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1 Introduction

Publish-subscribe systems are becoming a popular way to disseminate in-
formation. They are a type of push-based system. Push technology comes
from a very simple idea: rather than users explicitly requesting (pulling) the
information they need, data can be sent without them specifically asking for
it. In the publish-subscribe model we describe in this paper, users subscribe
to updates published by a data source. The model has several important
characteristics. It is event-driven as data items are sent as soon as they are
updated. Updates are broadcast (1-to-N ) and data transmission is aperiodic
as there is no pre-defined schedule for sending or updating data. We are
most concerned with publish-subscribe systems that have a large number of
users who have significant overlap in their interests.

Advances in broadcast technology have enabled publish-subscribe. Broad-
cast technology has a long history of use. We have seen it used in radio and
television for many years and more recently have benefited from its use in
satellite broadcast and multicast. The major advantage of broadcast is its
ability to do 1-to-N transmission where the transmission of a single item can
satisfy an arbitrary number of clients. Also, its scalability permits little or
no incremental cost for each additional user.

Essential to any publish-subscribe system are profiles. A profile describes
a user’s interest in the data at the data source. In our system it indicates the
specific items that a client wants to receive when those items are updated.
The profile is stored at the data source and can be thought of as a continually
evaluated query.

Our publish-subscribe system will depend on broadcast channels to de-
liver data updates to users. The specific problem that we attempt to solve
is the assignment of users and data items to these channels so as to make
efficient use of the network resources and minimize delivery of superfluous
data to users.
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2 Problem

The goal of our publish-subscribe system is to deliver data updates to a large
number of users (Figure 1). However, there are two problems: 1) We don’t
want to send all updates to all users; and, 2) We can’t unicast to individual
clients. So, we are left with only one alternative, we have to group users and
broadcast updates to only those groups with interested users. An important
restriction is that each user must receive all updates to items specified in its
respective profile.

Data
Source

.

.

.

.

Clients

Figure 1: Push: Sending Data Updates to Users

Channels have been a popular mechanism for delivering information to
large groups of individuals. Examples of technology that use channels in-
clude satellite broadcast, multicast, and, of course, TV and radio have long
sent information to individuals via channels. A channel in our model is a
transmission medium with a fixed bandwidth.

The introduction of channels brings about two issues (see Figure 2).
First, clients must be assigned to broadcast channels from which they will
receive data updates. Second, as data is updated, it must be mapped to the
broadcast channels. As harmless as these two issues sound, they create an
enormous search space. There are nc possible ways to assign c clients to n
channels and there are 2np possible ways to map p pages to n channels.

A good solution to the problem attempts to make an effective use of the
limited available bandwidth and also tries to keep the clients happy while
being scalable in the number of users. In the model that we discuss herein,
each data item has an update frequency representing its expected bandwidth
requirement and therefore its expected additional load on each channel to
which it is assigned. Since multiple users are assigned to each channel, users
will receive not only those updates represented in their respective profiles,
but also updates intended for other clients assigned to the same channel.
Clients are happiest when they are getting more of what they want and less
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Figure 2: Channels & Issues

of what they don’t want. So, it is important to group similar clients (based
on their profiles) on the same channel.

We now define two metrics we will use to determine if a good solution is
given for the problem. Fluff represents the items that a user receives that
are not specified in its profile. Maximum Channel Load is the load on the
maximum loaded channel. A publish-subscribe system is as weak as its most
loaded channel. As the rate of data updates increases, the channel with the
heaviest load will break first. A good solution will minimize both fluff and
max channel load. (These metrics will be further defined as they relate to
simulation experiments discussed in later sections).

3 Simulating the Publish-Subscribe Model

To better understand our publish-subscribe model, we constructed a sim-
ulator, based on the architecture shown in Figure 3. We used a standard
simulation package, CSIM [7], as a tool to develop our simulation study. As
data items are updated, they are filtered by the Profiler for those items that
exist in profiles. If the items are in profiles, they are then mapped by the
Mapper to channels where clients interested in the items are assigned. The
simulator has several variables, or knobs, which can be set or varied during
experiments. The knobs are listed below:

- Number of Clients: The number of users.

- Client Interest Distribution: This parameter represents the distribu-
tion of interest that clients have in database pages and it is manifest
in the pages selected for each client’s profile. A Zipf distribution is
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Figure 3: Simulation Model

commonly used to model non-uniform data access. As its parameter θ
increases, the access pattern becomes increasingly skewed. The proba-
bility of accessing any page i is proportional to (1/i)θ where 0 ≤ θ ≤ 1.

- Profile Length: This parameter represents the maximum number of
pages that can be contained in a client’s profile.

- Offset of Client Interest: The distributions for client interest and page
update are distributions over the set of all pages in the database. The
starting point for the page update distribution is page 1. The starting
point for the client interest distribution can vary. This parameter
represents the fraction of the database that the client interest is offset
from page 1. For example, if the database size is 1000 pages and the
offset is 0.25, then the client interest distribution starts at page 251.
Note that an offset client interest distribution will wrap (i.e. all pages
are still included in the distribution)

- Number of Channels per Client: This parameter describes the number
of channels from which a client is allowed to receive updates. For the
results presented here, this parameter is fixed at 1.

- Number of Channels: This parameter is obvious.

- Per Channel Capacity: This is the amount of bandwidth allocated to
each channel.

- Mapping Algorithms: These are the focus of our research and are
discussed in detail in the section 5.
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- Database Size: This parameter defines the number of data items con-
tained in the data source.

- Page Update Distribution: This parameter represents the distribution
of update frequencies of pages in the database. Similar to the client
interest distribution this parameter uses a Zipf distribution.

4 Problem Analysis

In this section we discuss how the previously described parameters affect
our publish-subscribe model.

4.1 Client Impact

The number of clients affects the system in one significant and obvious way.
As the number of clients increases, the maximum channel load should gen-
erally increase or at least stay the same.

As we have noted previously, and will see throughout the system analysis,
page replication is one of the most important influences on system perfor-
mance. As the number of clients increases, replication increases rapidly at
first, then levels off. The law of large numbers comes into play when there
are many clients - the probability that a channel exists that satisfies a client
increases as the number of clients increases. (see Figure 4)
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Figure 4: Page Replication

When client interests are in line with with the server distribution (i.e.
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offset == 0.0), clients will be most interested in the most frequently updated
pages. Most client-to-client overlap will occur in the high frequency pages.

Overlap is the main cause of page replication. If a large number of clients
are interested in a page, then in the current model (1 channel per client)
two things can happen:

1. that page can be assigned to one channel and all other pages that are
of interest to all these clients are also assigned to that channel

2. there is not enough space on the channel to do 1., instead, that page
is replicated on multiple channels, and the other pages are distributed
among the channels

It is important that the pages with the highest update frequencies be repli-
cated as little as possible.

4.2 Impact of Database Size

The size of the database has an interesting relation with the number of
clients. Note that the maximum possible number of clients that could exist
grows exponentially as the number of pages in the database increases. The
actual maximum is equal to (

N

P

)

for N pages in the database, and P pages per profile (See Figure 5).
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Figure 5: Number of Clients vs. Database Size
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So, as the number of pages in the database increases, the overlap 1

between any two clients, given that the number of clients remains the same,
decreases (See Figure 6). For the moment, disregard the different plots,
and pay attention to the shape of the curve, noticing that as the number of
pages increases, the client overlap decreases rapidly. (Note: this figure will
be referred to during the discussion on Client Skew)
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Figure 6: Client Overlap vs. Database Size

4.3 Impact of Number of Channels

Increasing the number of channels means that fewer clients need to be as-
signed to each channel and correspondingly, the maximum load on the chan-
nels should decrease. However, as clients are spread across a larger number
of channels, replication will increase.

4.4 Impact of Server Skew

As server skew increase, we are creating a hot zone in the database. In that
hot zone, pages are updated frequently. Note that the update frequency
follows a Zipf distribution with the corresponding skew.

System variation when server skew changes is very dependent on what
client profiles look like (client skew, offset). If clients are interested in hot

1Overlap is calculated as the average number of pages that overlap between any two
clients. So, if client A has 3 pages in its profile, and client B has 4 pages in its profile, and
they have one page in common, then client A’s overlap with client B is 0.33, and client
B’s overlap with Client A is 0.25.
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pages, then as server skew increases, channel load will increase. In general,
when client skew and server skew are the same, max channel load is at its
highest. This is because all clients are most interested in the frequently
updated pages, and as a result, those pages require more replication.

4.5 Impact of Client Skew

As client skew is changed, the general interest of all clients changes. Increas-
ing client skew means that clients are becoming more similar. That is, they
are being clustered, and there is more overlap in their profiles (See Figure
6). Decreasing client skew means that clients become more dissimilar (less
overlap).

System variation when client skew changes is highly dependent on server
skew and profile offset.

4.6 Impact of Profile Offset

Profile offset is the fraction of offset in client interest from page 1, which
is where the page update distribution always starts. Also, when offset is
not equal to 0.0, client interest wraps at 1.0. As offset approaches 1.0,
page 1 becomes more interesting. So, as profile offset moves from 0.0, client
interests are clustered around pages that are not in the hot zone of the
database. Whereas there will be the same overlap in client interests, the
average client bandwidth requirement will decrease. Even though clients
have the same size profiles, the pages that compose the profiles each have
lower update frequencies and thus take up less bandwidth.

4.7 Impact of Profile Length

As profile length increases two things happen. First and most obvious, the
average per client bandwidth requirement increases. Second, profile overlap
increases. Figure 7 shows the relation between profile length and overlap.
As profile length increases, overlap increases. We will see that it is more
difficult to separate clients, and as a result more page replication will be
required.

Figure 7 also depicts the significance of client skew and its impact on
this system. As client skew increases, client interests become more tightly
clustered, and therefore more overlap between profiles. Note also, that the
number of possible clients grows quickly as the profile length increases.
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Figure 7: Client Overlap vs. Profile Length

5 Approaches (Mapping Algorithms)

This section describes the different algorithms developed to solve the chan-
nelization problem.

5.1 Exhaustive Search

The exhaustive search looks through all possible assignments of clients to
channels. Remember that there are nc possible possible assignments (c
clients and n channels). For example, a system with 50 clients and 4 chan-
nels has 1267650600228229401496703205376 possible assignments of clients
to channels (that’s more that one nonillion!). This algorithm is, of course,
impractical for large systems with thousands of clients and possibly hun-
dreds of channels.

5.2 Random

A random algorithm was developed to demonstrate the faults of a com-
pletely brain-dead mapping algorithm. However, we will see later that other
smarter, more time-consuming algorithms do not perform much better than
this one. The random algorithm is simple: each client is assigned to a
random channel, and its respective profile items are mapped accordingly.

9



5.3 Best-Fit

The best-fit algorithm was developed as a smarter alternative to the random
algorithm. First, each channel is seeded with a random client. Then, until
all clients are assigned the algorithm greedily assigns the ”best-fit” client to
the least loaded channel. The best-fit client is the client who, if assigned to
the channel, would contribute the least load to the channel.

5.4 K-Means Clustering

The K-Means clustering algorithm is based on the work presented in Wong,
Katz, and McCanne [1]. They present an approach that finds a locally
optimal solution to the channelization problem. Each channel is considered
a cluster of client profiles and the k-means method is used to partition the
clusters. It works as follows. For each profile Pn in some cluster Gi, the
algorithm switches Pn to another cluster Gj if it is more ”similar” to the
set of data items belonging to Gj . The algorithm stops when no profile can
be moved from its current cluster to another. Unfortunately, the k-means
method has an unbounded running time.

A profile is similar to a cluster if it has a large overlap in the data items.
The distance function described measures similarity as the percentage of
data all clients assigned to the channel desire from the cluster Gk. The
distance between a profile Pn and cluster Gk is the average decrease in this
percentage if Pn is added to Gk. Thus, the smaller the distance, the more
similar Pn is to the other profiles in Gk.

5.5 Association

The development and implementation of the algorithms described in sec-
tions 5.3, 5.2, and 5.1 taught a very important lesson about this problem:
replicating the most frequently updated pages is has a negative impact on
fluff and max channel load because they require higher bandwidth. This les-
son provided the intuition for the association algorithm which is to greedily
assign items to as few channels as possible based on unassigned profiles and
previously assigned items. The heuristic is to assign the most frequently
updated page first. The algorithm works as follows. Assign the most fre-
quently updated page to as few channels as possible. Next, assign the next
most frequently updated page given that all higher frequency pages are al-
ready assigned. And, so on. The algorithm is wrapped with a binary search
to minimize max channel load (iteratively apply algorithm and in each it-
eration we adjust the channel capacity). Pseudocode for the Association
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Algorithm is shown in Figure 8.

exclusion_set = NULL;

main
{

solveR ( set of all profiles )
}

solveR ( profile_set )
{

while ( profile_set is not empty )
{

page = page in profile_set with highest update frequency that is not
in exclusion_set

assoc_profile_set = profiles in profile_set that are associated by page
chn = findBestChannel( assoc_profile_set )
if ( chn > 0 )

putOnChannel( chn, assoc_profile_set )
else
{

exclusion_set.insert(page)
solveR ( assoc_profile_set )
exclusion_set.remove(page)

}
}

}

findBestChannel( profile_set )
{

find channel with most (weighted) overlap with pages in profile_set
if ( profile_set does not fit on any channel )

return -1
else

return channel
}

Figure 8: Association Algorithm

6 Results

We conducted several simulation experiments to compare the performance
of the different algorithms. The parameters used in the simulations are
listed in Table 1. The exhaustive search algorithm is not represented in the
results that follow because it is implausible to find the optimal solution even
for the smallest experiment (1000 clients). Note that we are concerned with
the relative performance of the different algorithms with regard to the fluff
and max channel load metrics. Also, we are concerned with the scalability
of the algorithms in the number of users.

Figure 9 shows the relative performance of the algorithms with regard
to fluff. The plot shows some interesting and surprising results. First, note
that both the simple random and significantly more complex best-fit algo-
rithms provide solutions that are comparable in fluff. They each perform
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Table 1: Table of Constants

Number of Clients 1000 - 50000
Client Interest Distribution (Zipf θ) 0.95
Profile Length 4
Profile Offset 0.0
Number of Channels 4
Number of DB Pages 1000
Server Update Distribution (Zipf θ) 0.95

poorly because neither algorithm tries to group profiles or minimize repli-
cation of frequently updated pages. Next, we note that the k-means and
the association algorithms perform similarly. It is very interesting that the
association algorithm provides a solution that is so close to a locally optimal
solution. The reason is that grouping clients based on frequently updated
pages is a very good heuristic.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
LU

F
F

NUMBER OF CLIENTS

RANDOM
BEST_FIT
KCLUSTER
ASSOCIATION

Figure 9: Fluff

Figure 10 shows the relative performance of the algorithms with regard
to maximum channel load. Here we see that only the association algorithm
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provides a good solution. Even the k-means is performing as poorly as the
random algorithm. The reason is simple. Only the association algorithm
is concerned with minimizing the maximum channel load. Recall that it
is wrapped with a binary search for the best max channel load. The next
result shows that it would be impractical for the other algorithms to also
optimize for max channel load in a similar manner.
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Figure 10: Maximum Channel Load

Figure 11 plots the running times for this series of simulations. Since
k-means is a local search and has an unbounded running time, we set the
number of iterations of the search to 20, though we found that in most cases,
the search converges in fewer than 5 iterations. We see in this figure that as
the number of clients increases into the tens of thousands, other solutions
become impractical. For 50000 clients, the k-means algorithm requires more
than 2 hours to complete an assignment whereas the association algorithm
provides an assignment that is comparable in terms of fluff with lower max-
imum channel load in 105 seconds. This makes the association algorithm a
viable solution for publish-subscribe systems that require on-line mapping
of clients and pages to channels.
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Figure 11: Algorithm Running Time (seconds)

7 Sensitivity Analysis

In this section we show the Association Algorithm’s sensitivity to changes in
the various parameters. As in the experiments shown earlier the sensitivity
tests are performed as runs of the simulator. Each point on a plot is a sepa-
rate run of the simulator. Each test presents the variation of two parameters
while all other parameters remain constant. During any simulation those
parameters that remain constant are set as specified in Table 2.

Table 2: Table of Constants

Number of DB Pages 1000
Server Skew (Zipf) 0.95
Client Skew (Zipf) 0.95
Number of Clients 10000
Profile Length 4
Profile Offset 0.0
Number of Channels 4
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Figure 12: Number of Clients and Size of Database

We start by looking at how changes in the client characteristics are im-
pacted by changes in other parameters. What is very interesting in all of
these graphs is that as the number of clients increase beyond a certain point,
with all other parameters constant, the maximum channel load is not sig-
nificantly impacted. That is, after a certain point for any given simulation,
adding more clients, has minimal impact. This is very interesting because it
shows that solutions are not necessarily dependent on the scale of the client
population. Instead, we see that some of the other parameters have more of
an impact.

Figure 12 shows what happens as the number of pages in the database
changes. The number of clients vs. the total possible number of clients gets
smaller as the number of pages increases (see Figure 5). Combinatorics at
work here: profile length 4 : C(1000 pages, 4) � C(10000 pages, 4). Recall
that client overlap decreases as the size of the database increases. (see Figure
6). This is because there are more pages and the number of clients remains
the same. Something worth noting for these simulations, is that pages have
frequencies of update, and for a database, the frequencies must add up to
1.0. So, as the number of pages increases, the average size (frequency) of a
page decreases.

Figures 13 and 14 show what happens as the skews of the server and client
distributions change with changes in the number of clients, respectively.
The plots are relatively simple. For server skew, the weights of the most
interesting pages are increasing as the server skew increases. And with
client skew, client interest moves towards higher frequency pages as client
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skew increases.
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Figure 13: Number of Clients and
Server Skew
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Figure 15 is an interesting plot in that it shows that the length of profiles
has a significant impact on the maximum channel load. As we saw earlier
(Figure 7) there is a good reason for this effect. Whereas, the number of
possible clients grows quickly as the profile length increases, overlap between
profiles also increases.
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Figure 15: Number of Clients and Profile Length

As can be seen in Figures 16(a) and 16(b) the relative positions of the
plots are very dependent on the number of channels available. Increasing
the number of channels means that fewer clients need to be assigned to
each channel. As the number of channels increases, maximum channel load
decreases, however, replication increases.
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Figure 16: Number of Clients and Profile Length
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Figure 17: Number of Clients and Profile Offset

Figure 17 shows how the number of clients and the profile offset impact
each other. Profile offset starts at 0.0 and client interests are in highest
frequency pages. The frequencies of the most interesting pages drop dras-
tically as soon as offset increases and the high frequency pages are in few
profiles. As the offset increases (moves towards 1.0) the number of profiles
which include the high frequency pages increases. Note that the distribution
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of interest wraps at 1.0.
As the number of database pages increases, the maximum channel load

decreases rapidly at first, then decreases slowly. Recall from Section 4.2
that client overlap also decreases rapidly at first then slowly as the database
size increases. And, as client overlap decreases, the need for replication
decreases, thus channel load decreases. It is important to note that as the
size of the database increases, the average page update frequency decreases.
Figure 18 provides another view of what we saw earlier (Figure 12).
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Figure 18: Database Size and Number of Clients

Recall from earlier discussions that increasing the number of channels
allows clients to be spread out at the expense of replication. Of course,
the benefit is that max load decreases and as we see, the general trend as
the number of channels increases is that channel load decreases. Figure 19
shows the impact of increasing the number of channels on page replication.
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Figure 19: # Channels vs. Page Replication
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Figure 20 shows an interesting graph that demonstrates how the system
reacts to changes in the number of channels. Note the significant impact
that profile length has on the system as the number of channels increases.
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Figure 20: # Channels & Profile Length

8 Other Work

Some preliminary work has been performed on the study of allowing clients
to receive updates through multiple channels. We have seen experimen-
tally that there is a tradeoff between client happiness (fluff) and network
resource usage. In particular, as clients are permitted to receive data on
more channels, max channel load decreases but fluff increases.

9 Related Work

In this paper we compare several algorithms for the publish-subscribe chan-
nelization problem. The most directly related previous work on channeliza-
tion algorithms is presented in [1]. The problem is presented as a clustering
problem and the k-means local search method is used to find a solution.

The publish-subscribe dissemination model has been presented in the
SIFT system [4] and the Information Bus [5]. A taxonomy of data delivery
options is presented in [2] and early work on broadcast delivery is presented
in [6]. The merging of query subscriptions where multicast channels are used
to deliver data is examined in [3].

Publish-subscribe systems are not only studied by researchers, they have
also provided several businesses with their main product. Two such compa-
nies are TIBCO [8] and Pointcast.
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10 Future Work

Several of the broadcast technologies that could be used to deliver data
for a publish-subscribe system allow users to receive data through multiple
channels simultaneously. This makes the problem even more intractable and
leaves several open questions. How many channels should a client be able to
listen to? Should the number of channels that clients listen to be variable,
allowing some clients to receive on more channels than others?

There is also the question of dynamic clients. It is conceivable that the
number of clients could change while the system is running, rendering the
initial assignment inefficient. New clients could be added, or clients could
decide to turn off the channels. It may also be the case that clients may
want to dynamically change their profiles.

11 Conclusion

In this paper we described the channelization problem for publish-subscribe
systems. An architecture was presented from which a simulation model
has been built. The simulation model provided a test-bed upon which to
develop and test various mapping algorithms. We compared the algorithms
using several metrics and found that our association algorithm provides an
effective and efficient solution to the problem.
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