
The Pub-Sub Simulator

Rahul Bose

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Computer Science at Brown University

January 1999

Contents

Acknowledgments v

1 Introduction 1

1.1 Pu blish-Subscribe Systems. 1

1.2 The Pub-Sub Simulator 1

2 Simulator Design 3

2.1 The Publish Subscribe Model 3

2.2 Design Overview 3

2.3 Modules 4

2.3.1 The Server 4

2.3.2 The Profiler . 4

2.3.3 The Mapper 4

2.3.4 The Scheduler 4

2.3.5 The Client .. 5

2.3.6 The ClientManager . 5

2.3.7 The ChannelManager 5

3 Metrics 7

3.1 Types of Measurement 7

3.2 Staleness 7

3.3 Queue Lengths 8

3.4 Differential Flow Rate 8

3.5 Update Time At Liftoff 9

4 Channel Assignment 11

4.1 Client-To-Channel Mapping 11

4.2 Algorithms .. 11

4.2.1 Random 11

4.2.2 RR. . " 12

4.2.3 PC. 12

4.2.4 LC . 12

5 Mapping Algorithms 15

5.1 Page-to-Channel Mapping 15

5.2 Algorithms .. 15

5.2.1 Random 15

5.2.2 C 15

iii

Acknowledgments

The work described in this report is the result of almost a year's work by the members of the Data
Dissemination Group - myself, Donald Carney, and Kerry Kurian, with guidance from Professor
Stanley Zdonik.

For purposes of obtaining credit towards a masters degree in Computer Science, the following
describes my specific contributions to the project.

• The page-to-channel mapping algorithms CD, Offline.C, and Perfect.C

• The client-to-channel assignment algorithms RR and LC

• The classes ChannelManager, ClientManager, Profile, ZClusProf, CM-RR, CM..PC, TList

I have also been involved from the beginning in the evolving design of the Pub-Sub Simulator,
and have played a leading role in maintaining the code base.

I wish to thank the other members of the Data Dissemination group - Donald Carney, and
Kerry Kurian. I am grateful to my advisor Prof. Stanley Zdonik for his guidance during my stints
first as a student, and then as a research staff member.

v

Chapter 1

Introduction

1.1 Publish-Subscribe Systems

A publish subscribe system consists of a number of data sources or publishers, a very large number
of clients or subscribers, and one or more agents in between. These agents are responsible for
figuring out what data should reach which clients, and how it should be routed. The clients make
their interests known by submitting interest profiles to the agent.

D
0

0

0

4 DI
I
I Clients

Physical
Channels

1.2 The Pub-Sub Simulator

The Pub-Sub simulator attempts to study the issues involved in building such publish subscribe
systems. In our model, the publish subscribe agent gets data from the data sources and transmits
them to the clients through a set of broadcast channels to which the clients are listening. There are
typically many more clients than there are channels, and each client has a limit on the maximum
number of channels they can listen to.

1

Server Broker

Chapter 2

Simulator Design

2.1 The Publish Subscribe Model

The model we use of a publish subscribe system consists of data sources on one end which keeps
updating data, clients on the other end who submit profiles listing their interests, and an agent or
broker in the middle which routes and schedules the data.

In our current implementation, we also introduce the following criteria:

•	 Every client can listen to a certain maximum number of channels, which is less than the total
number of channels available in the system.

•	 All clients have equal importance, i.e, we have not yet introduced client priorities.

•	 Client profiles do not have priorities linked to them, i.e. all pages are of equal importance
to the client. However, there can exist hot-spots in the client interests, L e. pages in which
large numbers of clients are interested.

•	 Data pages can be of different sizes. The amount of time taken to transmit a page is directly
proportional to its size.

2.2 Design Overview

There are five main modules in the publish subscribe simulator which model different aspects of
the system. These are:

Server The server generates random page updates and sends them to the profiler.

Profiler The profiler matches page updates to client profiles and lets those pages which are of
interest, through into the system.

Mapper The mapper determines how to route each page so that every interested client receives
it.

Scheduler The Schedulers (one for each channel) decide in which order to deliver the pages to the
clients.

Client The clients listen on the channels and receive pages of interest.

3

2.3. MODULES 5

the page. The RxW algorithm also takes into account the time a page has spent in the buffer, in
order to prevent starvation.

Each of the schedulers act independently, and once a page has been put into a channel, it will
always eventually reach the clients who are listening on the other end. One of the areas of future
work is a scheduler which drops pages selectively as the load on the channel increases.

2.3.5 The Client

The Client object acts on behalf of all the simulated clients in the system. It listens to all the
channels, and keeps measurements of pages received on a per client basis.

2.3.6 The ClientManager

The ClientManager generates and stores information about all the clients in the system. It acts as
a central repository of client data which other objects in the system can query. Examples of the
kind of queries possible are:

• Which channels is a given client listening to?

• Which clients are interested in a certain page?

• What are the pages a specified client listening to?

• Which clients are listening to a given channel?

The ClientManager maintains several data structures which contain all of this information.
It also helps generate this information with the help of other objects such as the ChannelMan
ager (which determines client-to-channel mappings) and the Profile object (which generate client
profiles).

2.3.7 The ChannelManager

The ChannelManager determines which clients will listen to which channels. For this, it takes into
account the client interests, as well as the server page generation probabilities.

The ChannelManager is one of the more important modules in the simulation, since the client
to-channel mapping determines to a large extent the performance of the entire system. Details of
the various algorithms and their relative performances can be found in the chapter on Channel
Assignment.

Chapter 3

Metrics

3.1 Types of Measurement

The development of metrics which accurately portray the performance of the system was one of
the more significant tasks faced during the design of the simulator. The current metrics which are
built into the simulator approach this problem in two ways. One set of metrics measure the system
from the point of view of a client. The other set of metrics look at different parts inside the system
and measure quantities such as rate of flow, etc.

3.2 Staleness

We define Staleness of a page as the time difference between the update time of the page at the
server, and the receive time of the page at the client. In our simulation, this is also equal to the
time the page spends inside the system, since a page is pushed out from the server immediately
after updation.

The Average Staleness measured at a client is the average of the staleness of all the pages
received at that client over the course of the experiment.

The Global Staleness is the mean of all the Average Staleness) s measured at each of the
clients.

Ihome/rb/ddglpub_sub/src/munislm.ln

70

60

50

40

30

20

10

\
"
\ \ \

\
\

\
1

\
\\ \,\

\ I \,

I \ \
i \ \\ \ ,
\ \ \

\
\
,
\

\
\

\
\ ~

\\ \,

\ \ \\ ., ••••••••••EJ•••••••••• (3 .••••••••• .",. •.••••••••" ••••• ··.·.(3••••••••••o-......•..

\
\ \ \

., \ _.------ -----_.\
I i_._._._._..::-:.=.::~_...a.-._._._.:.:..~:.:~~:::.:..::~:~:.:.:-~:~:.: ..-._._.-._.•-._._.
\
:i<--.._.._..-lol--.._ .._~ . -~..~.. . ._..~..- ._- ._.

~.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
ServerUpdateRate

7

http:�������.�.(3����������o-......�

3.5. UPDATE TIME AT LIFTOFF 9

3.5 Update Time At Liftoff

The Update Time At Liftoff (UTAL) shows the server update rate at which the DFR of the system
passes a certain small threshold. In other words, for a given system, as we ratchet up the update
rate at the server, the UTAL shows the point at which the system starts getting overloaded.

Ihome/rb/ddglpub_sub/src/munlslm.ln
0.55

ch,,!lllS@ "PC" -+
~_8ssg~"LC"-.

0.5 ..•__-. Ch_8Ssg_"RR" -8--·

'"

0.45

~----=::~.-0.4
0

'"
"iii 0.35
:::i

s.. ?::<=:~.---_.
a:
~
"0
Q.

:;;

0.3

J:;)7'~ 0.25

.."

0.1

0.05
0 100 200 300 400 500 600

Number 01Clients

1:/

W
.'1

CJ)
0.2

0.15

Chapter 4

Channel Assignment

4.1 Client-To-Channel Mapping

The problem of deciding which clients should listen to what channels is a non-trivial one, as one
has to take into account client interests and page update rates at the server, while attempting to
achieve the following goals:

•	 Reducing the amount of fluff a client has to receive, i.e. data which is not of interest to the
client.

•	 Distributing load across the channels uniformly.

•	 Enabling the Mapper to reach all interested clients using the minimum number of channels
for each data item.

Reducing fluff is achieved by grouping or clustering clients with similar interests together on
channels. This leads to less time wasted by clients on filtering out unwanted data. Clustering
similar clients together also helps the mapper reach all interested clients using fewer channels.

A channel allocation algorithm also needs to take care that it does not load up anyone channel
much more than others, since this channel then becomes the weak point in the system and the
first to break as the data load goes up. Different algorithms take different approaches to balancing
load. The simpler ones estimate channel load by the number of clients listening on the channel.
More complex algorithms look at the page generation probabilities of the pages which will be going
through that channel.

Estimating channel load is complicated by the fact that a lot depends on the the page mapping
algorithm being used at the Mapper. And conversely, the performance of a page mapping algorithm
depends on the type of channel allocation strategy used.

4.2 Algorithms

4.2.1 Random

This simple algorithm randomly allocates channels to clients. For large client populations, this
results in a uniform distribution of clients among channels. It performs especially well when all the
client profiles are alike, since channel load then gets uniformly distributed.

11

..~,

13 4.2. ALGORITHMS

For each channel
Randomly allocate a client to that channel

Set chID to 1
While there exists eligible clients

Pick a client whose profile best matches the profiles of clients already on channel chID
Assign this client to channel chID
If the client's channel quota is filled

Remove the client from list of eligible clients
Increment chID by 1. Wrap around if it exceeds total number of channels

Note: To pick the best client for a given channel, the number of pages common between the
client's profile, and the combined profile of clients already listening to the channel, is considered.
Pages having a higher P value (i.e. greater server generation probability) are given higher weight.
Ties are broken randomly. The term LC stands for Load-balanced Clustering.

Chapter 5

Mapping Algorithms

5.1 Page-to-Channel Mapping

It is the Mapper's responsibility to ensure that each updated page generated by the server reaches
all the clients interested in it. For this task, it implements a number of mapping algorithms which
determine which page should be sent out on which channels. These algorithms can be roughly
divided into two groups: online algorithms - where the page-to-channel mappings are static, and
offline - where they are determined on the fly.

Each channel has an associated maximum throughput. In order to load the system as little as
possible, an efficient mapper attempts to send the page out on the minimum number of channels
possible. At the same time, it also tries to balance load across all channels.

5.2 Algorithms

5.2.1 Random

This is a very simple algorithm which serves as a benchmark for the others. When a page comes
into the mapper, the set of outgoing channels is picked in the following manner.

While there exist interested clients
Randomly pick a channel
If any interested clients are listening on the channel

Send a copy of the page out on that channel
Remove these clients from the interested clients list

5.2.2 C

This algorithm tries to minimize the number of channels a page has to be sent out on. To determine
this, it uses the following greedy algorithm.

While there exist interested clients
Pick the channel which has the most number of interested clients
In case of a tie, randomly pick one of the tied channels
Send a copy of the page out on that channel
Remove these clients from the interested clients list

15

Appendix A

Class Definitions

A.I The Simulation Class

The Simulation class implements the main Simulation object which runs and controls the
entire simulation. It accepts the simulation parameters from the user, starts the various
modules, decides when to end the experiment, and reports results back to the user.

Operations

start Runs the simulation. Returns after the simulation is done.

Private Functions

CreateChannels Constructs the various channel objects

CreateModules Constructs the main modules of the simulation

InitModules Calls the Init function of each module, passing in pointers to other modules

StartModules Calls the Start function of each module

ReadLiftofflnput Deciphers the input parameters for the liftoff code

FindUpdateTimeAtLiftoff Implements the code for finding the liftoff point

Notes

The Simulation start function is called by mainj}. It begins by reading input parameters
from the run.in file, and then constructs all the major modules, passing each of them their
corresponding input parameters.

In experiments without liftoff measurements, the simulation then starts off all these modules,
waits for a user specified amount of time, shuts down the server and returns. Control flows
back to mainf}, which obtains the required metric from the Simulation object, outputs it and
exits.

By the term liftoff, we are referring to the fact that when we plot the GDFR metric as
a function of server speed, we observe that as speed increases, the GDFR remains fairly
constant, and then suddenly lifts off at a sharp slope. The liftoff code tries to automatically

17

19A.2. THE SERVER CLASS

A.2 The Server Class

The Server class implements the Server object in the Simulator. It contains one or more data
sources, which generate page updates according to some random distribution. These updates
are then sent to the Profiler object.

Initialization Parameters

int server.type The page distribution algorithm. This can be Uniform, Zipfian, or Pois
son

int numdata.sources Equivalent to number of hotspots in the distribution

int num.Iterns.per.dat.a.source num pages in each hotspot

data.element.aize The size of each page generated. Used to simulate page transmission
time

meari.update.rtime Mean time between updates at server. An exponential distribution
is used around this mean time.

zipLdesc Passed to the Zipf object if the server-type is Zipfian

Operations

Start Start sending pages

Stop Stop sending pages

GetPageGenerationProbs Return a list giving the generation probability of each page.
First entry is for page 1, the last for page dBaseSize

GetDBaseSize Return the total number of pages in the server database. i. e. num.data.Sources
X num.items.per.data.source

GetNumSources Return number of hotspots in the database, i. e. num.data.Sourcas

SetMeanUpdateTime Set the mean time between page updates. i. e. tt mean.update.time.
Used by the liftoff code to change the server speed

OriginalMeanUpdateTime Get the mean update time which had been passed into the
constructor. This is used by the liftoff code if it decides to run the original experiment.

Protected Functions

ReadInput Deciphers the input description passed into the constructor

Notes

A.3. THE PROFILER CLASS 21

A.3 The Profiler Class

The Profiler class implements the Profiler object in the Simulator. It is placed in front of the
server and acts as a filter by letting through only those pages which are of interest to one or
more clients in the system. It also helps in taking certain measurements.

Operations

Init Receives pointers to the ClientManager and Client objects

Start Gets into a loop waiting for pages from the server

GetFlowRate Get rate at which pages are flowing out of the Profiler

ResetFlowRate Reset the flow rate to zero. Called by the Simulation liftoff code in

preparation for running a new experiment

MeasureGlobalStats Set the measurement flag "_globaLstats". Enables the measure
ment of flow rate.

MeasureLocalStats Reset the measurement flag "_globaLstats". Disables the measure
ment of flow rate.

Private Functions

GetMessages Gets a message from the server. Decides whether to pass it on.

SendMessages Sends the message to the Mapper. Updates flow rate

Notes

The Profiler is one the simpler modules in the simulator. It consists of a CSim process which
keeps waiting for pages from the server, asks the ClientManager whether a received page is
of interest to any client, and if so, sends the page to the Mapper. If no clients are interested,
it simply drops the page.

To help in SDFR measurements, the profiler tells the Client about each page it sends. The
Client in turn uses this information to calculate the percentage of pages it has successfully
received.

The profiler also keeps track of the rate at which it is passing pages on to the mapper. This
measure is not used in any metric at the moment, but can be obtained as output by speci
fying the output-type to be PROFILER-FLOW...RATE. Note that the MeasureGlobalStats
function will have to be called first to enable measurement of flow rate.

23 A.4. THE MAPPER CLASS

the way the server is set up, this also equals the server update rate at which the channel will
be operating at full capacity. Thus for offline algorithms, by looking at the TotalP values of
the channels, we can predict the server speed at which each channel breaks. An example of
this table is given below. In this example, channel 0 would be the first to break as we increase
server speed to an update rate of 0.202. i.e. mean time between updates at server = 0.202
time units.

Mapper::AnalyzeMapping()
Channel 0: NumPages = 2, TotalP = 0.202219
Channel 1: NumPages = 2, TotalP = 0.103672
Channel 2: NumPages = 5, TotalP = 0.103469
Channel 3: NumPages = 5, TotalP = 0.109922
Channel 4: NumPages = 4, TotalP = 0.0579375
Channel 5: NumPages = 3, TotalP = 0.0712656
Channel 6: NumPages = 3, TotalP = 0.0645312
Channel 7: NumPages = 5, TotalP = 0.0725781

25 A.5. THE SCHEDULER CLASS

The RxW value of a page is the product of its Rand W values, where the R value is the
number of clients interested in the page, and the W value is the number of time units the
page has been in the buffer. Essentially, the R value gives a higher priority to more important
pages, while the W value prevents starvation of the less important pages.

The Scheduler keeps track of the rate at which pages are flowing in and out of the channels.
The GDFR metric is calculated from these as input-flow.rate - output.flow.rate, totalled
across all schedulers.

27 A.6. THE CLIENT CLASS

Notes

The Client object listens to the channels on behalf of all the clients in the system. Since the
client profiles are generated and maintained by the ClientManager, the Client is a lightweight
object which only takes measurements. Two of these measurements are global..staleness, and
SDFR.

Three functions are used for measuring SDFR. The first is SendingMessage, which gets called
by the Profiler each time it sends a new page out. The function records the packet number and
the list of clients interested in an internal table. The second function is ReceivedMessage,
which marks off the clients who have received the packet. Once all clients have received the
packet, it is removed from the internal table. The third function is GetSDFR, which returns
the number of packets remaining in the internal table, divided by the total experiment time.
Thus SDFR measures the rate at which packets get backed up in the channels. A packet is
said to be backed up as long as there exist some interested clients who have not yet received
it.

29 A.7. THE CLIENTMANAGER CLASS

The ClientManager first looks at its input parameters and decides which Profile and Chan
nelManager objects are to be used.

It then generates and stores all the client profiles with the help of the Profile object. Next, it
calls upon the ChannelManager object to generate the client-to-channel mappings.

The ClientManager provides a large number of accessor functions for access to all this data.
Queries about profiles are answered directly, while queries about the channel assignments are
redirected to the ChannelManager.

One of the later modifications to the ClientManager involve generating a fixed channel assign
ment across multiple experiments. For this, it first generates the channel allocation using one
set of client profiles (BuildStartupGlobalProfiles) , then throws away the profiles and generates
fresh ones using a different distribution (BuildRuntimeGlobalProfile). Since the channel allo
cations depend on the client profiles, we can fix the channel assignment across experiments
by using the same startup profiles.

31 A.9. THE ZCLUSPROF CLASS

A.9 The ZClusProf Class

The ZClusProf class generates a zipfian, clustered client profile. It is derived from base class
Profile.

Initialization Parameters

int numClusters number of hotspots in profile. Each hotspot will correspond to a source
in the server

int numHotSpots number of hotspots, i.e. sources, at the server. These are equispaced
in the database range

int clusterSize number of pages in each cluster

int clusterRange max pageID for a cluster. This is equivalent to num pages per source
at the server

Operations

Generate Generates a client profile, i.e. a list of pages which is a subset of the entire
database

Notes

A client profile consists of a list of page numbers. The ZClusProf generates randomly gener
ates such a list of pages using one or more zipfian distributions.

In a zipfian distribution, a relatively small number of pages are very hot, i.e. they have a
high probability of appearing. As we move away from this hotspot, the pages rapidly become
colder. The exact probability curve is defined by certain parameters which are supplied to
the internal Zipf object used by the Zipfian class.

In our current experiments, client profiles have one hotspot. Page number 1 is the hottest
page, and page number dBaseSize is the coldest.

The Zipfian class also has the capability to generate a profile containing several hotspots
or clusters. The numClusters parameter specifies the number of clusters in a client profile.
The hotspot of each of these clusters must coincide with a hotspot at the server. Since
hotspots at the server divide the dBaseSize page range equally, it is enough to specify the
number of hotspots at the server, for the client to figure out the location of the hotspots. The
numHotspots parameter gives this information.

Note that numClusters must always be less than or equal to numHotspots. The current
clustering model is designed to reflect a scenario where a number of sources publish at the
server, and a client subscribes to one or more of these sources.

Also note that multiple clusters do not make sense with a uniform server or uniform client
profile. Uniform profiles are generated by the Profile class, which ignores the numClusters
input parameter.

33 A.ll. THE CM-RANDOM CLASS

A.II The CM-Random Class

The CM.Random class is derived from the base class ChannelManager. It generates a client
to-channel mapping based on a random distribution.

Initialization Parameters

int channelsPerClient Max number of channels each client can listen to

int totChannels Number of channels in the system

int numClients Number of simulated clients in the system

Operations

AllocateChannels

Private Functions

Implements the random allocation algorithm

AllocateChannels

AddChannelInfo

Allocates channels for a given client and calls AddChannelInfo

Adds the channel list to internal data structure which maps a client to
channels, and then calls AddClientInfo

AddClientlnfo Adds a client to internal data structure which maps a channel to clients

Notes

For a description of the Random algorithm, refer to the chapter on Channel Allocation.

The thread of control through the various functions runs as follows:

The main AllocateChannels function goes through the list of clients, and for each client calls

another function, also named AllocateChannels which allocates channels for that particular

client. This function determines the set of channels and calls AddChannellnfo, which in turn

calls AddClientInfo.

35 A.13. THE CM...PC CLASS

A.13 The CM-.PC Class

The CM...PC class is derived from the base class ChannelManager. It generates a client-to
channel mapping based on a load balancing algorithm which gives priority to hot pages.

Initialization Parameters

int channelsPerClient Max number of channels each client can listen to

int totChannels Number of channels in the system

int numClients Number of clients in the system

Operations

AllocateChannels Implements the round robin channel allocation algorithm

Private Functions

PickPageWithMaxPC Returns page with the max PC value.

AssignChannelToClients Modifies internal data structure to assign a channel to given
clients.

AssignPageToChannel Temporarily assign a page to a channel.

GetPageLisLChannel Gets the list of pages assigned to a channel.

GetLeastLoadedChannel Gets the channel having the least total P value of all pages
assigned to the channel.

HandleRemainingClients Assigns remaining clients after all pages have been dealt with.

Notes

The AllocateChannels function implements the PC algorithm. It first gets a list of all pages
which are of interest to the clients. It then goes through the list, each time picking the page
with the max PC value (PickPageWithMaxPC) , choosing the least loaded channel (GetLeast
Loaded.Chammeli, assigning the page to this channel (A ssignPageToChanne0 , and finally as
signing the channel to all the clients interested in the page (AssignChannelToClients).

The algorithm terminates when either 1. All the clients have used up their channel quotas,
or 2. All the pages in the database have been accounted for, or 3. Some pages are yet to
be accounted for, but the clients who are interested in these pages have filled their channel
quotas.

In the last two cases, if there remain any clients whose channel quotas are yet to be filled,
then channels are randomly allocated to these clients (HandleRemainingClients).

The PC value of a page is the product of its P value (probability of generation at server) and
its C value (number of clients interested in the page).

Note that pages being allocated to channels is just an internal step used by the channel
assignment algorithm. It does not affect the page mapping decisions taken by the mapper.

