
Immersive Hierarchical Visualization and Steering for
Spectral/hp Element Methods

Jonathan Reiter
Department of Computer Science

Brown University

R.M. Kirby
Division of Applied Mathematics

Brown University

Joseph J. LaViola Jr.
Department of Computer Science

Brown University

Abstract

We present the first steps in our hierarchical visualization
and steering research targeted at large time-dependent spec-
tral/hp element methods. This research is built around
several observations concerning the structure of spectral/hp
data which lead to the development of several hierarchical vi-
sualization techniques. These techniques provide an attrac-
tive vehicle for building a complete end-to-end hierarchical
visualization and steering system. This paper discusses our
techniques in conjunction with the Pilot system, a first im-
plementation of these ideas in the form of an immersive hi-
erarchical visualization and steering system for spectral/hp
element simulations. Pilot allows the user to control the level
of extracted and visualized detail on a local basis throughout
the simulation’s domain and provides the user with an im-
mersive computational steering interface to interact directly
with the simulation. This combination of techniques allows
us to use Pilot to visualize the results of large concurrently-
running spectral/hp element CFD simulations.

1 Introduction

Simulation scientists are often interested in visualizing the
results of large simulations. But many scientifically inter-
esting simulations involve more data than can be presented
to the investigator using naive techniques and traditional
tools. Further, we would like to enable a user to interact
directly with a simulation code and steer the computation
as it progresses.

Our approach is to take advantage of the special structure
of spectral/hp element simulations and data sets to build a
system that is capable of handling larger problems [9]. We
present several specific techniques aimed at enabling inter-
action with large spectral/hp element simulations. The Pi-
lot system was developed as a first implementation of these
techniques; Pilot embodies the process of taking the first
steps towards building an end-to-end hierarchical visualiza-
tion and steering system specifically for spectral/hp element
simulations.

1.1 Why Spectral/hp Element Methods?

We chose to work with spectral/hp element methods because
there are three characteristics of these methods that prove
useful for the development of a hierarchical visualization sys-
tem. Spectral/hp element methods are built around tradi-
tional mesh-based spatial subdivision, providing a natural

Figure 1: Standing in an immersive virtual environment a
user examines flow through a nozzle in a 10 million degree
of freedom simulation.

framework for partitioning the computational domain into
a set of subdomains. This characteristic allows for selective
visualization on an element-by-element basis.

The internal data representation of spectral/hp element
methods also holds promise for large-scale visualization. In-
stead of generating value-at-vertex data like traditional fi-
nite element methods, spectral/hp element methods com-
pute vectors of polynomial coefficients, each of which de-
scribes the values of an individual data field over the space of
one element. The structure of these vectors is hierarchical:
by considering more coefficients one gets a more accurate
representation. Truncated coefficient vectors still provide a
useful data representation, although they exchange space for
accuracy. This tradeoff is very similar at a high level to com-
mon lossy image compression techniques. This characteristic
allows control over the balance between accuracy and data
size.

These polynomial coefficient vectors have one more prop-
erty that is of interest when designing a large scale data
visualization system. Because the computational methods
produce coefficient vectors describing data fields in a con-
tinuous fashion, the visualization system has a free hand in
selecting the points that will be sampled to produce visual-
izations. We can use the polynomial coefficient vectors to
generate exact values at any location in the domain; we are
not constrained to the vertices of the elements or to any

other subset of points within the simulation’s domain. This
gives the visualization implementor the ability to construct
a spatial hierarchy of points at which to evaluate the coeffi-
cient vectors - thereby introducing a mechanism to control
the balance between visualization accuracy and geometry
size.

It is these observations that motivated the design of the
Pilot system for the immersive hierarchical visualization and
steering of spectral/hp element simulations. Pilot imple-
ments our three hierarchical techniques - elemental, spectral
and spatial - within a larger visualization and steering sys-
tem. Pilot focuses on computational fluid dynamics (CFD)
simulations and provides an immersive visualization front
end in a Cave [3].

1.2 Paper Organization

The remainder of this paper is organized in the following
manner. First we explain how our work relates to exist-
ing hierarchical and multiresolution visualization techniques.
Then we describe our hierarchical techniques in detail.

The second half of the paper is devoted to detailing the Pi-
lot system’s architecture and presenting the immersive user
interface we developed for interacting with simulations. Af-
ter presenting the hierarchical methods and system design,
we move on to detailing how Pilot has been applied to spe-
cific CFD problems and the results we have observed thus
far. Finally we discuss areas for future work.

2 Related Work

There have been a number of approaches for building hier-
archical and multiresolution data representations. A taxon-
omy for these methods is provided in [2, 12]. Within this
framework, our three presented hierarchies are classified as
follows: the elemental and spatial resolution hierarchies are
space-based, while our spectral hierarchy is value-based. But
the design of each of our presented hierarchical techniques
was motivated by the structure of spectral/hp element sim-
ulation data.

Many hierarchical systems do not take data values into
account at all [8, 10, 15, 19]. These hierarchies are purely
geometric in nature because they were designed for rendering
efficiency, not scientific data visualization. Techniques based
primarily on geometric structure have been proposed for sci-
entific visualization [4]. These methods work by adjusting
the number of exact-valued points that are extracted from
simulation data. In contrast, our spatial hierarchy selects
the number of exact-valued points to generate given the ex-
tracted data. We leverage the characteristics of spectral/hp
element data to develop a value-based extraction hierarchy
that supports space-based hierarchical rendering techniques.

Value-based approaches built around wavelets have been
successful in the construction of hierarchical visualization
techniques. Trott [18] applies a wavelet transform to CFD
data to construct this type of visualization. The spectral/hp
element data representation provides similarly transformed
data as its initial output; consequently, our approach does
not require this additional step. Other wavelet-based ap-
proaches exhibit similar behavior [17, 24]. Finally, Grosso
[5] presents an automated hierarchical refinement technique
for finite element CFD simulation data. However, this tech-
nique is not interactive and we want the user to have in-
teractive control over the hierarchies to enable exploratory
visualization.

Figure 2: Four elements displayed with different tessellation
orders. Moving clockwise from the upper left, the elements
have tessellation order 1,2,3 and 4.

3 Hierarchical Data Techniques

Pilot provides the user with three hierarchical techniques to
control the tradeoff between accuracy and size for simula-
tion and visualization data. Our first level hierarchy and
control mechanism works at the element level. The user has
the ability to selectively visualize and extract data from the
simulation on a per-element basis.

The second and third hierarchical techniques are depen-
dent on the first. We consider them to operate independently
over the set of active elements.1 These hierarchical mech-
anisms provide control over data extraction and rendering
accuracy. In both cases the user can adjust the balance be-
tween data size and accuracy.

3.1 Element Level Hierarchy

Any element-based method lends itself to a simple one level
hierarchical representation: selectively enabling or disabling
the visualization of different elements. While this is not a
particularly complex hierarchical visualization technique, it
is an important one. When we talk of large data sets it is
often the case that simply displaying the complete spatial
discretization of the domain involves more geometry than
we can interactively render.

This work targets data sets larger than 1 million degrees
of freedom. For these cases simply displaying the complete
computational mesh can involve in excess of 1 million trian-
gles. Larger data sets can lead to orders of magnitude more
geometry - enough to swamp many hardware rendering sys-
tems. In these cases a first-level elemental hierarchy provides
a way to visualize data sets who’s coarsest representation
could otherwise overwhelm even the fastest of visualization
systems.

3.2 Spectral Data Hierarchy

Beyond the simple notion of selecting which elements are of
interest, our hierarchical representation takes advantage of
the structure of spectral/hp element data to build a deeper
data hierarchy around the simulation’s internal polynomial

1We refer to the set of currently extracted and visualized ele-
ments as the “active elements”.

coefficient representation. This representation consists of
one coefficient vector for each data field for each element. It
is these vectors that lend themselves to a hierarchical inter-
pretation.

The basic operation available to the user is the selection
of the number of coefficients to extract from the simulation
code. While the simulation computes a coefficient vector
of fixed size, one can use fewer than all of the coefficients
to generate a less accurate representation for the data over
an element. In exchange for this loss of accuracy, leaving
out coefficients saves space. We maintain the number of
coefficients to use on a per-element basis throughout the
computational domain. The user can then use this hierarchy
to extract more coefficients only for sections of the domain
that require a more accurate representation. This increased
local accuracy does not force the system to deal with large
quantities of data for elements where a coarse representation
provides sufficient information.

Our data extraction technique considers information in
units of “order”. In a one-dimensional system, the addition
of one more coefficient increases the order of the polynomial
expansion by one degree. In multi-dimensional systems in-
creasing the modal order one degree requires more than one
additional coefficient; all coefficients corresponding to poly-
nomial terms of the same degree are required. For example,
in two dimensions, if we presently have constant and first-
order information as coefficients of (1,x,y) and we desire to
increase the order by one degree, we require coefficients to
be extracted for the three additional terms (x2, y2, and xy).
Extracting only one more coefficient would lead to a poly-
nomial expansion which was not complete for a particular
polynomial order.

Providing this freedom to the user has consequences. A
user may be visualizing two adjacent elements where one is
being extracted at 10th order and the other at 5th order.
When these imbalances are present the data displayed on
the boundary between elements may be discontinuous.

This is not the only potential source of visualization dis-
continuity here. The simulation that we employ uses the
discontinuous Galerkin formulation which does not require
continuity - only L2 boundedness - across element interfaces.
The users of this sort of system will likely understand the
mathematical formulation of the simulation being visualized,
so they are unlikely to be confused by the discontinuity. The
visualization issues associated with discontinuity are beyond
the scope of this paper.

3.3 Spatial Hierarchy

We consider data on an element-by-element basis and dis-
play it using elemental boundary surfaces. These surfaces
are polyhedral subsets of the simulation’s domain and are
visualized as polygon meshes. We would like to provide the
user with hierarchical control over these meshes so they can
interactively adjust the balance between geometry size and
visualization quality.

Our initial set of polygons is just the set of polygons
bounding the element under consideration. This provides
a functional but coarse spatial discretization on which to
display the data values. The extracted polynomial coef-
ficients are used to compute exact values for each vertex,
these values are color mapped, and the polygons are fed to
the rendering system.

From the simulation’s perspective, there is nothing spe-
cial about the points where we choose to evaluate the co-
efficients. Spectral/hp element methods provide continuous

Visualization
 Layer

Compute
 Layer

Steering
 Layer

Figure 3: A graph view of the Pilot network architecture.
A single visualization processor is attached to an arbitrarily
large number of compute processors through the intermedi-
ate layer of steering processors. In turn, each steering proces-
sor handles data extraction and the computational steering
operations for at least one compute processor.

representations for data fields so we have free reign within
an element to pick points.

For our initial condition - using only the vertices of an
element’s bounding polygons - the rendering system will ap-
ply an interpolation procedure between adjacent vertices to
produce an image. To produce more accurate images we tes-
sellate the bounding polygons to a user specified degree and
evaluate the polynomial coefficients at each resulting vertex.
This can greatly increase the number of points at which we
have exact values, although naive interpolation is still used
between the exactly-valued vertices.

Our tessellation procedure simply recursively subdivides
each face of each currently displayed element with recursive
depth specified by the users “tessellation order” setting for
the element under consideration. Increased tessellation or-
der produces more accurate visualizations at the expense of
increased geometry size. We give the user control over this
balance and enable them to decide how to trade rendering
performance for visualization accuracy.

4 Pilot Architecture

The steering contribution of this research is not a novel ap-
proach to computational steering per se, but rather the steer-
ing that is enabled by our hierarchical data visualization
techniques. The problem of interactive data visualization
is a necessary prerequisite to computational steering [21].
Our hierarchical visualization work applies to non-steering
applications as well; we felt that building a steering sys-
tem was the most effective way to demonstrate the utility
of our visualization techniques. Pilot employs steering tech-
niques similar to other computational steering architectures
[6, 7, 11, 13, 20].

The overall layout of Pilot is that of a three layer tree,
as depicted in figure 3. We consider the simulation itself

to be the first layer, consisting of an arbitrary number of
processors. The third layer is the visualization front end.
Each of these layers includes network communication hooks
that allows them to be attached to Pilot.

In between these two layers the steering layer exists as a
parallel program running on any number of processors be-
tween 1 and the number of compute processors. Data extrac-
tion takes place between the steering and simulation layers.
This process involves communication only between a steering
processor and each computation processor it steers. Across
steering processors this procedure is parallel. The steering
processors only communicate with each other to synchronize
their extraction in between simulation time steps.

The visualization layer then reads renderable data out of
the steering processors and presents it to the user. Interac-
tion with the user is accomplished through the visualization
layer, which passes messages back through the steering layer,
eventually to modify the simulation’s state.

4.1 Compute Layer

The primary function of the compute layer is to generate
the data to be visualized and steered. The flow solver cor-
responds to a particular version N"�T �r, a general pur-
pose parallel spectral/hp element CFD code for simulating
incompressible, compressible and plasma flows in unsteady
three-dimensional geometries. The major algorithmic devel-
opments are described in [9] and [22]. The code uses meshes
similar to standard finite element and finite volume meshes,
consisting of structured or unstructured grids or a combina-
tion of both. The formulation is also similar to those meth-
ods, corresponding to Galerkin and discontinuous Galerkin
projections for the incompressible and compressible Navier-
Stokes equations, respectively. For this work we use the com-
pressible solver because characteristics of its implementation
made the modifications we needed easier to implement.

Pilot’s data extraction system was designed with the com-
putational needs of large simulations in mind. To this end
the extraction mechanism was designed to be minimally in-
trusive on the simulation. It does little more than copy out
arrays of data and make the necessary function calls into the
simulation to implement steering. Data is extracted in the
spectral/hp element representation internal to the simula-
tion. These collections of data are the hierarchical extracts
that form the core data flow of the Pilot system.

This layer connects to the steering layer for two reasons.
It exposes simulation data for extraction, and provides an
interface for implementing simulation steering. The compute
layer maintains minimal state - instead of remembering the
current visualization state it answers requests for data from
the steering layer.

4.2 Visualization Layer

Data is displayed and user input is collected by the visual-
ization layer. While there are benefits to maintaining the
spectral/hp element data representation during data extrac-
tion, the visualization system cannot easily handle these co-
efficients as input. The Pilot visualization system takes raw
renderable data as input over the network: collections of
triangles with values specified for each vertex.

Pilot’s visualization front end only receives geometry cor-
responding to the pieces of the domain the user has re-
quested, and then only at the user specified resolutions. As
the user inputs commands to change the subset of data to

Figure 4: Here we see a cross-sectional cut of flow through
a nozzle visualized at different levels of spectral order. The
top image uses only a second order representation while the
bottom image was generated with a 3rd order representation.
At this higher level of detail the boundary layer between jet
and near-wall downstream flow is resolved.

be displayed, the visualization system forwards these com-
mands on to the steering processors. That layer remembers
the current state and replies with the requested data so it
can be displayed.

The visualization system is built around Sense8’s World
Toolkit (WTK) [23] , and communicates via standard WTK
callback mechanisms.

4.3 Steering Layer

In between the compute and visualization layers is the steer-
ing software, performing those functions that are necessary
to convert between rendering and simulation representa-
tions. The steering processors in Pilot use a double buffered
system to insure that only complete extractions of data are
ever exposed to the visualization side. A similar approach is
employed to insure that the steering commands entered for
a particular time step of the simulation are passed back to
the simulation as a single block.

For visualization, the steering processors have two respon-
sibilities: remembering the current extraction state - which
elements should be displayed and and what resolutions - and
converting the simulation’s internal representation into the
(vertex,value) tuples that the visualization system takes as
input. By interactively adjusting the extracted resolution of
data, the user is controlling the accuracy of the conversion
between representations that runs on the steering proces-
sors. And as we would expect, a more accurate conversion
requires both more space and time.

The role the steering processors play for computational
steering operations is similar: they simply convert steering
commands from the representation used by the visualization

system to one the simulation can handle and forward that
data to the compute layer.

It is important to state that both of these conversions - for
visualization and computational steering - are run in paral-
lel on the steering processors with no communication among
them. Since the steering processors are nearly autonomous
we expect to see good scalability for highly parallel simula-
tions - those using 100s of processors or more.

5 User Interface

5.1 Environment

Pilot’s user interface is implemented in the Cave facility at
Brown University’s Technology Center for Advanced Scien-
tific Visualization and Computation. This approach is sim-
ilar to that taken by [14]. We chose to use an immersive
display for three reasons. First, there is excellent connectiv-
ity between the large compute servers we planned to use for
running the CFD simulations and the graphics systems driv-
ing the Cave. Second, as already stated, the ability to easily
select locations in space makes the implementation of many
of Pilot’s features easier. And lastly, we subscribe to the
hypothesis that users will be better able to understand large
data sets in immersive environments than on the desktop
[16].

5.2 User Interaction Tools

All user interaction in Pilot is accomplished through three di-
mensional widgets in a virtual environment. Hand-following
tools are used for the three basic visualization-changing op-
erations:

• selecting which elements to display

• adjusting the extracted order of an element

• adjusting the tessellation order of an element

In each case, the user selects a tool, presses one of two but-
tons (on/off or increase/decrease) on a wand, and drags the
device around the virtual space. The operation selected by
the user is applied to every element the user drags the tool
through while the button is depressed.

Steering is implemented using a single tool, a virtual laser
pointer, and a collection of changeable three dimensional
text fields. Pilot includes support for interactively steer-
ing three scalar values in the coupled simulation: Reynolds
number, time step and wall temperature. These values are
displayed on the right wall of the Cave in 3D text and main-
tain a constant position relative to the user (i.e. they are
always located on the right wall independent of the user’s
navigation around the virtual space).

This interface is also used to control visualization param-
eters in some cases. The user can change the currently dis-
played scalar field using this same laser pointer on another
piece of 3D text where the increase and decrease controls
cycle through the list of available fields.

The various user interface components are all imple-
mented entirely within the virtual space. We feel this charac-
teristic is essential; if users can explore data in an immersive
setting they should not be forced to go back to the keyboard
when it comes time to change parameters.

5.2.1 Color Mapping Technique

It is unclear how to handle maintaining a value to color map
for concurrently generated time-dependent data. Each new
time step provides a new range of values, possibly wholly
outside the value range for the previously displayed time
step. Pilot allows the user to change which elements are
being displayed from time step to time step. There is no
guarantee that value ranges will even be similar as the user
selects different sets of elements.

We experimented with an adaptive color mapping tech-
nique that automatically expanded its range of value as new
data arrived. This approach had the unexpected side effect
that with new maxima and minima in the data, coloring
could change significantly even in regions where the data
values remained constant. This behavior can present the
illusion of features due only to a changing color map.

To counter this problem we adopted a user-controlled
remapping procedure. A new user interface tool was added
to the visualization system that performs only one operation:
resetting the color map to handle the range of currently dis-
play data with a constant padding slight variations. This
approach allows the user to turn on the elements of inter-
est and, at any time in the visualization process, choose to
adjust the color map to fit the currently selected data.

This approach has the advantage that automatic color
map changes do not occur and the problem of illusory
changes disappears. On the other hand it means that if
new data comes in with a new time step that lies outside
the current mapping range, it will not be mapped properly.
Our system assigns the nearest value to values outside the
extrema of the map: the color assigned to the maximum or
minimum mapped value. Data outside the current range will
appear entirely in one color.

This solution worked well, but we believe additional re-
search is required to develop a more robust solution.

5.3 A Networked UI

All of our non-steering user interaction tools require com-
puting which element contains an arbitrary location in space
selected by the user. But the visualization system in Pilot
does not have any information about the grid structure of
the computation - it only has lists of graphical objects to
display. We do not want to transmit the entire computa-
tional mesh to the visualization software as it is unnecessary
and potentially large. We would prefer to run this computa-
tion on a processor that needs the information anyway, and
ideally in a parallel setting to accelerate the search.

Pilot achieves all of these goals by implementing inter-
active widgets in two pieces and across two different Pilot
network layers. The user interface simply reports a list of
locations and actions to all of the pilot processors. Those
processors are responsible for searching their local subdo-
main - thereby searching the entire domain in parallel - to
map locations to elements.

With this information Pilot can forward a list of elements
and actions to the relevant compute processors. This tech-
nique allows us to retain the desired interactive behavior of
the widgets by not burdening the visualization system with
costly searches and still allows the user to interact with very
large computations.

The cost of this technique is latency. After the visual-
ization software reports the lists of locations and actions to
Pilot, it does not get new graphics immediately. The re-
quested changes are not included in the visualization until
the next time step of data runs through the system. Pilot

makes a conscious choice to trade this sort of latency for the
ability to interact with larger simulations.

6 Results

After designing and implementing these visualization tech-
niques, we used our system for the visualization and steering
of current research CFD simulations. Since this work targets
large simulations, we chose to test Pilot at four points along
the path to large data. In each case we assessed the ability of
Pilot to handle the given simulation and visualization using
an SGI Onyx2 InfiniteReality for visualization and at most
64 processors of an IBM SP2 for simulation.

6.1 Duct Flow: Small Simulation

Our small simulation is flow through a duct. This simula-
tion has roughly ten thousand degrees of freedom and the
fluid dynamics are well understood. Our hierarchical tech-
niques were not needed at this level since the data set is
small enough to enable full resolution visualization.

However, the fluid behavior for this example is simple
enough to explore our steering functionality. The user has
the ability to interactively change the Reynolds number, wall
temperature and simulation time step size through Pilot.
We were able to see the effects of these steering operations
clearly with our visualization system. This determination
was carried out by the developers of N"�T �r.

6.2 Aerofoil: Mid-Size Simulation

Our next step up was an aerofoil simulation with roughly one
million degrees of freedom. In this case the wing geometry it-
self consisted of nearly ten thousand triangles. Displaying all
of the data would require between one and ten million trian-
gles, overwhelming the capabilities of our rendering system
for interactive purposes.

This case presents the first instance where our hierarchical
methods truly enabled interactive visualization; specifically,
the spatial and elemental hierarchical representations proved
valuable. We could handle transporting all of the data over
the network among the various Pilot components since the
data set size was still only 8 MB per time step. 2 The ef-
fect of extracting a lower order representation was negligible
here; reducing the quantity of geometry was the primary
issue.

For this sized simulation we found that our steering oper-
ations produced no visibly apparent results. This is due to
a confluence two factors: the time scale on which the phe-
nomenon changes and the amount of resources available to
us for running the simulation.

6.3 Nozzle: Large Simulation

To test the utility of the spectral data hierarchy we moved
up one order of magnitude to a 10 million degree of free-
dom simulation. This simulation generates 80 MB per time
step. While transporting this sized data set is not a prob-
lem for a user willing to wait a few seconds, we would prefer
to not introduce that additional lag between the simulation
generating results and the user viewing the corresponding
visualization.

2Data points inN"�T �r are stored as double precision float-
ing point values.

As predicted, decreasing the accuracy of the extracted
representation did improve performance. The simulation it-
self required several seconds to compute each new time step,
and our hierarchical techniques allowed us to extract the
data within this window. The spectral hierarchy provided a
modest improvement for this sized data set.

The elemental and spatial hierarchies proved essential. An
individual feature in this simulation - a jet of fluid for exam-
ple - can occupy several hundred elements. Displaying this
many elements with a dense spatial discretization can easily
generate several hundred thousand triangles, overwhelming
the rendering system’s ability to generate graphics quickly
enough to maintain the immersion.

6.4 F-15: Very Large Simulation

Our largest test simulation was an F-15 airplane. This is
an over 100 million degree of freedom simulation - nearly 1
GB of data per time step - with roughly 250,000 elements.
Now, in addition to swamping the rendering system with
triangles, we can swamp our communications system with
data. When we tried to extract data at full resolution from
this simulation it took longer than the computation itself.

The spatial hierarchy cannot help this problem because
it only effects the amount of generated geometry, not the
size of the extracted data. While our elemental extraction
control helps here, even small subsets of the data approach
100 MB. Our spectral data hierarchy proved useful in this
case by the user to see a coarse visualization with several
updates per second.

For this size simulation we were still able to use our steer-
ing tools, but we were not able to quickly observe changes
in the fluid’s behavior. This is not at all surprising given
our available computational resources and we only under-
took this experiment to demonstrate the scalability of our
steering system.

7 Future Work

Several points in the current implementation of Pilot deserve
further thought and work. Our set of hierarchies has proved
useful for controlling both data and geometry size, but it
seems likely that one could do a better job on both fronts by
developing adaptive tessellation algorithms to generate ge-
ometry in a way that requires fewer vertices and coefficients
to achieve the same error between data and visualization.

With an intelligent tessellation algorithm it would be pos-
sible to develop hierarchical versions of other common visu-
alization widgets like cut planes. In the current system of
regular tessellation, cut planes would be rendered with linear
interpolation across element boundaries - a clear source of
substantial error. Proper hierarchical tools would tessellate
adaptively around element boundaries to minimize the error
in the visualization.

It is also likely that isosurface and streamline algorithms
can be developed that exploit the structure of spectral data.
For streamlines, there is potential in the hierarchical data
representation for developing time-critical streamline algo-
rithms that can trade off the accuracy of the sampled data
points for faster update rates [1]. One can also imagine de-
veloping time-critical isosurface algorithms along the same
lines - or moving in the opposite direction to develop high-
order accurate isosurfaces that will undoubtedly take more
time to compute.

All of these ideas will generate more geometry for the
visualization system to render. And as we have already

stated, the dynamic nature of the geometry in Pilot makes
it difficult to apply render-accelerating techniques. If the ge-
ometry transmitted to the visualization system already in-
cluded structures like triangle strips, rendering could be sig-
nificantly faster. Such a procedure would have the nice prop-
erty that geometry optimization is done in parallel across the
steering processors. Of course it would also involve includ-
ing visualization-specific techniques in parts of Pilot other
than the visualization front end. This increases complexity
and potentially decreases the extent to which Pilot can be
attached to other front end systems.

The current user interface is far from being ready to
present to scientists as a tool for doing CFD research. We
see that significant user interface research is needed to help
build a better Pilot in two areas. The latency introduced
by spreading the user interface across two layers of the net-
work introduces some “dead time” between a user’s visual-
ization modifying action and the change actually appearing
in the visualization. This time can probably be used produc-
tively in some way; at the least we should develop a method
for providing the user with status updates indicating which
commands are still being processed and how much more pro-
cessing time they will require.

Our second area of user interface work concerns the sys-
tem in a broader sense. From the use of one Cave wall for
steering through the spatial point-and-click approach we use
to select locations in space, our current user interface was
developed to explore the possible utility of our hierarchical
visualization techniques. Now that we have accomplished
this first goal, the user interface should be revisited with the
usability requirements of our target end users - simulation
scientists - in mind.

Lastly, we would like to extend our spectral hierarchy to
steer the simulation itself. Giving the user interactive control
over the computed order on a per-element basis would pro-
vide even greater control over the simulation. Along these
lines, we would also like to allow the user to interactively
modify the computational mesh by changing the geometry
of the domain. Both of these changes involve making sub-
stantial modifications to the simulation and are the subjects
of longer-term simulation research.

8 Acknowledgements

We acknowledge the support and computational resources
provided to us by the Brown University Technology Center
for Advanced Scientific Computing and Visualization. All
authors acknowledge the support and advice of our advisor
Prof. Andries van Dam. The second author acknowledges
the support and advice of his Ph.D. thesis advisor, Prof.
George Em. Karniadakis. We thank Dr. Tim Warburton for
his assistance, Igor Pivkin for providing mesh assistance to
us, and Andrew Forsberg for his input towards the scientific
visualization issues in the research. We also thank Robert
Zeleznik for his comments on a draft of the paper. Finally,
we thank Mark Oribello for his assistance in the production
of our video.

References

[1] Steve Bryson and Sandy Johan, Time Management Si-
multaneity and Time-Critical Computation in Interac-
tive Unsteady Visualization Environments, Proceedings
of Visualization ’96, 1996, pp. 255–261.

[2] Paolo Cignoni, Paola Marino, Claudio Montani, Enrico
Puppo, and Roberto Scopigno, Speeding Up Isosurface
Extraction Using Interval Trees, IEEE Transactions on
Visualization and Computer Graphics 3 (1997), no. 2,
158–170.

[3] C. Cruz-Neira, D. J. Sandin, and T. A. Defanti,
Surround-Screen Projection Based Virtual Reality: The
Design and Implementation of the CAVE, Proceedings
of SIGGRAPH ’93, 1993, pp. 135–142.

[4] Lori A. Freitag and Raymond M. Loy, Adaptive, Mul-
tiresolution Visualization of Large Data Sets using a
Distributed Memory Octree, Proceedings of SC99: High
Performance Networking and Computing (Portland,
OR), ACM Press and IEEE Computer Society Press,
1999.

[5] Roberto Grosso, Christoph Lürig, and Thomas Ertl,
The Multilevel Finite Element Method for Adaptive
Mesh Optimization and Visualization of Volume Data,
Proceedings of Visualization ’97, 1997, pp. 387–394.

[6] Weiming Gu, Greg Eisenhauer, Eileen Kraemer,
Karsten Schwan, John T. Stasko, Jeffrey Vetter, and
Nirupama Mallavarupu, Falcon: On-line Monitoring
and Steering of Large-Scale Parallel Programs, Proceed-
ings of the 5th Symposium of the Frontiers of Massively
Parallel Computing, McLean, VA,, 1995, pp. 422–429.

[7] R. Haimes, pV3: A Distributed System for Large-Scale
Unsteady CFD Visualization, In AIAA 32nd Aerospace
Scienced Meeting and Exhibit, number AIAA 94-0321,
1994.

[8] Hughes Hoppe, Progressive Meshes, Proceedings of
SIGGRAPH 96, ACM Press, 1996, pp. 99–108.

[9] G. E. Karniadakis and S. J. Sherwin, Spectral/hp Ele-
ment Methods for CFD, Oxford University Press, Jan-
uary 1999.

[10] R. Klein, G. Liebach, and W. Strasser, Mesh Reduction
with Error Control, Proceedings of Visualization ’96,
1996, pp. 311–318.

[11] J. Kohl, P. Papadopoulos, and G. Geist, Cumulvs:
Collaborative Infrastructure for Developing Distributed
Simulations, Proceedings of the 8th SIAM Conference
on Parallel Processing for Scientific Computing, 1997.

[12] Kwan-Liu Ma, Michael Cox, Steve Parker, and
William J. Schroeder, System Design for Visualizing
Large-Scale Scientific Data, SIGGRAPH ’99 Course
Notes No. 9, 1999.

[13] Michelle Miller, Charles Hansen, and Christopher R.
Johnson, Simulation Steering with SCIRun in a Dis-
tributed Environment, PARA, 1998, pp. 366–376.

[14] Jurriaan Mulder, Robert van Liere, and Jack van Wijk,
Computational Steering in the CAVE, Future Genera-
tion Computer Systems 13 (1998), no. 2.

[15] W. Schroder, J.A. Zarge, and W.E. Lorenson, Decima-
tion of Triangle Meshes, Proceedings of SIGGRAPH
92, ACM Press, 1992, pp. 65–70.

[16] Paul H. Smith and John van Rosendale eds., Data and
Visualization Corridors, Technical Report CACR-164.
Center for Advanced Computing Research, California
Institute of Technology, September 1998.

[17] H. Tao and R. J. Moorhead, Progressive Transmission
of Scientific Data Using Biorthogonal Wavelet Trans-
form, Proceeding of Visualization ’94, 1994, pp. 93–99.

[18] Aaron Trott, Robert Moorhead, and John McGinley,
Wavelets Applied to Lossless Compression and Progres-
sive Transmission of Floating Point Data in 3-D Curvi-
linear Grids, Proceedings of Visualization ’96, 1996,
pp. 385–388.

[19] Greg Turk, Re-Tiling Polygonal Surfaces, Proceedings
of SIGGRAPH 92, ACM Press, 1992, pp. 55–64.

[20] Jarke J. van Wijk, CSE: A Modular Architecture for
Computational Steering, Proceedings of the 7th Euro-
graphics Workshop on Visualization in Scientific Com-
puting, 1996.

[21] Jeffrey Vetter and Karsten Schwan, Models for Compu-
tational Steering, Tech. Report GIT-CC-95-39, Georgia
Institute of Technology, 1996.

[22] T. C. Warburton, Spectral/hp Methods on Polymorphic
Multi-Domains: Algorithms and Applications, Ph.D.
thesis, Brown University, Division of Applied Mathe-
matics, 1999.

[23] World Toolkit. http://www.sense8.com/, 2001.

[24] Zhifan Zhu, Raghu Machiraju, Bryan Fry, and Robert
Moorhead, Wavelet-based Multiresolutional Representa-
tion of Computational Field Simulation Datasets, Pro-
ceeding of Visualization ’97, 1997, pp. 151–158.

