAPH '94 (Orlando,
Florida, July 24-29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages
101-108. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[10]	 Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David H. Salesin. Orientable
textures for image-based pen-and-ink illustration. In Turner Whitted, editor, SIGGRAPH 97
Conference Proceedings, Annual Conference Series, pages 401-406. ACM SIGGRAPH, Addison
Wesley, August 1997. ISBN 0-89791-896-7.

[11]	 Mike Salisbury, Corin Anderson, Dani Lischinski, and David H. Salesin. Scale-dependent repro­
duction of pen-and-ink illustrations. In Holly Rushmeier, editor, SIGGRAPH 96 Conference
Proceedings, Annual Conference Series, pages 461-468. ACM SIGGRAPH, Addison Wesley,
August 1996. held in New Orleans, Louisiana, 04-09 August 1996.

13

[12]	 Barton T. Stander and John C. Hart. Guaranteeing the topology of an implicit surface poly­
ganization for interactive modeling. In Turner Whitted, editor, SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages 279-286. ACM SIGGRAPH, Addison Wesley,
August 1997. ISBN 0-89791-896-7.

[13]	 Georges Winkenbach and David H. Salesin. Computer-generated pen-and-ink illustration. In
Andrew Glassner, editor, Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24-29, 1994),
Computer Graphics Proceedings, Annual Conference Series, pages 91-100. ACM SIGGRAPH,
ACM Press, July 1994. ISBN 0-89791-667-0.

[14]	 Georges Winkenbach and David H. Salesin. Rendering parametric surfaces in pen and ink.
In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Se­
ries, pages 469-476. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans,
Louisiana, 04-09 August 1996.

A.	 SOFTWARE DESIGN

A .1. Important System Classes

Function3D

Abstract class used to define the function from which the implicit surface is derived.
The function needs to be defined and twice differentiable at each 3D point. Exactly one
instance of this class should be in the system at all times.

double eval(Point3d)

Evaluates the function at a point in space.

void gradient(Point3d p. Vector3d result)

Finds the gradient at point p, and places that value in result.

void hessian(Point3d p. Matrix3d result)

Finds the hessian at point p and places it in the 3x3 matrix result.

ModelTracer

This is used to find and trace out a 3D silhouette curve. It has a Function3D, and it
traces a surface defined by the set of points in the function that are equal to some target
value. Normally, the model tracer uses a default target value that is stored with the
function.

boolean intersect(Point3d startpt. Vector3d dir,

double maxdist, Point3d result)

Shoots a ray from startpt in direction dir, looking for a point at which the function is
approximately equal to the target value. If the ray travels for more than maxdist units,
it stops and returns false. Otherwise it returns true.

boolean findSilhPoint(Point3d startpt, Vector3d viewdir,

Point3d result)

14

Travels across the surface to find a silhouette point: a point at which the gradient vector

is roughly perpendicular to the view direction.

It works by doing a series of predictions and corrections. See Section 4.3.2 for more

about the vector field we follow, and Section 5.1 to find out how it is integrated.

It takes steps of uniform size, until it steps past the silhouette edge. Once it steps past

the end, it reduces the step size, backs up one step, and starts tracing again, to get better

accuracy.

Silhouette traceSilh(Point3d startpt, Vector3d viewdir)

Traces along the surface, always staying close to the ideal silhouette curve, using a

series of predictions and corrections. It returns a sequence of 3D points that represent a

silhouette.

Prediction Step:

Using Euler integration, just take a uniform size step in the direction described in Sec­

tion 4.3.3.

Correction Step:

Current way (Being tested): First, use the vector field to fall back onto the surface, as

described in Section 5.1. Then, use another vector field, described later in Section 5.1 to

get back to the silhouette. This method successfully moves around cusps, but can drift

a little from the ideal silhouette.

Old way: First, use the vector field to fall back onto the surface, as described in Sec­

tion 5.1. Then, call findSilhPoint to travel across the surface back to the silhouette.

When a cusps is reached, this process fails to follow the curve, so tracing must be stopped

in the current direction.

void fillinSilh(Silhouette sil)

This is used to continue tracing out a silhouette. It is useful because sometimes the
process of tracing is stopped early due to time constraints. The algorithm is virtually
the same as that used for traceSilh. It starts from each end of the passed in silhouette,
and traces as far as possible in each direction, adding new points as it goes.

EdgeFinder

This object is responsible for finding silhouette edges and passing them along to the
EdgeProcessor. Its search is guided to some extent by the EdgeProcessor, which gives
it unfinished edges and promising world-space points to search near.

A separate thread executes most of the methods in this object.

void runO

The thread for this object repeatedly does the following:
If there are any Heuristic objects available, process them. For example, a Heuristic
object might contain a partially traced out edge that should be traced further by calling
ModelTracer. fillinSilh(...). If there are no Heuristic objects left, do some default
search, like shooting random rays.

Silhouette findEdge(Point3d startpt, Vector3d dir, Vector3d viewdir)

15

Finds a silhouette edge.

1. Call ModelTracer. intersect to get a point on the surface, by shooting a ray from
startpt in direction dir.

2. Call ModelTracer. findSilhPoint (. ..) to get a point on the silhouette edge.

3.	 If this point is not on near any edges that were already found, Call ModelTracer. traceSilh (...)
to get the edge

void pauseO

This method is invoked by another thread, to force the EdgeFinder to stop searching or

tracing an edge 'very soon', and to hand any partially traced edge to the EdgeProcessor.

Works by setting a 'stop' switch in the EdgeFinder.

void contO

Allows the EdgeFinder to continue, but does not wake it up if it is asleep. Works by

unsetting a 'stop' switch in the EdgeFinder.

EdgeProcessor

This class is responsible for processing edges in various ways, such as doing occlusion

tests, adding shading strokes, and putting the edges into a draw-able form. A separate

thread executes most of the methods in this object. That thread is asleep until the

EdgeFinder adds an edge.

void runO

The thread for this object repeatedly does the following:

1. Sleep until an edge is added.

2. Remove the edge and create a SilhEdge object, which encapsulates all the info from
processing, such as world-space points, screen-space points (not used currently),
occlusion info about points, and each edge in a draw-able form.

void drawO

This is called by the main thread, the one that does all the drawing for Java3D. It iterates

through all the SilhEdge objects, telling each to draw itself.

ImplCanvas3D

This object is used by the Java3D rendering engine. It extends Java3D's Canvas3D

object, which allows rendering in immediate mode.

Every time a frame is drawn, this method is automatically called.

void renderField(int unimportant_parameter)

1.	 Pause the EdgeFinder.

16

2.	 Wait for the EdgeProcessor to process all the edges it has.

3. Call EdgeProcessor. draw() to actually draw all the silhouettes and shading strokes.

4.	 Update the camera matrix, if necessary, and notify the EdgeFinder and EdgeProcessor
of changes, so they can update their view directions, clear out the SilhEdges, add
appropriate heuristics, etc.

5. Unpause the EdgeFinder.

6. Force this	 thread to go to sleep for a little while, to give the EdgeFinder and
EdgeProcessor time to make new edges.

Heuristic

These objects encapsulate information that the EdgeFinder uses in its search for edges.
Currently they can hold three types of information: a partially traced out edge which
should be completed, a point in space at which a ray should be shot for a likely hit, or
a point on the screen through which a ray should be shot.

A .2. Flow of Control

Flow of control through the main thread of the application-the one that executes the drawing of
the lines at the right time.

Soon after previous frame is swapped in, the main thread calls the following method, in which
the most complex synchronization takes place.

IrnplCanvas: :renderField(int)

1.	 Signals the EdgeFinder to stop "very soon", and puts itself to sleep until the EdgeFinder
complies. The signaling is done by setting a boolean 'stop' switch in the EdgeFinder object,
which the EdgeFinder thread checks periodically. When it is at a good stopping point, it will
wake up the main thread and put itself to sleep. So now the EdgeFinder is in sync.

liThe Code. Both calls are made from renderField(int)

_edge...finder .pause 0 j

_edge...finder.accessLockO .1ockO j

Side note: There are several ways to decide when EdgeFinder should stop. Small changes to
the code can make it stop right in the middle of finding an edge, or immediately after it has
finished tracing out its current edge, or not until it decides somehow that it has made a pretty
thorough search for edges.

2. Next,	 the EdgeProcessor also needs to be stopped at a safe place. The EdgeProcessor has
an "Access Lock" called .access.Iock which it locks when it has an edge to process. Once it
has done all its processing, it releases the lock and goes to sleep.

So, the main thread simply tries to get the lock. If it doesn't get it immediately, it goes to
sleep and lets the EdgeProcessor finish all its work. Once the EdgeProcessor finishes, it
wakes up any waiting threads, and puts itself to sleep.

This, oddly enough, takes place inside EdgeProcessor: :draw 0 ,which is called by the main
thread from renderField (ant).

EdgeProcessor::draw()

17

.access .Lock .1ockO j / /pause to wait for EdgeProcessor to finish
Draw all the edges .
Draw shading info ..
.accesa.Lcck . unlock (); / / allow EdgeProcessor to resume

3. Now we're almost done	 with renderField(int). The model description and camera info
are shared by many objects, including those that want to update them. However, neither of
these are allowed to change while the EdgeFinder or EdgeProcessor are running, because the
effects would just be bad. So, they are updated at this safe point, when the EdgeProcessor
and EdgeFinder are stopped and everything has been rendered.

Then, the boolean switch asking the EdgeFinder to stop is unset by the main thread, and the
EdgeFinder thread is awakened, using these calls:

_edge...:finder. cont 0; / /unset 'stop' switch
_edge...:finder. accessLockO. unlockO; / fallow thread to continue.

Nothing extra needs to be done to wake up EdgeProcessor. It will wake up automatically
when it receives new edges.

4. Finally, the main thread puts itself to sleep for a while (maybe for several frames) in order to
give the EdgeFinder and EdgeProcesor a chance to find as much as possible.

Next, here is the flow of control through the EdgeFinder thread. It is pretty well described above
in EdgeFinder. run O. Basically, while it is awake it searches for edges, according to some heuristic
if that is possible, or otherwise by shooting random rays.

It is put to sleep and awoken by the main thread, as described above. Every time it finds an
edge, it inserts it in the EdgeProcessor class, and wakes up the EdgeProcessor thread.

The flow of control for the EdgeProcessor is also pretty straightforward. It is described above
in EdgeProcessor. run 0 . The EdgeProcessor is never forced to sleep. It puts itself to sleep as
soon as it processes all the available edges. So, during synchronization, the main thread never forces
it to stop, but simply waits for it to put itself to sleep.

18

