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Abstract 

This report describes efforts to apply sketching interfaces to 
animation. We deal with the problem of sketching 2-D mo
tion paths for objects to produce animations for applications 
like Microsoft PowerPoint , Macromedia Flash or Director. 
We worked on the core problem of editing a sketched mo
tion curve, using the approach of blending newly sketched 
motion paths with older paths to allow for successive refine
ments of an animation. We describe various methods used 
to edit motion curves and their results. 

1 Introduction 

1.1 Background 

This paper deals with building a gestural interface for the 
two-dimensional animation of simple objects. There are 
many applications that use 2-D.animations, such as Macro
media's Flash, Director and Shockwave applications, or even 
Microsoft's PowerPoint presentation software, which deliver 
traditional 2-D graphic art with movement and sound. This 
sort of animation can also be seen in fast paced commer
cials that use moving textual messages to make their point. 
Thus, in our context, "simple objects" can be imagined as 
pictures, text or simple shapes (as opposed to animating 
Bugs Bunny or some other articulated figure). Animation of 
these objects include both linear and angular motion, as well 
as having these objects fading in/out, changing size, morph
ing into other objects, or even physically-based animation, 
all within a 2-D space. 

There are already methods for producing animations, includ
ing key-framing, physically-based animation, and just man
ually specifying all the relevant functions (x(t), Yet), (J(t), 
shape(t), transparency(t), etc.). The last approach is obvi
ously tedious. Key-framing, while not as tedious, especially 
in 2-D, can still be painstakingly slow. 1 Physically-based 
techniques work well only for things that seem to simulate a 
physical process, such as a bouncing ball. Even then, a user 
could much more quickly sketch the motion with a mouse or 
pen device and achieve a reasonable imitation, which is suf
ficient given the types of applications that we are looking at 
(i.e., PowerPoint or Flash animations with objects moving 
in an abstract space where people don't expect completely 
realistic physics). What we need then is an intuitive way to 
sketch animations without a lot of excess point-and-click, 
typing and arithmetic. 

A sketching, or gestural, interface is characterized by "ges
tures," which are hand-drawn marks that issue a command 
to the computer. Gestures are different from buttons and 
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1 "Painstakingly slow:" Taking more than 30 seconds to create 

and fine tune, say, a winding, three-inch-long, S-shaped path with 
a pause at the first bend and a little wiggle at the end 

) 
(a) (b) (c) 

Figure 1 An example of blending two curves. (a) first 
curve drawn (b) second curve (c) blended curve shown in 
red. 

pull-down menus because they often specify the operator, 
operands, and parameters with a single stoke or two. One 
can easily imagine an animator's interface in which these 
gestures invoke templated actions. For instance, drawing a 
rough spiral could produce a mathematically precise spiral 
with approximately the same size as the hand-drawn stroke. 
Similarly, straight line strokes or hand-drawn arcs might gen
erate line segments or smooth splines. This is the more tra
ditional use of gestural interfaces, as seen in CAD modelling 
tools such as SKETCH[8]. One can imagine other types of 
strokes used to invoke fades, size changes, etc. Gestures are 
often touted because they are less cumbersome than WIMp2 

interfaces and can provide intuitive, efficient ways of speci
fying tasks. What's interesting about using a sketching in
terface for animation is that there is a temporal aspect to 
the objects being manipulated. 

We use concepts derived from sketching interfaces to pro
duce an interaction model where gestures are the primary 
means of expressing and modifying the geometric and tem
poral aspects of the animation of an object. 

1.2 Problem Definition 

In our research, our gestures are used to specify the free-form 
motion of an object. That is, instead of mapping gestures 
onto a finite, fixed set of template curve types, we let the 
gestures themselves be the curves. We do not address the 
problem of specifying angular motion or other effects such 
as fades, morphing, or size-changes, so our objects do not 
spin and do not change size or shape. 

This sounds easy: When the user clicks on and drags an ob
ject, we could simply record the points along with the timing 
information and replay that motion when prompted. This is 
the method used in a children's program called KidPix by 
Broderbund. The complexity arises when the user attempts 
to edit an existing curve. Taking the example of a Power
Point animation, it becomes obvious that users of such an 
interface may not be skilled artists. Even so, it is oftentimes 
too clumsy to simply replace a curve with a newly-drawn one 
(it's easy to see this by trying this out for yourself). Rather, 
it is better to take the previous curve as a base curve and 
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modify it by drawing another curve. This involves blending 
two curves in an intuitive way (see Figure 1). Unfortunately, 
"editing" a curve not only involves editing the shape of the 
curve, but the timing information as well: a user may like 
the shape just fine, but might want some part of the ani
mation to move at a different speed, or to elongate a pause, 
etc. The obvious approach (and the one that we use) is to 
just have the user redraw the curve at the desired speed. 
Obviously, the user cannot and should not have to redraw 
the prior curve exactly and thus, it is up to the computer to 
figure out how to relate the two curves so that the timing in
formation from the second curve is appropriately overlayed 
onto the first curve. This process is complicated by the fact 
that the source for the curves is a collection of discrete sam
ples with non-uniform sampling rates and unevenly-spaced 
points. 

Therefore, we let a user specify a free-form 2-D motion path 
by successively refining it. This is done by blending new 
curves with previously drawn curves, which requires that 
we establish a good point-to-point correspondence between 
pairs of curves. That is, given two discrete curves y(r) and 
Q(r), we want to find a curve ~(r) which gives an intuitive 
blend of y(r) and Q(r). r is an arbitrary parameter. In the 
course of describing different algorithms, we will parameter
ize the curve using path length, time, and point index. This 
ability to match curve points allows us to do some general 
tasks that an algorithm can perform when the user draws 
two successive motion curves by clicking and dragging the 
same object twice: 

1.	 Blend the shapes of both curves to produce a new curve, 
but keep the timing information of the old curve. 

2. Keep	 the old shape but use timing information of the 
new curve. 

3.	 Both of the above. 

In the course of our research, we focused mainly on case 1, 
since case 2 can be implemented once a correspondence is 
established, which is a necessary result of solving the shape 
blending problem. We designed and implemented various 
methods, with varying degrees of success. The discussion of 
these methods constitute the rest of the paper. 

1.3 Related Work 

Trying to establish a point-to-point correspondence between 
two discrete curves has been a problem in many fields. Re
search in gestural interfaces contribute to the solution in 
the form of gesture-recognizers, However recent research in 
gesture recognizers seem focused on extracting specific inter
esting features that are not general enough to use to match 
a pair of curves whose shapes are arbitrary but similar to 
one another[6], while others use "training sets," which are 
not applicable here since the user produces the two curves 
that require matching in real time[3J[4]. 

Handwriting recognition researchers have long sought ways 
to match hand-written letters and words to a finite alphabet. 
The difference between our research and that of handwriting 
recognition is that there is no fixed set of curves or training 
set to take advantage of (via preprocessing, using Hidden 
Markov Models, etc.). 

One other method is elastic matching. This usually involes 
treating one curve as a metal wire that is stretched and 

bent to match the other curve. Choosing some sort of least 
energy solution, one finds a correspondence along with a set 
of stretches and bends to interpolate a blend. Uses include 
2-D morphing[2]. While this method has its merits, we did 
not investigate these algorithms in depth. 

1.4 Notation and Terminology 

When a user draws a stroke that specifies a free-form ani
mation curve, we will refer to that as a "curve" or "path." 
The naming conventions in the source code tend to use these 
conventions as well. Unless otherwise noted, distances are in 
pixels and units of time are in milliseconds. 

To establish better correspondence between the concepts 
in this report and the code written to implement it, ref
erences to Java packages and classes are represented by 
classname, packagename, or packagename.classname. For 
instance, PathEditFactory or pathedit .PathEditFactory. 

2 Overall Methodology and Algorithm Structure 

Similar to techniques used in gesture and handwriting recog
nition, we have preprocessing phases for the strokes in order 
to weed out noise and irrelevant details. Then we apply some 
algorithm which establishes a correspondence. Once a cor
respondence if found, it is a simple matter to interpolate 
the new curve. Thus, after two successive motion paths are 
drawn, the following steps occur: 

Establish Interpolate 
Correspondence New Curve 

In the Pre-Filter step, we apply a special filter to both y(r) 
and Q(r) that deletes points that are spaced too closely 
together (usually less than a few pixels) and adds points 
where they are spaced too far apart. Points that are spaced 
only a few pixels apart are often too noisy and reduce the 
efficiency of our algorithms. Also, during animation, such 
closely spaced points often slow down the animation, pro
ducing an unfaithful reproduction of the user's stroke. Be
cause we often interpolate the two motion paths by using 
all the points of y(r) but not necessarily all the points of 
Q(r) (to retain the original timing information), it is essen
tial that we start with lots of points, so that the resultant 
blended curves are not too coarse. This is the rationale for 
adding points where they are spaced too far apart. For more 
details, see filter. FilterPreFilter. 

Next, the Filter step tries to reduce and eliminate irrele
vant details of the shapes of the curves that would otherwise 
interfere with subsequent algorithms. Currently, nothing is 
done to the timing information. Typically, the filters will 
smooth out noise and resample the points so that they are 
evenly spaced. Some filters will, instead, take out points un
til only a few essential points remain (Figure 2); the Haar 
wavelets filter is an example of this approach if we choose 
the wavelet parameter to be very high ('" 95%). For some 
correspondence algorithms, the Filter step is skipped. 

In the next step, some algorithm is applied to either or both 
of the original and filtered curves to link the paths. After 
a correspondence is established, the points are interpolated 
linearly between the two original (unfiltered) curves to pro



(a) (b) 

Figure 2 (a) A smoothing filter that resamples the points 
evenly and more closely spaced. (b) A Haar wavelet filter 
that extracts out only the important features by combin
ing/eliminating the other points. 

duce a final result. 

The Pre-Filter is fixed and does not change. Different al
gorithms in the Filter step can be combined with different 
correspondence algorithms to achieve different results. The 
actual blending of the curves, once a correspondence has 
been established, is straightforward. Most of this paper deals 
with the "Establish Correspondence" step. 

3 ASketch 

In the course of doing our research, we have developed an 
application to implement and test our ideas. The project, 
named ASketch (for Animation Sketch), was conceived and 
engineered during the 1999-2000 school year. ASketch con
tains the implementation of the algorithms discussed in this 
report. (See Figure 3) 

The application has a main window with a "Sketching Area." 
A user can add, delete, duplicate and move widgets, as well 
as specify motion curves by dragging these widgets around. 
Animations can be played by clicking a single button. The 
objects' animation curves can be edited via different algo
rithms. There is unlimited undo and redo, and the we use a 
marking-menu interface. There are also separate windows to 
view results from filters and feature detection algorithms. 

More details of how the application works can be found in 
the Users' Manual and Programmers' Reference (if they get 
written). 

4 Early Algorithms 

In the course of our research, we tried different algorithms. 
We begin by detailing our early efforts, most of which failed, 
and finish with our more successful algorithms. 

All the algorithms listed below describe the method by which 
a correspondence was found between two curves based on 
their geometric shape. We do not discuss how to actually in
terpolate between the curves because in all cases the method 
is straightforward. 

4.1 Closest Point Matching Algorithm 

At the outset, it seemed reasonable that since the user is 
likely to draw the two paths roughly alike, a point in one 
curve would be the closest point to its corresponding point 
in the other. Therefore, our first algorithm matched each 
point on one curve to the closest point on the other curve. 

K.I~~~ 
Sketching Area 

SP: Blend Neive C~e&t 

(a) (b) 

Figure 4 (a) Red circle indicates the intersection of the 
radii of curvature. (b) Pathlogical case for Closest Point 
Matching Algorithm. Blue line is the first curve, green line 
is the second curve and the red is the final interpolated 
blend. 

The new blended curve keeps the timing information of the 
first curve. More specifically, if we let Ui and Vj be the ith 
and jth points of the curves 1!(r) and ~(r), respectively, we 
have 

CLOSEST-POINT(1!(r), ~(r» 
1 Q t- 0 / / This is our list of correspondences. 
2 nt-Number of points in 1!(r) 
3 Q.APPENo«11o, Yo» 
4 p t--l 
5 for i == 0 to n  2 
6 do Find ~j such that j ~ p and II1!i - ~j II is minimized 
7 Q.APPENO«~j,1!i» 
8 pt-j 
9 

10 
Q.APPENO( (~a8t-point' 1!la8t-point» 
return Q 

It should be noted that the above algorithm corresponds 
every point in 1!(r) to some point in ~(r). Thus, if ~(r) has 
fewer points, then the correspondence is many-to-one (1!(r) 
to ~(r». If the latter curve has more points, then some points 
in ~(r) are dropped. Moreover, it could still be the case that 
two or more adjacent points in g( r) curve will correspond to 
the same point in ~(r). 

There is no filtering step when this algorithm is used. 

One pathological case that causes numerous problems in
volves one curve not being within a certain distance of the 
other. The reason for this can be found in 4(a). Notice that 
the spokes that represent the radii of curvature intersect 
within the red circle. When the second curve drawn does 
not fall between the red circle and the first curve, the corre
spondence skips over a large section of the first curve because 
the next point that should be taken is farther than a point 
near the end of the arc. This is what happened in Figure 
4(b). Not only does this cause an unexpected deformity in 
the blended curve, the object will also move much faster in 
that section of the curve. Since such a case can happen al
most anywhere, we find that this algorithm is not robust 
enough for our needs. 



8P: Feeture MMgh 1 

·.--~_. ~._-_.._---- ~~-'--'-~i 

I 

I 

m1)el 
Ne~Dt?r~J 

Iimt~.. 

Figure 3 Screenshots of ASketch 

4.2 Randomized Hill-Climbing Algorithm 

In randomized hill-climbing, we use the same technique that 
is used to tackle some NP-complete problems. First, we use 
the Closest-Point algorithm to establish an initial correspon
dence. Then we randomly propose small incremental mod
ifications which take effect if the resultant correspondence 
helps to minimize a weighted function, K, described as 

K = ,aKI + (1 - ,)/3K2, a, /3 ~ 0 and 0 < , < 1. (1) 

" a, and /3 are arbitrary constants used to fine tune the 
algorithm and normalize/vary the relative importantance of 
Kl and K 2 , which we now describe. 

Let C consist of the set of correspondences, with each cor
respondence being denoted by a pair of 2-D points (11<;,1l.j)' 
Then 

tc, = L 1111<; - Qj l12 (2) 
(!!.;.1!.j)EC 

Thus, K 1 is smaller if we use pairs that are closer together, 
again, keeping with the notion that if the user draws two 
curves that resemble one another, the correspondence pairs 
should be pretty close to one another. 

For K2, we define the correspondence as a mapping function 

r(i) = j such that (11<;, Qj) E Q (3) 

Thus, r(i) maps every point in 11«r) to some point in Q(r). 
Given this, we have 

(4) 

Since the goal of the algorithm is to essentially minimize 
both K 1 and K 2, we see that the K 1 term keeps the cor
responding point-pairs from drifting too far apart. At the 
same time, the K 2 term forces the the algorithm not to skip 
too many points between (1!<;, Qj) and (1!<; l' Qk)' so that j 
and k are reasonably close togetlier. This a~dresses the prob
lem found in the previous Closest-Point algorithm where just 
finding the points closest often resulted in whole sections of 
a path being skipped over. The various arbitrary constants 
help to normalize the two variables and lend different rela
tive weights to them. 

There is no filtering step when this algorithm is used. 

Unfortunately, our results showed that the algorithm would 
get stuck in a local minimum that often would not produce 
good results for many cases, despite trying a wide range 
of values for ,. Problems similar to ones encountered in 
the Closest Point Matching algorithm showed up (Figure 5. 
These have to do with the, skewed too far in favor of K 1. 

When the gamma is skewed in favor of K2, we get closer to 

Thus, K2 is the sum of the second derivatives of the Figure 5 Hill-Climbing Algorithm Results. Blue curve is 
mapping function r(i). For example, a correspondence of the first curve, green is the second and the red is the final
 
{(I, 1), (2, 2), (3,3), (4, 4)} would produce K2 = 0, but blended curve.
 
{(I, 1), (2,4), (3,8), (3, 15)} would give K2 > O.
 



the Path Length Fraction Algorithm to be described later 
(Section 4.3). 

There are variations we have not yet tried in favor of mov
ing on to other approaches. For instance, instead of choosing 
the initial correspondence set using the Closest-Point algo
rithm, we could have made the initial choice more random. 
In order to avoid local minimum problem, we run multiple 
iterations of the minimizing K, choosing a different random 
starting configuration. This is what is often done in variants 
of the Hill-Climbing algorithms (such variants can be found 
in artificial intelligence textbooks, page 111 of Russell[7], for 
example). Even with this modification, it could still be that 
the choice of "y may not be robust enough to handle most 
reasonable cases. Moreover, it is unclear how to to dynami
cally detect difficult cases and change "y on the fly for every 
pair of curves. 

Another option is to simply calculate the absolute minimum 
by trying all possible correspondences, but we found this to 
be combinatorically implausible. 

4.3 Path-Length and Time Fraction Matching Algorithms 

This set of algorithms attempts to correspond points by look
ing at how far, percentage-wise, a point is from the starting 
point, either by looking at the time index (in milliseconds) or 
by path length (in pixels). That is, a point that is in the mid
dle of the first curve, when measured by length, is assigned 
a corresponding point in the middle of the second curve. To 
be more specific, we first need to define some terminology. 

Let N; be the total number of points and Lv. be the total 
path length of the curve y.(s). L~ is measured by summing 
all the straight line segments that make up the discretely 
sampled curve. Let Tv. be the total time it takes to draw 
the curve (i.e. time index of last point - time index of first 
point). Let y'(s) be the linearly interpolated point that is 
length s away from the starting point of the curve y., as 
measured by summing the line segments previous, plus the 
last partial segment leading up to y'(s). Similarly, let y.(t) be 
a point at time index t, interpolated by looking at the timing 
information. Lastly, we define l«. to be the path length from 
the starting point to y.; and let t~ be the analogous point 
for time. 

Given this, these algorithms produce the following sets of 
correspondences: 

CL = {(y.;, Q (?~ L~) ) I 0 s i < N~} (5) 

CTL = {(y.;, Q (~ L~) ) I 0 s i < N~} (6) 

CT = { (y.;,Q (~ T~) ) I 0 s i < N~} (7) 

where CL corresponds points of the same path length frac
tion and CTL is this rather odd correspondence scheme that 
matches the time index fraction of one curve with the path 
length fraction of another. CTL produced bad results for 
certain pathological cases and did not really produce better 
results than CL for the rest of the cases. CT was never imple
mented but, in theory, such a correspondence really doesn't 
make sense. This becomes obvious once you think about the 
two cases of 1) drawing Q(r) to change the shape and 2) 
drawing to just change the timing information. 

The algorithms for these correspondence algorithms are 
straightforward and can be found in pathedit.PathEdit
NaivePathLengthRatio for CL and pathedit.PathEdit
NaiveTimeLengthRatio for CTL. pathedit.PathEdit
TimingPathLengthRatio does the same thing as CL, but 
transfers the new timing information to the old curve, 
whereas the previous two classes edit the shape of the curve 
only, keeping the original timing information. 

It turns out that CL produces the best results of all the early 
algorithms (Figure 6(a)-(c». It still has inherent weaknesses, 
as shown in Figure 6(d), but works pretty well overall. In 
fact, we use this algorithm as a subroutine in the feature 
matching algorithms later. 

(a) (b) 

(c) (d) 

Figure 6 (a), (b) and (c) are good cases for path length 
fraction matching while (d) illustrates a bad case. 

The problem in Figure 6(d) is subtle. Note that the sharp 
corner in the blue and green curves are not matched up 
properly. Suppose we divided up the curves into reasonable 
subsections, delimited by "interesting points," where there's 
sharp turn or significant pause. We find that the subsections 
for the timing and geometric information to be misaligned. 
For instance, suppose the user who drew Figure 6(d) put a 
significant pause in that first corner point. That pause will 
now have shifted slightly since the corner points from either 
curve are not corresponded to each other. In this example, 
the shift is probably not noticeable in the final curve, but if 
successive refinements are made, timing and geometric fea
tures can fallout of alignment quite easily. 

4.4 Summary 

Out of these early algorithms we began to see that it was 
insufficient to find some global algorithm to correspond the 
points. There were distinct places on the curves where a 
user would significantly slow down, pause, or speed up the 
velocity, and as the user drew successive editing curves, these 
points would drift away from their correct places. Also, tying 
the correspondence to such global parameters such as the 
path length would often produce bad results for long paths 
because the latter half of the second path, while being almost 
exactly the same as the latter half of the first path, would 
be altered because the first half involved some significant 
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differences. It is with these issues in mind that we move on 
to feature matching algorithms. 

Later Algorithms 

In these later algorithms, we focused more on subdividing 
curves into more manageable pieces, which resulted in better 
correspondence algorithms. 

These algorithms utilize feature matching and feature de
tection techniques to correspond points. Thus, we attempt 
to subdivide a motion curve into pieces and find correspon
dences for each piece. In general, the correspondence algo
rithm attempts to detect the "interesting" features for both 
1f.(r) and !l(r). It then tries to match up the features from 
both curves, thus setting up a correspondence between the 
features. After this step, the curves will have corresponding 
subsections for which we use a simple Path Length Fraction 
correspondence algorithm (GL or GT) to link. Thus, the gen
eral flow of execution now looks like 

~ - - - - - - - - - - "Esta.blisn-Ciii'respiiiiaence - - - - - - - - - - -; 
, ,, ,, , , , , ,,, 

At the Filter step, we apply a variety of filters, described 
below. The feature detection algorithms then use curvature 
data that is derived from the filtered curve to find features 
that produce curvature extrema. The curvature data 
consists getting the direction change as we move from one 
line segment to another along the discretized motion path 
(Figure 7). Curvature extrema are detected by examining a 
plot of the curvature data and noticing those parts of the 
plot that deviate beyond a calculated threshold value from 
zero. 

B C 

A 

Figure 7 A, B and C are consecutive points on somecurve. 
The curvature info for point B is () (radians). 

When establishing a point-to-point correspondence, we cor
respond the points in the original curves (not the filtered 
curves). Thus, each feature found in Feature Detection has 
a time index that links back to a point on the original curve. 

SP: Feature Match 1 

(a) 

(b) 
dalacurvalure4 
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Figure 8 (a) The original two curves drawn, with blended 
result in red. (b) Filter results of the green (second) curve. 
Blue represents the original curve and red is the filtered 
curve. (c) A plot of the curvature data for the filtered curve, 
direction change (radians) vs. point index. 

5.1 Filters 

This section presents an overview of the filters we used and 
their results. More information can be found in the source 
code in the SketchingAnimation.filter package. As be
fore, let the path 1f.(s) be parameterized by the path length 
s, where s is a measure of length (in pixels). 

5.1.1 Regularization [a.k.a. Sliding Average) Filter 

Let :!<. be an ordered vector of all the x values in a curve. Sim
ilarly for y. The regularization filter essentially runs a box 
filter on £ and y separately, for each motion path. Nothing 
is done to the timing info. This has the effect smoothing out 
small kinks and irregularities. The box height is 1.0, and the 
box width and sampling interval can be found as constants 
in the various FeatureDetect subclasses and as default val
ues in the Filter subclasses, which is usually around forty to 
sixty pixels.3 An example is shown in figure 8 This algorithm 

3The box widths in the source code are often suffixed with 
...RADIUS, which means that the number assigned is half of the 



Figure 9 Blue represents the original curve and red is the 
filtered curve. 

(a) (b) 

Figure 10 (a) Blue represents the original curve and red 
is the filtered curve. (b) A plot of the curvature data for the 
filtered curve, direction change (radians) vs, point index. 

is discussed by Duda[l]. 

While this produces fabulously smooth curves (Figures 9 and 
10(a)), the major limitation of this algorithm is that the box 
width is fixed. Sometimes the width is too small (this hap
pens when the user speeds up the stroke). This causes the 
filter to integrate over a single line segment between two 
points, thus producing a series of points along a line. So 
while the curvature may really be a non-zero number, we 
find that the curvature drops towards zero in some places 
where it should not. Notice how in Figure 10 the curvature 
plot spikes towards zero even though it is intuitively obvious 
from Figure 10(a) that the plot should be smooth and grad
ually changing. This produces erratic curvature plots from 
which it becomes harder to detect features from. If the in
terval of integration is expanded, then we risk smoothing 
away features that we would want to detect. Moroever, the 
box width can expand to the point where it starts encom
passing the entire length of the shorter curves, which causes 
additional problems. 

5.1.2 Regularization Filter with Dynamic Window Sizes 

This is the same as a Regularization Filter except that we use 
a calculated box width (i.e. window size) for each curve. This 
is done by looking at the average length of the line segments 
in the input curve. Then a minimum and maximum cut-off is 
applied to keep the width from becoming unreasonable. This 
alleviates the problem of the original Regularization Filter 
somewhat, but problems still arise when the user draws very 
slowly one subsection of a stroke and speeds up significantly 
on another, which causes the first set of points to be spaced 
close together and the latter set to be spaced far apart. 

A possible fix to this is to change the window width as the 
window slides along the curve. However, this seems to cause 

total width 

small kinks in the output curve which also add noise to the 
output. 

Despite its problems, this regularization filter produces the 
best results to date. 

5.1.3 Haar Wavelet Filter 

This filter takes the x and y values and applies a Haar 
Wavelet transform to each vector. Then, some percentage 
of the values closest to zero are removed from both 2<. and y, 
where, once again, 2<. and y are the vectors of the x and y var
ues, respectively. An inverse transform is then applied to pro
duce the final output curve. Some results are shown in Figure 
11. The major problem with Haar wavelets is that it favors 
the x and y axes. Thus, what happens is that some points 
will have their x values merged but their y values won't have 
(and vice-versa). This produces a "stair-stepping" effect that 
wreaks havoc on the curvature data (Figure l1(b)). 

However, when the threshold percentage is raised to around 
90%, most of the points are merged so that what remains 
are just the "vital" points. The features can be easily dis
cerned from the output curve since almost every point is a 
feature point (see Figure l1(d)). The difficulty arises from 
trying to pick the perfect threshold percentage. Sometimes 
a five percentage point difference in the threshold percent
age would produce vastly different results. At least, vastly 
different from the point of view of a feature detection al
gorithm that has to then intepret the filter output. Thus, 
this percentage must necessarily change for each curve, but 
how does one figure out which one to use or know when the 
right one was chosen? We have not had time to investigate 
these questions deeply. Also, we have not investigated other 
wavelet transforms that are less biased towards the coordi
nate axes. 

10% 25% 

80% 93% 

Figure 11 Same curve, filtered with a Haar wavelet filter 
using different threshold percentages. The blue represents 
the original curve and the red is the filter result. 
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Easy to interpret. Harder to interpret 

Figure 12 Two examples of the types of curvature plots 
that the algorithm has to process. 

5.1.4	 Other Filters 

The Evenly-Spaced Filter doesn't really "filter" anything. It 
just samples the points so that they are evenly spaced. Duda, 
in his book, also talks of a hysteresis filter[l], but we never 
implemented that because it was obvious that the output 
curves would not satisfy our needs for clean curvature data. 

An Angle Filter[4] is like the Haar Wavelet Filter with a 
high threshold. It subtracts points away until only the rel
evant "hot points" are remaining. We never got around to 
implementing this one. The algorithm also had a large set 
of adjustable parameters, leading one to believe that either 
it would take a lot of effort to produce a set that would be 
general enough or that a specific set of parameters would be 
good only for a small subset of cases, causing the problem 
of having to dynamically adjust those parameters. Despite 
this, we believe such filters are worth exploring at a later 
time. 

5.2 Feature Detection 

5.2.1	 Curvature Extrema Detection 

After filtering, the curvature data is plotted. Let 5< be the 
vector of direction change values (in radians) for every point 
on the filtered curve. We take the average of the absolute 
values of 5< to to be our threshold value (there is a minimum 
cut-off for this, currently at 0.008 radians). Any cluster of 
curvature values that deviate from zero by more than the 
threshold can be considered to comprise a feature. The spe
cific feature point is picked out by taking the point from 
the cluster that has the highest curvature value. Since the 
regularization filters do not produce completely clean cur
vature data, there are programmer-level tweaks that make 
the detection algorithm more robust. For instance, if the we 
encounter just one isolated point that is above the threshold, 
we consider that to be noise. If, after several points above 
the threshold, we encounter one or two points that dip below 
before coming back up, we also consider that noise. Check 

(a)	 (b) 

(c)	 (d) 

Figure 13 Results of cumulative iterations of the triangle 
filter. 

out the feature. FDExtremal. getNextFeaturePt 0 function 
for more details on this. 

5.2.2	 Curvature Extrema Detection with Diffusion Pre
processing 

Basically, this is the same as the above Curvature Extrema 
algorithm but we have taken the curvature data and "dif
fused" it just before we run our feature detection routine on 
it. Diffusion works by treating the curvature plot like a vis
cous fluid with gravity pointing towards zero radians. Thus, 
if we take a plot of the absolute values of the curvature data 
and allow it to "flow" like a reasonably viscous fluid, we get 
a new plot that has many of the smaller kinks smoothed out. 
An example is shown in Figure 13. Thus, even if we get noise 
after filtering, such as in the second curve of Figure 12, we 
can smooth those out by applying diffusion. 

Instead of solving partial differential equations, we simply 
approximated a gaussian filter with a triangle filter and 
ran that across the data points several times. The diffu
sion works because the all of the filters output curves whose 
points are, for the most part, evenly spaced. The triangle 
filter we currently use takes the curvature at a point 1!; (call 
this c(1!J) and resets the value to the weighted average of 
C(1!;_2)' C(1!;-l)' c(1!;), C(1!;+l) , and C(1!;+2)' with weights 
{0.4, 0.8,1.0,0.8, 0.4}. We run the filter for six iterations over 
the curvature data. (see StatUtil.diffuseValuesO) This 
feature detection algorithm, combined with the dynamic reg
ularization filter, produces the best results thus far. 

5.3 Feature Matching 

Feature matching is done in the same way that GNU diff 
is implemented UNIX systems. It uses an optimized, mostly 
linear algorithm that minimizes the edit distance between 
the two sets of features[5]. Thus, we reduce the problem 
of corresponding feature points to that of string matching. 
Let the feature points of the first and second curves drawn 
be represented by Jl and Q. These two strings have an al
phabet of three symbols: Clock-Wise Curvature Extrema 



(a) !!(r) 
10: 0 

(c) Path-Length Fraction 
Matching 

(b) y(r) 

(d) Feature Matching with 
Curvature Extrema 

Detection 

Figure 14 Comparing Path-Length Fraction Matching 
and Feature Matching Results. The red in (c) and (d) rep
resent the final blended result. 

Point, Counter-Clockwise Curvature Extrema Point, and 
Endpoint. The algorithm attempts to minimize the number 
of DELETE and INSERT operations that would transform 
g into Q. While the resulting edit distance is the same for 
transforming Qinto g, it should be noted that the correspon
dence set that results may be different. There are always two 
Endpoint feature points for every curve, one at each end. 
The algorithm always ends up corresponding the endpoints 
correctly. 

For the most part, this algorithm works well. However, it 
might be interesting to change the measurement of the edit 
distance so that deleting a feature of more severe curvature 
would require more than the usual one unit of edit distance. 
This might help correspond the correct features with each 
other. We have not had the time to implement such an al
gorithm. This would probably require doing the full-blown 
quadratic time algorithm for minimizing the edit distance, 
but the number of features is usually less than ten so effi
ciency does not seem like a problem. 

5.4 Establishing Point Correspondence 

After the feature points are matched up, we correspond the 
segment between each pair feature points using the CL or CT 
version of the Path-Length/Time Fraction Matching Algo
rithms in section 4.3. This method works quite well, assum
ing the right feature points were found and were matched 
up reasonably well. 

In summary, the feature matching approach requires that 
we first do some filtering, analyze curvature data on the 
filtered curves to detect the relevant features, correspond 
the features, and lastly, correspond the points of the original 
curves. 

ID: 0 

(a) (d) 

(b) 

(c) (f) 

Figure 15 Feature Matching without Diffusion. Y-axis is 
0.2 radians per grid-line for (b) and (e). 

5.5 Results 

We now present our results for feature matching, analyzing 
how they work in more depth and comparing them with our 
earlier approaches. 

5.5.1	 Comparing Path Length Fraction and Feature 
Matching 

Here we compare results from the Path-Length Fraction 
Matching Algorithm and the feature detection algorithm 
(without diffusion). In Figure 14, we draw two curves ((a) 
and (b)) and try to blend them. Note that, relative to the 
first curve, the second curve has longer path in its first sub
section and a shorter path in the second subsection." It is 
clear that since both !!(r) and y(r) contain a sharp "V" dip, 
the blended curve should as well. However, due to the slight 
shifting caused by the different arc lengths, the two corner 
points are not corresponded to each other in Figure 14(c). 
However, it's clear that in 14(d), the feature matching algo
rithm was able to find that critical point (because it's obvi
ously a curvature extrema) and correspond the points prop
erly. Not only is the blended shape better, but it could be 
that the user put a significant pause at the corner point. Us
ing the Path-Length Fraction Matching scheme, a replayed 
animation would result in the widget pausing a few millime

4 A "subsection" is loosely defined to be however the "average" 
user would intuitively segment a motion path. In this example, 
there seem to be two subsections. 

(e) 
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(c) (d) 

Figure 16 Feature Detection with and without diffusion. 
(a) :!f(r) (b) Q(r) (c) without diffusion (d) with diffusion. 

ters before the (now non-existent) corner point, and then 
doing a little "hook" before resuming upward motion. 

The inner workings of the feature matching algorithm are 
shown in Figure 15. The first set in the figure show the orig
inal curves that were drawn. The second set shows the cur
vature plots of the filtered curves (No diffusion is applied in 
this example). The last set shows the filter output with fea
ture points identified. Counter-clockwise-turning curvature 
extrema points are shown in red and clockwise-turning ex
trema points are shown in green. Dark gray circles mark the 
endpoints, which are considered their own category of fea
ture point by the feature detection algorithm. Notice how, 
in this case, the feature points of two curves exactly match. 
The thresholds for the feature detection were 0.15 and 0.10, 
respectively 

Therefore, we see that in some ways the Feature Detec
tion/Matching algorithms have significant advantages over 
previous algorithms in there ability to subdivide a curve and 
correspond the subdivisions. 

5.5.2 Adding Diffusion to Feature Detection 

Adding a diffusion pre-processing step before feature detec
tion allows us to filter out more noise from the curvature 
data. The advantage of this can be seen in Figure 16. The 
original curves are shown in (a) and (b). (c) and (d) show 
two different blends for this pair of curves. It should be clear 
that the diffusion improves the blending noticeably. In Fig
ure 17, we see that the feature detection algorithm finds the 

(a) (b) (c) 

Figure 17 Feature Points (a) First curve (with and with
out diffusion, (b) second curve without diffusion, and (c) 
second curve with diffusion. 
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Figure 18 Curvature plots for feature detection (a) with
out diffusion and (b) with diffusion. 

same feature points for the first curve, as seen in 17(a). How
ever, the second curve gives differing results. The extra red 
feature point in 17(b) forces the feature matching routine to 
choose between the two red points since there is only one in 
the other curve. This choice is basically arbitrary and depen
dent primarily on which curve was drawn first, and has to 
do with the subtleties of the edit-distance algorithm that we 
use. But with the diffusion thrown in, we find that only one 
red feature point is found in the second curve and is shifted 
closer to where it should intuitively be. To see why, look at 
the two curvature plots in Figure 18. 

Thus, we find that the diffusion pre-processing gives cleaner 
curvature plots, which produces less extraneous points from 
the feature detection step. This of course helps the fea
ture matching which improves the overall correspondence 
between the curves and produces better blends. 

5.5.3 Weaknesses of Feature Detection/Matching 

One of the weaknesses inherent in looking at curvature ex
trema is that sometimes, interesting features do not produce 
curvature extrema or non-interesting features produce un
wanted curvature extrema points. 

A good example of this is a circle. An imperfectly drawn cir
cle, or arc that has approximately constant curvature, can 
produce extraneous feature points, as in Figure 19(d). The 
feature points for the first curve are as expected (Figure 
19). The example given did not utilitize diffusion, but even 
diffusion will not eliminate this since there will be small 
swells and dips that exceed the threshold. This is because 
the threshold is calculated by averaging the curvature plot 
values. Therefore, there will always be such values. There is 
however a minimum cut-off threshold which eliminates this 
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(a)	 (b) 

(c)	 (d) 

Figure 19 (a) ~(r) (b) !!.(r) (c) blended curve (d) feature 
points for !!.(r). 

problem for straight lines (which are essentially curve seg
ments of constant curvature near zero). 

Another case is where a user draws certain features in one 
section of the curve but fails to draw them in another. 
In other words, the user eliminates or adds features when 
drawing the second one, sometimes throwing off the feature 
matching algorithm. 

Last, the curvature extrema points for when a user draws 
loops can produce odd results (Figure 21) about half of the 
time. Although we have not done formal studies on this, from 
experience, we find that the way users draw loops tend to 
produce inconsistently placed extrema points from one curve 
to the next. 

Conclusions &. Future Work 

The above correspondence algorithm, using feature detec
tion/matching with diffusion, works for many typical cases. 
However, it still has its weaknesses, especially when the user 
happens to draw the arc of a circle (i.e. constant curvature) 
or when the user draws small loops. In fact, any features 
that have ambiguous or erratic curvature data after filtering 
will produce unpredictable results. But overall, of the cases 
that seem to work, the blending seems intuitive. 

As for future work, most of the opportunities for further ex
ploration were mentioned previously throughout the various 
sections. The feature detection scheme could use some spe
cial case optimizations for certain pathological cases. The 
feature matching algorithm could be better, to help accom
modate any errors or hard-to-interpret user input. Thus far, 
we have only used one feature matching algorithm. The dif
fusion algorithm could be more elegant, and could imple
mented to work directly on the original curve, skipping the 
filter step. 

Another completely different avenue is to not look at curva
ture extrema to find different features, but to abstract away 
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Figure 20 Curvature plot for 19(d) 

(a)	 (c) (d) 

Figure 21 Loops (a) ~(r) (b) !!.(r) (c) blended curve 

irrelevant points until only the a few important points re
main. If such a filter could be implemented, then the feature 
detection algorithm becomes relatively easy. An example of 
this could be a good wavelet filter or the Angle Filter, men
tioned previously. 

Beyond the scope of this report, there is also the issue of 
angular motion and other forms of animation. In addition, 
providing an intuitive and elegant interface that successfully 
coordinates and synchronizes multiple animations may prove 
to be a challenge. A surface-level view shows that it could 
just be a "programming problem," where we define some 
gestures for some obvious feature set. Yet, we hesitate to 
endorse that view until someone actually implements such 
an interface. 

7 Acknowledgements 

I liked to acknowledge my advisor, John F. Hughes, who 
has been an invaluable collaborator and encouraging advi
sor. Thanks to Jayashree Subrahmonia at IBM Research, for 
taking the time to share her insights on handwriting recog
nition research. 

References 

[1]	 Richard O. Duda. Pattern Classification and Scene Analysis. 
John Wiley & Sons, Inc., New York, New York, 1973. 

[2]	 Thomas W. Sederberg & Eugene Greenwood. A physically 
based approach to 2-d shape blending. In Computer Graphics, 
pages 25-34. ACM SIGGRAPH, July 1992. 

[3]	 Mark D. Gross. Recognizing and interpreting diagrams in 
design. In Proceedings of the ACM Conference on Advanced 
Visual Interfaces '94, pages 88-94. ACM, June 1994. 



[4]	 James S. Lipscomb. A trainable gesture recognizer. Gesture 
Recognition, 24(9):895-907, 1991. 

[5]	 Webb Miller and Eugene W. Myers. A file comparison pro
gram. Software-Practice and Experience, 15(11):1026-1040, 
November 1985. 

[6]	 Dean Rubine. Specifying gestures by example. In Computer 
Graphics, pages 329-337. ACM SIGGRAPH, July 1991. 

[7]	 Stuart Russell and Peter Norvig. Artificial Intelligence: A 
Modem Approach. Prentice-Hall, Inc., Upper Saddle River, 
New Jersey, 1995. 

[8] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. 
SKETCH: An interface for sketching 3D scenes. In SIG
GRAPH 96 Conference Proceedings, pages 163-170. ACM 
SIGGRAPH, August 1996. 


