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Abstract

In this paper, we present an analysis of nominal anaphora along with
a probabilistic model of nominal anaphora resolution. Throughout this
work we focus on non-pronominal anaphora. The goal of this work is
to present a viable probabilistic model that is consistent with the ideas
of theoretical linguistics and the results of experimental psycholinguis-
tics. Where applicable, we present research which motivated the model
derivation. This work differs from previous work in that it is completely
statistical and isolates the task of non-pronominal noun-phrase corefer-
ence. Finally, we present the experimental results of an implementation
of the proposed probabilistic model.

1 Introduction

1.1 Why noun-phrase coreference?

Semantic interpretation of a discourse is undoubtedly dependent on the identifi-
cation discourse entities and the interactions between these entities. The prob-
lem addressed in this work is that of identifying references to unique discourse
entities. The most common representation for an entity in natural languages is
the noun-phrase. People use noun-phrases to introduce and refer to the entities
of a discourse. In order to introduce a unique entity, we may provide extra infor-
mation within a noun-phrase that uniquely defines the discourse entity. Later
references to this discourse entity often vary from previous references. Informa-
tion may be deleted or added to ease the resolution of the reference. There are
also stylistic factors that govern the use of noun-phrases. These factors vary by
domain (e.g. newspaper text vs. literature) and by speaker.

Example 1 presents a typical example of coreference found in the Wall Street
Journal. In this work we will not be dealing with pronominal coreference (the
circles).

Much of the theoretical linguistics and psycholinguistics research has focuses
on pronominal anaphora. Chomsky’s Government and Binding Theory Chom-
sky (1981) as well as other (Reinhart, 1981) presents a syntactic theory for
pronominal anaphora. Later work (Reinhart, 1983) found problems with this
strictly semantic theory. In a response to these problems many other theories



leading the forest-product concern’s unsolicited $3.19 billion bid for
| Great Northern Nekoosa Corp. Nekodosa has given the offer a public
cold shoulder a reactlon Mr. Hahn hasn t faced in his 18 earlier

surrender while talking tough. “We are prepared to pursue
aggressively completion of this transactton " he says. Buta
takeover battle opens up the possibility of a bidding war, with all

that implies. If a competitor enters the game, for example, Mi. Hahn

could face the dilemma of paying a premium for Ngkoosa or seeing

the company fall into the arms of a rival.

Figure 1: Example of coreference classes from the Wall Street Journal. Two
of the coreferent classes are identified by the boxes/circles. The dashed
boxes/circles indicate elements in the Mr. Hahn coreference class. Solid boxes
mark the noun-phrases in the Nekoosa coreference class.

of anaphora have been proposed (Ariel, 1990; Ward et al., 1991; Sag & Han-
kamer, 1984; Hudson-D’Zmura & Tanenhaus, 1988). These theories are based
on meta-linguistic (non-grammatical) features such as topicality. Additionally,
these features are more suited to explaining non-pronominal coreference.
Another area of research that motivates the nominal anaphora resolution
problem is that of discourse modeling. KampKamp and Reyle (1993) and others
have proposed well-defined models of discourse. In this model, as with all models
of discourse, they make the assumption that discourse entities can be identified.

1.2 Computational models of coreference

Although the models proposed by the computational community are at times
orthogonal to theoretical or psychological models, recent computational work
on anaphora has been related to, but not always consistent with, these other
bodies of research.

Current work on modeling anaphora either focuses specifically on pronominal
coreference or attempts to model all nominal coreference. Research presented
at Message Understanding Conference (MUC) has introduced a number of non-
statistical models. In general, systems presented at MUC-7 are dependent on
hand crafted rules and knowledge-bases(Baldwin et al., 1997; Fukumoto et al.,
1997; Garigliano et al., 1997). A dependency on world-knowledge makes these
systems practical for restricted domains but unrealistic as broad coverage mod-



els. To date, the most successful nominal coreference system is the clustering
model of Cardie and Wagstaff (1999).

Hand built models of pronominal coreference have been shown to perform
much better than the models of full nominal coreference(Mitkov, 1998). Though,
the highest accuracy comes from a simple statistical model (Ge et al., 1998; Ge,
2000).

Statistical models have been quite successful when applied to natural lan-
guage processing tasks. Currently, statistical (hidden Markov model) taggers
and parsers achieve the highest accuracy for these tasks (Charniak, 2000; Collins,
1997). Though a variety of statistical techniques are used, the models tend to
be simpler than their non-statistical counterparts. This is definitely the case in
the pronominal coreference model presented by Ge et al. (1998); Ge (2000). In
this work, the pronominal coreference problem is presented under a Bayesian
setting. In fact, the model we present has many similarities. We will describe
the Bayesian framework while presenting our model.

1.3 Coreference resolution rather than generation

We note here that our model is a model of coreference resolution. That is to
say that we are not attempting to model the generation of noun-phrases based
on the preceding discourse. This should be more obvious as we describe the
model. The features we use may be good indicators for identifying coreferent
noun-phrases, but would not be sufficient in generating a noun-phrase.

1.4 Organization of this paper

The remaining sections present the proposed model as well as the motivation
behind this particular formulation. Beginning with the feature selection, we
provide both an explanation of the intuition which motivated the feature as well
as references to the theoretical and phsycolinguistic work which suggest these
features are appropriate. Following this, we present the statistical formulation
of the proposed model. This includes a brief introduction to Bayesian inference
and pointers to further readings on the topic.

The final sections discuss an implementation of the proposed model of coref-
erence. This includes an experimental evaluation, and evaluation of evaluation
metrics and results. We also investigate the nature of the errors generated by
our coreference classifier.

2 Modeling nominal coreference

This model of nominal coreference can be broken in to two interdependent topics:
feature selection and the statistical model. The model itself is clearly dependent
on the selected features, but the reverse dependency is not as obvious. In the
following section we present the model features. The dependency on our choice
of model should be clear after reading this section.



We have chosen to design a model which adheres to an online processing
paradigm. We are not suggesting that anaphora resolution is processed in a
serial manner. What we are stating is that there are points, specifically when a
noun-phrase has been read !, where a decision about coreference relationships
can be made.

Algorithm 1 Online processing of anaphora

for all noun-phrase do
best_antecedent = nil
for all antecedent < noun_phrase do
if antecedent is more likely coreferent than best_antecedent then
best_antecedent = antecedent
end if
end for
if we have confidence in best_antecedent then
make_coreferent(noun-phrase, antecedent)
end if
end for

Algorithm 1 presents the framework for our coreference model. We pro-
cess each noun-phrase looking for the antecedent which is most similar. There
are two critical points to note here. First, the antecedents in algorithm 1 in
our model are not antecedent noun-phrases, but classes of noun-phrases. A
coreference link between a noun-phrase and an antecedent class creates a new
class containing the elements of the antecedent class and the additional noun-
phrase. When we begin processing, antecedent classes are made up of single
noun-phrases. The second point to note regards the final if statement. Within
a discourse not all noun-phrases will be anaphoric(there is only a single refer-
ence to the discourse entity). This will be most common in short discourses
such as newspaper articles. Thus, there are two passes to the decision mak-
ing process: determine whether the current noun-phrase is coreferent and if so,
which antecedent class it is coreferent with.

3 Feature definitions

As mentioned above, algorithm 1 performs two decision-making tasks. In de-
signing the coreference model we must identify features which assist in solving
each of these tasks. In the following description of the model features we de-
scribe how the features impact these decisions.

The model features are made up from five feature classes. These classes
are: head-nouns, determiners, open-class words, distance, and class size. In
the following subsections we describe each of these features and the motivations
behind their inclusion in the coreference model. The specific feature variables

IThroughout this work we will use the term reading to cover both reading a text or hearing
a spoken statement.



are presented in detail in section 4.3 where they are included in the statistical
model.

Eugene, the following sections have example statistics that I need to extract.
Let me know if these examples seem interesting (of course, the stats will make
them more interesting).

3.1 Head-nouns

NP
N\\ NP
NNP NNP '
o %\ the 62-year-old chairman and cheif executive
Mr. ¢ Hahn ) officer of Georgia-Pacific Corp.

-

Figure 2: The head-noun is identified by the dashed circle.

The head-noun of a noun-phrase is defined as the noun which provides the
most information about the noun-phrase. The standard method used to identify
head-nouns is as follows. For a given noun-phrase, we choose the rightmost
noun of the leftmost embedded noun-phrase. In Figure 2 we see that Hahn is
identified as the head-noun. We call the head-noun using this standard method,
the simple head-noun.

P(+anaphoric/head-noun = department) | 0.884260

P(+anaphoric/head-noun = cars) 0.3530520
P(+anaphoric/head-noun = law) 0.8000780
P(+anaphoric/head-noun = councils) 0.3530520
P(+anaphoric/head-noun = money) 0.3530520
P(+anaphoric/head-noun = spokesman) | 0.303890

P(+anaphoric/head-noun = bill) 0.7180480

Table 1: Example statistics for head-nouns.

We include two features in our model that make use of head-nouns. The first
feature uses the head-noun of the current noun-phrase. This feature identifies
head-nouns that are more likely to be found in coreferent relationships (indicated



by a +anaphoric) than others. In table 1 we present example statistics for this
features. This examples, as well as other presented throughout this paper have
been extracted from the Wall Street Journal training data explained in section
5.

P(+corefMatch| + A, +head-noun match) | 0.143963
P(+coref Match| + A, —head-noun match) | 0.968753

Table 2: Example statistics for pairs of head-nouns.

The other head-noun feature used is based on pairs of noun-phrases. We
wish to identify the likelihood of a coreferent match given the head-nouns of
two noun-phrases match. In table 2 we present example statistics of this sort.
We will use the abbreviated convention of a + meaning a boolean variable is
true and a — meaning it is false. We will also abbreviate the variable indicating
the current noun-phrase is anaphoric. We use the variable A to indicate this
fact.

3.1.1 Bad head-nouns

For the task of identifying coreference relationships between noun-phrases, the
simple head-noun is often useless. We believe a head-noun-like term would be
very useful in identifying coreference relationships. In the following table we
present a number of noun-phrases, the head-phrase and the simple head-noun.
Here the head-phrase is simply a set of words that we feel are unique identifiers
for the noun-phrase.

[bt] noun-phrase head-phrase simple head-noun
Perpetual preferred shares Perpetual preferred shares

Toronto cable television Toronto cable television | television

General Motor Corp.’s beleaguered

Buick division Buick division division

the vice president vice president president

the president president president

American Express Co. American Express Co.

In the last example we find the most problematic type of simple head-noun.
This head-noun, although providing information about the noun-phrase, does
little in identifying the discourse entity. We call these head-nouns bad head-
nouns.

We have developed a simple yet sufficient technique to find these bad head-
nouns. We note that bad head-nouns are high frequency words. Furthermore,
we observer than when a bad head-noun is used, the noun to the left of the
simple head-noun is more informative.

Given a current noun-phrase and some antecedent, we define the following
two values. The first value we call potential matches. A potential match is
when either: the simple-head nouns match, or the noun to the left of the current



noun-phrases simple head-noun matches. The second value we call the bad head
match. If the current noun-phrase and antecedent noun-phrase matched only
when choosing the noun to the left of the simple head noun, then this was a
bad head match. We collect these counts for the head of every noun-phrase as
compared with all antecedents.

Algorithm 2 Collecting counts for bad head-nouns

for all noun-phrase do
best_antecedent = nil
left_current = noun to left of current head-noun
for all antecedent < noun_phrase do
left_antecedent = noun to left of antecedent head-noun
if left_current = antecedent head-noun then
increment CountBad(current head-noun)
increment CountMatched(current head-noun)
end if
if left_antecedent = current head-noun then
increment CountBad(antecedent head-noun)
increment CountMatched (antecedent head-noun)
end if
if antecedent head-noun = current head-noun then
increment CountMatched(current head-noun)
increment CountMatched (antecedent head-noun)
end if
end for
end for

Algorithm 2 collects the counts of cases where a noun to the left of the
head-noun would have been a match with some other head-noun.

CountBad(h) 1)
CountMatched(h)

P*(hisbad|matchwaspossible) ~

We then threshold this value (not really a probability) for nouns with high
counts. Table 3 is a list of the bad head nouns which occurred over 40,000 times
in the BLLIP 99 corpus, a corpus of the Wall Street Journal articles from 1987,
1988, and part of 1989.

3.2 Determiners

Determiners, most notably the definite article the and indefinite article a, pro-
vide some clues for object reference. Baker(Baker, 1996) points out that in
simple cases, the a is used to register a discourse entity and the the indicates
references to previously registered items.

Statistical model features identifying the current noun-phrase’s determiner
and the interaction between the current noun-phrase’s determiner and the an-
tecedent’s determiner capture these interactions. Table 4 presents examples



head-noun | Matched | Bad matches | P*
Itd 44285 31653 0.714757
spokesman | 68612 48392 0.705299
co 102388 69976 0.683439
officials 139379 91173 0.654137
executives | 46525 29001 0.623342
inc 273227 162519 0.594813
corp 227156 133937 0.589626
unit 89941 41148 0.4575
stock 83542 37114 0.444256
Table 3: Bad head-nouns collected from the BLLIP ’99 corpus
P(+Aldet cyrrent = No determiner) 0.204222
P(+Aldetcyrrent = &) 0.137967
P(+A|deteyrrent = the) 0.510887
P(+corefMatch| + A, +first antecedent, deteyrrent = &, detantecedent = &) | 0.666195
P(+corefMatch| + A, —first antecedent, detcyrrent = &, detantecedent = @) | 0.745273

Table 4: Example statistics for determiners.

statistics in much the same manner as we presented the head-noun statis-
tics in the previous sections. Note that we have an additional feature here
(+first antecedent) that indicates whether the antecedent is the first noun-
phrase in the antecedent class.

3.3 Open-class words

Results from psycholinguistic research show there is a clear difference in the
comprehension of open-class vs. closed-class words 2. Child language acquisition
experiments show that children learn these differences within their first two
years(Shi et al., 1999; Shi et al., 1998). This phenomena is observed across
languages, but are more distinctive in languages such as English. An interesting
observation pertaining to our work is made in ShiShi et al. (1998) is that
”functional items tend to be syntactically predictable and semantically light,
carrying little information load.”

In our model we ignore almost all closed-class words (we do use determiners
as mentioned above). What remains are the open-class words. We assume no
knowledge about the structure of these words The model simply assumes that
matching open-class words provide clues to coreference.

Another observation we have made regarding open-class words is that later
references to the same discourse entity use fewer words than earlier references.

20pen-class words are also known as lexical tokens. Closed-class are also known as gram-
matical or functional tokens.



Ariel’s work on Accessibility Theory(Ariel, 1990) provides some justification for
this observation, suggesting an economical system where smaller noun-phrases
are preferred if they offer enough information. Discourse entities that are men-
tioned more will need less information to identify them as they are more acces-
sible.

P(+corefMatch| + A, —ocLEQ, —openMatch) 0.27132

P(+corefMatch| + A, +ocLEQ, —openMatch) 0.13202
P(+corefMatch|+ A, +ocLEQ, +openMatch) 0.89626
P(+corefMatch| + A, +ocLEQ, +openM atch, +headMatch) | 0.0217256
P(
P(

+corefMatch| + A, +ocLEQ, +openMatch, +headMatch) | 0.666720
+corefMatch| + A, +ocLEQ, +openMatch, +headMatch) | 0.966748

Table 5: Example statistics for open-class matches.

Table 5 presents some example open-class match statistics. Note that the
last few examples are the combination of open-class Matches and head-noun
Matches. These combined features provide more information than when used
independently.

3.4 Distance

The distance between two noun-phrases would seem to have some impact on
the likelihood of the noun-phrases being coreferent. Ariel (Ariel, 1990) suggests
distance as a factor in identifying coreference. Specifically, Ariel states that the
choice of anaphor is dependent on the distance. In our model, we include a
distance feature which is simple the surface distance between two noun-phrases.

Factors that confound this feature include discourse size and noun-phrase
types. The experimental corpus we used is made up of short discourse (news-
paper articles). We expect this to distort the distance effect. All noun-phrases
in this corpus are annotated with coreference markings. In many cases these
noun-phrases are objects of prepositions, sometimes embedded in a company
name (i.e. New York in The FElectric Company of New York. We believe the
distance effect to be a more semantic feature that effects subject and objects
but not these embedded objects.

P(+corefMatch|loga(distance) = 1) | 0.281293
P(+coref Match|loga(distance) = 3) | 0.385731
P(+corefMatch|loga(distance) = 6) | 0.268674

Table 6: Example statistics for distance between noun-phrases and antecedent
classes.

The example statistics in table 6 are based on distance buckets. These
buckets help prevent data sparseness problems.



3.5 Class Size

The final feature used in our model is that of class size. The intuition here is
simply that most coreference class do not grow past a particular size. This limit
is clearly a domain dependent attribute. We will expect to see a single class
grow larger. We assume this class is related to the topic of the discourse. Most
importantly, there is a trend for most classes to stay the same size.

P(+coref Match|classSize =2) | 0.284516
P(+corefMatch|classSize =5) | 0.491489
P(+coref Match|classSize = 15) | 0.699609
P(+coref Match|classSize = 20) | 0.803242

Table 7: Example statistics for class size.

The example statistics in table 7 show the class size effect in our training
corpus.

4 Statistical model

4.1 Bayes models

Most classifications problems can be rephrased as a probabilistic maximization
problem. In the general case we wish to find the most probable class i given
some observed evidence E.
arg max P(i|E)
1

Bayes rule ? allows us the flexibility to calculate P(i|E) through the reversed
conditional P(E|i).

The first term is know as the prior and is used to capture any a priori knowledge
about the class i. The second term is known as the likelihood ratio.

The power of Bayes rule is most obvious when attempting to estimate the
distribution P(i|E). Given some training data, we are unlikely to have seen all
classes i with all possible combinations of the evidence. However, we are much
more likely to have observed the evidence for all possible classes.

A Naive Bayes model is one which assumes all conditional variables are con-
ditionally independent. In other words, we are able to calculate the distribution

as follows:
R s P(E;li
P(i|E) = P(i)—HEJEE( _,§ )

3Bayes rules is a direct observation following from the rules of conditional probability(Feller,
1950)
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The model presented in this paper is a Bayesian model which has limited
conditional independence. The dependency structure of the evidence is defined
by the model builder.

There are a number of references which provide a more thorough explanation
of Bayesian inference. Pearl(Pearl, 1988) presents a comprehensive overview of
Bayesian inference. Manning and Schtze (Manning & Schiitze, 1999), Char-
niak(Charniak, 1993), and Jelinek (Jelinek, 1997) provide an overview of these
approaches as applied to natural language processing and speech recognition.
Finally, Mitchell (Mitchell, 1997) presents an introduction to Bayesian models
in the general context of machine learning.

4.2 Estimating multinomial distributions

Once we have formulated our model in the Bayesian framework we must es-
timate the conditional distributions over the evidence variables. Typically in
natural language processing we assume these variables are multinomially dis-
tributed. Informally, this means that the variables take on values, where the
likelihood of taking on a particular value is determined by a specific probability
(the probabilities for all values must sum to 1).

Let’s look at an example related to our model. The determiner feature has
a finite number of values. We can express the distribution of the value of the
determiner random variable D conditioned on the coreference variable C' as
follows:

P(D = the|C = true) = .434
P(D = a|C = true) = .029
P(D = this|C = true) = .012

Z P(D =d|C =true) =1

deD

The maximum likelihood estimate (MLE) for a multinomial distribution is
maximized by relative frequencies given a large enough sample. For example,
the estimate for the the first probability above is simple:

#(D = the,C = true)

P(D = the|C = true) = #(C = true)

Here the #() function is a raw count from training examples. (#(a,b) means
the count examples where a and b are true.)

The first problem with this estimate arises when a value is not observed
in the training data. For example, if the determiner this never occurs in our
training data but does occur in the test data. There are a number of techniques
to handle these cases (Manning & Schiitze, 1999; Jelinek, 1997; Charniak, 1993).
The simplest of these is the Laplace estimate. In short, this estimate assigns a
small amount of probability mass to the unobserved instances.

11



The second problem with this estimate is that is is maximized for the train-
ing data. We would prefer an estimate which has a high generalization accuracy.
There are a number of techniques known as smoothing which attempt to dis-
tribute the probability mass more smoothly over the variables. In this work, we
use a linear interpolation back-off model where appropriate.

4.3 Coreference model

We now present the statistical model for noun-phrase coreference. The model
follows from the discussion of Bayesian models above. Recall that there are actu-
ally two tasks at hand. The first is to determiner whether a noun-phrase is coref-
erent with any antecedent class. We call this the first-pass decision(though actu-
ally performed after the second-pass). If the noun-phrase does have a coreferent
antecedent, the second-pass involves identifying that coreferent antecedent. We
begin by deriving the second-pass equation and show how it can be used to
determiner the first-pass decision.

4.3.1 Best antecedent class

From the pseudo-code of algorithm 1 we make a classification decision for each
noun-phrase. We will refer to the index n of the noun-phrase N,, to mean the
noun-phrase itself. Given {N1, No,---, N,,_1} and N,,, we wish to find the best
antecedent class ¢ € C' where the set C' is a partition of {Ny, Na, -, N,_1}
representing the coreferent classes up to the noun-phrase indexed at n. We
introduce the boolean variable A whose value is true iff the noun-phrase at index
n is coreferent with one of the antecedents in C. To state this probabilistically
we want to maximize the following:

argmax P(C = ¢, A = truel€) (2)

The evidence vector £ contains the evidence from the current noun-phrase n
(E,), the antecedent classes ({E1, Eo,- -+, E,—1}), and other observations from
the discourse (Fg). In our model we have combined any information from Ey4
into En and the {El, E27 ey, En—l}-

As mentioned above, we will now apply Bayes rule to reformulate the equa-
tion.

argmax P(C = ¢, A = true|Ey, E1, Ea,- -+, Ep_1)
P(En;El,EQ, . ',En71|c = CvA = true)

= P(C:C,A:true) P(En,E17E27"',En_1) ( )
P(E,|c)P(E1,Es,---,En_1|Ep,c)

= P(c 4

© P(E,|c)P(E\,Es,---,E,_1|Ey) (4)

Equation 4 introduces some shorthand that should make the equations more
readable. We simply use the variable ¢ to indicate (C' = ¢, A = true). Also,

12



in this equation we have chosen to break apart the evidence for the current
noun-phrase F,, and the antecedents {E1, Ea, -+, E,,_1}.

Our first assumption is that the evidence for one antecedent classes is inde-
pendent of another. This is not a conditional independence assumption but an
absolute independence assumption. This allows us some flexibility in factoring
the numerator and denominator.

P(En, El, E27 ey, En_1|C)
P(Env Elv EQ; Tty Enfl)

P(C)P<Ec|En,c> 1. P(Ei|E,,c)
P(E.|E,) 1\, P(Ei|En)

P(e)

(5)

This new equation separates the positive evidence and the negative evidence.
E. is the evidence for antecedent class that we are interested in. The second
half of the numerator (and the denominator) represents the negative evidence.
P(E:|Enc)
PE.E nto the our model features.

The same decomposition can be done for the negative evidence terms.
‘H - Head nouns of N, and N,, match

D, - Determiner of N,

We will now decompose the equation

D,, - Determiner of N,

O - All open-class words in N,, found in N,

S - Number of open-class words in NV,, < number open class words in N,
A - Number of noun-phrases between NV,, and A,

I' - Number of noun-phrases in A,

P(E.|En,c)
P(E.|Ey)
P(H,D.,0,S,A,T|D,,c) )
P(H,D.,0.,S, A, T|D,)

Note that many of our features are functions of two noun-phrases, yet the pa-
rameters are the current noun-phrase IN,, and the antecedent class A.. The
noun-phrases within an antecedent class are clearly dependent upon one an-
other. For example, if we see the head-noun president in one noun-phrase, the
likelihood of seeing it in another noun-phrase within the same class is expected
to be higher than seeing the head-noun president without class information.
Unfortunately, modeling this dependency would require a training corpus that
contained all possible coreference chains.

P(E.|Ep,c)
P(E.|E,)
P(Ec,1|En7 C)P(Ec,2|Ec,1; Ena C) e
P(Ec,llEn)P(Ec,2|Ec,1;En)

13



Tokens 14722
Noun-phrases 3314
Non-singleton classes 210
Noun-phrases in non-singleton classes | 907
Sentences 556

Table 8: Hand-annotated coreference corpus information

Instead, we choose to simplify this process by evaluating equation 6 using the
antecedent noun-phrases within the antecedent class. We will approximate this
equation with the maximal probability over the antecedents.
P(E.|E,,c)
P(Ec|En)
P(E.;|F,
A max 7( c.ilEn, ©) (8)
i€A. P(E.;|Ey)

We take some liberties with equation 6 and insert the functions of the ev-
idence without accounting for the dependency. In other words, substituting
P(H|c) for i P(h(E.) = h(Ey)|h(Ey),c). We choose this backed-off version pri-
marily due to sparse-data constraints. The same approximations can be made
for the negative evidence ratio.

4.3.2 First-pass decision

Recall that the first-pass decision is whether any antecedent class is coreferent
with the current noun-phrase. We do this simply by thresholding the probability
that maximized equation 2.

P(e|€) (9)
~ mgxP(c|€) (10)

In practice we find that setting this parameter to a training-data tuned value
gives adequate results.

5 Experimental analysis

We now focus on the empirical performance analysis of an implementation of
the statistical coreference model described above. We implemented this model
in C++ and have tested it on the Penn Treebank(Mitchell, 1997), a human-
parsed set of Wall Street Journal articles. Note that the input need not be
prepared by a human. We would expect similar results with data that was
parsed automatically by a high accuracy parser such as that found in (Charniak,
2000). A small subset of the Penn Treebank was hand annotated with correct
coreference information. This small subset is referred to as our corpus for the
remainder of the paper. Table 8 presents statistics about the hand-annotated
corpus, a relatively small corpus.

14



5.1 Experimental organization

The experimental process used here is similar to that used in many natural
language processing and machine learning tasks (see (Mitchell, 1997). We use
ten-fold cross-validation. This means that we first split the data into ten equally
sized sets. Then we perform the experiment using nine of these sets as training
data and one set as test data. We run the experiment ten times, each time using
a different set as the test set. All scores presented are the average over all ten
experiments.

As mentioned above, we also need to tune the first-pass threshold. We do
this during the training phase mentioned above. Once we have trained our
classifier, we run it on the training data with different values for the first-pass
threshold. Currently we are use a coarse linear increment. We choose the value
that maximizes the evaluation metric over the training data.

5.2 Evaluation metrics

Evaluating the results of our classifier is done by comparing the response (the
results of our classifier) to the key (the hand-annotated data).

5.2.1 Vilain

Currently, the most common evaluation metric is the Vilain scoring algorithm(Vilain
et al., 1995). This algorithm considers the response to be a permutation of the
key. For example, the noun-phrases of a single class in the key may be found in
many classes in the response. We count the number of links needed to create
the key class. Let ¢(S) = (]S|—1) be the number of correct links for class S. Let
m(S) = (|p(S)| — 1) be the number of missing links where |p(S)| is the number

of partitions S is broken into in the response. Then Vilain defines recall for the
class S to be as follows.

Recall for all the classes is simply a sum of the individual links:

>s(S1=1)
Precision is calculated by reversing the role of the key and response.
One problem that arises from the Vilain metric is the tendency to reward

large classes in the response. We have found that putting all noun-phrases in a
single class results in a relatively high score. For example, in one of our cross
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validated test sets we places all noun-phrases in coreference class. The recall
is clearly 100%, but surprisingly the precision is 20% producing an F-measure
around 34% 4.

Due to this unwanted outcome we have experimented with other evaluation
metrics.

5.2.2 B-cubed

Bagga and Baldwin(Bagga & Baldwin, ) suggest an alternative to the Vilain
metric. This technique is similar to that of Vilain except the size of the class is
used to weigh the score. The recall for a key coreference class .S; is defined as:

Sy [Pigl < (18i] = |Pij1)
|2

R, =1- (15)
Where P; is the the union of the j** partition of S; (created by the response)
and S;. In other words, we are only interested in the partitions of S; created by
the response. Note that calculating the scores for all coreference classes is not
as easy as with the Vilain metric. The totals can be calculated as an average
or a weighted average of the individual class scores.

5.2.3 Predications

Another scoring technique that we have tried is to measure the number of false
predications. We consider all coreference relationships to be predications. For
examples, a key S with |S| noun-phrases will have ((|S|—1) x |S])/2 predications.
In the same manner as Vilain, we consider the response as a permutation of
the key class S. The recall for a particular coreference class S; is as follows
(borrowing the notation from the section on B-cubed scoring).

S ([Pl = 1) x [Pisl)/2
((1S:] = 1) x |Si)/2

Scores for multiple classes can be calculated similarly to the method suggested
in the previous section on B-cubed scoring.

R, =

(16)

5.2.4 Classification accuracy

Finally, we consider an evaluation of the specific task: classifying the current
noun-phrase correctly given the preceding discourse context. First, we consider
each noun-phrase decision as a separate classification task. In this evaluation we
are only interested in how well we classify the noun-phrase (and not how well the
antecedents were classified). We do this by using the preceding discourse context
from the key, including all coreference information. Running our classifier using
this evidence provides a useful evaluation of the classification performance.

Eugene, I plan on rerunning the experiments with the best model so far and
reporting scores using all metrics.

2xPxR
P+R

4The F-measure is simply a weighted average
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5.3 Results

Precision | Recall | Geometric F
Mean Measure
Open-class match 54.3 53.8 54.0 54.0
Open-class match &
Head-match 65.3 61.5 63.4 63.3
Full
Model 69.4 61.5 65.3 65.2

Table 9: Experimental results (Vilain)

As mentioned previously, we ran our implementation of the proposed model
on a small hand-annotated corpus. Table 9 presents the current scores for our
model using different sets of features. The base-line model simply uses open-
class comparative information. Note that the full model (excluding distance)
performs approximately 11% better than the baseline (a 24% reduction in error).

5.4 Error analysis

The results found in table 9 are encouraging but not spectacular. There is a lot
of room for improvement. We have performed an error analysis on the 34.8% of
the errors.

We find that the majority of our errors (over 80%) are caused by incorrect
first-pass decisions. This is not surprising considering only 27% of the noun-
phrases are found in coreferent classes. These errors are split fairly evenly
between assigning a non-coreferent noun-phrase to a class and failing to assign
a coreferent noun-phrase to a class.

The results reported above are for models which excluded the distance fea-
ture. We have found the distance feature to degrade the performance of the
system. Although we believe the distance feature should provide useful infor-
mation, we have been unable to alleviate the problem. One possible cause for
the performance degradation is that the distance feature we are currently using
is a poor indicator of coreference. If the distance were completely independent of
coreference we would not expect the performance degradation, rather we would
expect a null effect. However, if there is a correlation between the distance
and coreference, but the distance feature is dependent on other noun-phrase
attributes, it is possible the current model would suffer. For example, the dis-
tance between coreferent items may be dependent on whether the coreference
class is the topic or not. In our current model, the non-topic events dominate
the statistics and could negatively impact decisions about topical classes. At the
same time, the distance feature may not improve decisions about non-topical
classes. Nonetheless, we intend to perform a further analysis of the distance
feature and consequent performance degradation.
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6 Further endeavors

Currently we have evaluated the performance of our model on our Wall Street
Journal corpus. We plan to experiment with other corpora to determine the
generalization performance of the model. The most obvious corpus to use is
the Message Understanding Conference (MUC) Corpus. MUC coordinates a
competition between researchers on a variety of semantic tasks. One of these
tasks in the nominal coreference task. Testing our system on the MUC corpus
will also provide a more competitive evaluation of the system.

Another competitive evaluation technique is to compare the performance to
a different type of model. We are currently working on an experiment using a
Support Vector Machine (SVM) algorithm(Vapnik, 1995; Burges, 1998). There
is some evidence that discriminative methods such as SVM perform better on
some classification tasks. We will use our classification metric to compare these
two systems.

Finally, there is much room for model development. As noted in the discus-
sion about the distance feature, there are many uncertainties about the current
set of features. Initially, we plan to identify the strengths of each feature and
identify any need for additional conditioning information. Following this we will
look for other features. One obvious source of information are the grammatical
cues. For example, we may find that noun-phrases modified by prepositional
phrases are never modified by prepositional phrases headed by different prepo-
sitions.

7 Conclusion

We have presented a statistical model for nominal coreference. Specifically, we
have looked at the non-pronominal cases which are more difficult than pronomi-
nal anaphora, especially in the absence of world knowledge. We have motivated
our model design through the results from the theoretical linguistics and psy-
cholinguistics literature.

In order to evaluate this model, we presented the experimental results of
an implementation of the model. The results are encouraging and suggest the
model provides a good basis for continued work in this direction.
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