

WOODSTOCK
A Wireless Stock Trading Game for

Windows CE�

Luis J. Vega

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the Degree of Master of Science

in the Department of Computer Science at Brown University

___ ____________

Signature (Prof. Maurice Herlihy, Project Advisor) Date

 2

 3

Acknowledgements

I would like to thank my project advisor, professor Maurice Herlihy, for his help in all
areas of this project. I would also like to thank Mike Coglianese and Benety Goh

for their help with wireless Aleph; and Ravi Jeyaratnam for lending me
the machines for the user study.

Also, thanks to the following people for being part of the user study: Daniel Acevedo,
Mike Coglianese, Benety Goh, Ravi Jeyaratnam, Luis Ortiz, Changhee Pyo,

Charles Thompson, and Shaoqing Shi.

Copyright © 2000, Luis J. Vega. All rights reserved.

 4

 5

Table of Contents

1. Introduction ... 7

2. User-level Functionality... 8

3. Client and Server Functionality... 10

 3.1 The Woodstock Server .. 10

 3.2 The Woodstock Client ... 11

4. Client/Server Communications.. 13

 4.1 Wireless Connection to the LAN.. 13

 4.2 Communication Managers.. 13

 4.3 Booting the Client ... 14

 4.3.1 Finding The Server... 14

 4.3.2 Initial Client Boot ... 14

 4.3.3 Subsequent Client Boots... 14

 4.3.4 Startup Protocol... 15

 4.4 Buying and Selling.. 15

 4.4.1 Buy/Sell Protocol .. 16

 4.5 On-line vs. Off-line .. 17

 4.6 Multicasting Stock Prices ... 17

 4.7 Multicasting the End of Game... 18

5. Performance... 19

6. Issues, Solutions, and Work-arounds... 20

 6.1 Wireless Connection to the LAN.. 20

 6.2 Changing IP .. 20

 6.3 Suspending the Client .. 22

 6.4 Vulnerability... 23

 6.5 Web Site Access.. 23

 6.6 Client/Server Communications... 23

 6.7 UI Issues .. 24

 6

7. User Study .. 26

 7.1 Software Problems.. 26

 7.2 Functionality... 26

 7.3 Performance .. 27

 7.4 Connectivity.. 27

8. Conclusions ... 28

Appendix A: Woodstock Files .. 31

Appendix B: User Study Questionnaire .. 33

Appendix C: Woodstock Screen Shots .. 35

Appendix D: Woodstock Web Site .. 39

 7

1. Introduction

Woodstock (Wireless Object Oriented Stock Trading On-line Commerce Kit) is a stock

trading game. Players are given $10,000 virtual dollars which they can use to buy stocks.

The stock prices displayed are actual prices of the NYSE and NASDAQ markets

(although they are only updated every 30 minutes). When the game is over, the user with

the largest profit is the winner.

Woodstock was developed for the Windows CE operating system. It is a client/server

system in which clients communicate with the server via a wireless network. The system

is written using the Java programming language and it uses the wireless version of the

Aleph toolkit1. Woodstock's source code is located in /pro/aleph/sandbox/ljv/aleph1.1.0-

ce/aleph/woodstock.

This paper is written for computer scientists who want to learn about the inner workings

of Woodstock and the issues encountered during its development. The author assumes

that the reader is familiar with the Java programming language, the Aleph toolkit, and the

Windows CE operating system. Section 2 of this paper describes Woodstock's user level

functionality. Sections 3 and 4 focus on Woodstock's system level functionality and

provide implementation information. Section 5 provides quantitative measures of the

system's performance. Section 6 describes issues encountered during the creation of

Woodstock. Section 7 presents the results of a user-study conducted to test the system

and to determine its usability. Section 8 concludes.

1 The Aleph toolkit is a collection of Java packages which supports the construction of distributed systems.

 8

2. User-level Functionality

Players are presented with a list of 20 stocks to choose from and they can buy/sell shares

at any time. The stock prices displayed are the actual prices of the NYSE and NASDAQ

markets. These prices are updated every 30 minutes during stock trading hours (i.e.,

Monday through Friday 9:30a.m. - 4:00p.m.). When the game is over, the user with the

largest profit is the winner.

Woodstock is a Client/Server system. Buy/Sell transactions are requested by the

Woodstock Client (running on the CE device) and executed in the Woodstock Server.

The client operates on two modes: On-line (connected to the Server) and Off-line

(disconnected from the Server). Woodstock displays the current mode in the bottom right

corner of its main window2. The main window consists of 6 tabbed panels. The "Stock

Prices" panel contains stock price information for all stocks that the user can buy or sell.

To buy or sell a stock the user clicks the "buy" or "sell" button for that stock. The "My

Portfolio" panel contains information about the user's account such as the stocks that he

owns and the profit/loss made on these stocks. Profitable stocks are shown in green.

Losing stocks are shown in red. The "Trade History" panel contains information about all

successfully completed buy/sell transactions. The "Failed Transactions" panel contains

information about buy/sell transactions that have failed. The "Pending Transactions"

panel contains information about pending transactions. The "About" tab contains general

information about Woodstock.

To buy a stock the user enters the number of shares he wants to buy and a price below

which he is willing to buy these shares. Conversely, to sell a stock, the user enters the

number of shares he wants to sell and a price above which he is willing to sell these

shares. A transaction is considered pending if (1) the user requests a buy/sell transaction

but it has not yet been sent to the Woodstock Server (most likely because the Woodstock

client is Off-line); or (2) the user requested a buy/sell transaction and it was sent to the

2 The reader is referred to Appendix D which contains screen shots of Woodstock's user interface.

 9

Woodstock Server but the Woodstock client has not yet received a confirmation about

this transaction from the Server. Pending transactions that were not sent to the

Woodstock server because the user was working Off-line are sent to the server the next

time a connection to the server is established. The only way a connection to the server

can be reestablished is by exiting the Woodstock client application and launching it

again. This is a limitation of the system that is explained in section 6.2.

 10

3. Client and Server Functionality

3.1 The Woodstock Server

The Woodstock Server provides information for, and handles trading transactions from,

the Woodstock clients. A server thread gathers stock prices every 30 minutes (it only

gathers the stock prices when the stock market is open since it is unnecessary to gather

prices when the market is closed) and multicasts these prices to all clients. Stock prices

are gathered by html-scraping www.pcquote.com. This web site contains free stock price

information which is delayed by 20 minutes. This site was chosen over other possibilities

because (i) the price of up to 20 stocks can be obtained with a single query and (ii) this

query can be easily formulated programmatically and included as part of the URL. For

example, in order to retrieve the stock prices for America On-Line (AOL) and Lucent

Technologies (LU), the Woodstock Server connects to www.pcquote.com/stocks/

quotedirect.php?ticker=AOL+LU and html-scrapes the resulting web page.

The server is designed to run indefinitely. In this way, users can check their portfolio and

trade stocks at any time. After the game is over, the Woodstock server remains running in

order to allow users to check the final balance of their portfolio, but it doesn't allow users

to perform any additional trading transactions.

The end of the game is determined as follows. At startup, the server is given the date and

time in which the game should be ended via a command line argument. A server thread

runs periodically, checking the current date/time against the given end of game date/time.

When the current time is equal to, or later than, the given time, the Server notifies all

(connected) clients about the end of the game.

The server stores account information for each of the game players. This information

includes the account number, player's name and e-mail address, amount of "cash"

available, and number and type of shares currently held in this account (e.g., 50 shares of

 11

Lucent, 10 shares of AOL, etc.). The account information is stored in memory. It was

also decided to store this information on disk. The disk copy is used in case the Server

unexpectedly terminates or needs to be restarted manually. If this occurs, upon restart the

server will read the account information from disk. If this information were not saved on

disk, all account information would be lost due to a server crash or a manual restart.

The Woodstock Server was written in Java using JDK 1.1.x. and is approximately 3500

lines of code. It was designed to run on any workstation connected to the Brown CS

Department's LAN.

3.2 The Woodstock Client

End-users interact directly with the Woodstock client in order to buy/sell stocks. It

maintains the following information in memory and on disk: (i) account information

(e.g., account number, which stocks are owned by this account); (ii) stock prices; (iii)

failed transactions; (iv) successful transactions; and (v) pending transactions. Items (iii)

through (v) need to be stored on disk so that the information is not lost when the client is

shut down. The stock prices (item (ii)) are read from disk only when the Client is

working off-line since this information is retrieved from the Server when the Client is

working on-line. The account information (item (i)) is always read from disk when the

Client is booted (except for the first time the Client is started). If the client is on-line, the

account number (stored as part of the account information) is used to obtain the account

information from the server. If the client is off-line, the account information read from

disk is displayed to the user. In this way, even though the client maintains a copy of the

account information, the "master" copy is maintained by the server. A malicious user

could modify the client copy (and give himself large amounts of money or large number

of shares) but the master copy is the one used to perform all buy/sell transactions,

defeating the malicious user's attempt. Furthermore, the client copy is replaced with the

server's copy every time the client connects to the server or performs a buy/sell

transaction.

 12

The Woodstock client was written in Java using JDK 1.1.x and is approximately 5400

lines of code (not including the public domain UI libraries it uses). It was written to run

on Sun's PersonalJava Runtime Environment 1.0 (which is a JVM for Windows CE).

Since the target platform for the Woodstock Client is Windows CE, the UI code was

written to look and behave as expected when run on this platform at the expense of

unexpected look and behavior on other operating systems.

 13

4. Client/Server Communications

All communications between the Client and the Server were written using the facilities

provided by the Aleph toolkit. Specifically, Woodstock uses Aleph's direct message

passing model and Aleph's event model.

4.1 Wireless Connection to the LAN

Before starting the Woodstock Client, users must decide whether to work on-line or off-

line. If they want to work on-line, their CE device needs to be connected to the CS

department's LAN via a wireless connection. In order to connect to the LAN, users must

insert their LAN card. Upon inserting the LAN card, the CE device attempts to connect to

the LAN and to obtain an IP address (using DHCP). Only after an IP address is obtained

is the Woodstock Client able to communicate with the Woodstock Server.

4.2 Communication Managers

The Woodstock Client uses Aleph's UDP communication manager. The Woodstock

server uses a custom communication manager, WoodstockCommManager, which is

based on Aleph's UDP communication manager. WoodstockCommManager differs from

Aleph's UDP communication manager in the following two ways. First,

WoodstockCommManager was written to always use port 30303, unlike Aleph's UDP

communication manager which uses whatever port is chosen by the creation of a new

Java DatagramSocket object. Second, WoodstockCommManager was designed to

periodically clean up its hash table of connection objects, whereas Aleph's UDP

communication manager doesn't perform this clean up. Given that the server was

designed to run for an arbitrary period of time, it was decided that the hash table of

3 this value is currently hardcoded but it could be easily changed to be read from a file or an argument to

the Woodstock server.

 14

connections should be cleaned up periodically (by default every 40 minutes) so that it

wouldn't grow without bound. A server thread performs this clean up by periodically

pinging all clients and removing the hash table entry for those clients who can't be

pinged.

4.3 Booting the Client

4.3.1 Finding The Server

The Server can be run on any workstation. As mentioned above, it will always use port

3030 to communicate with the clients. The clients are hardcoded to look for the server in

port 3030. The IP of the machine running the Server is not hardcoded and it is passed to

the Woodstock client as an argument.

4.3.2 Initial Client Boot

The first time a Woodstock Client is started, it prompts the user for his name and e-mail

address. It then pings the server (using the UDP communication manager's ping method).

An unsuccessful ping takes place if the client machine is not connected to the wireless

LAN (i.e., the user didn't insert the LAN card or, if the user did insert the LAN card, an

IP address was not successfully obtained). If the ping is not successful the user is asked to

connect to the LAN and the application is exited. If the ping is successful, the start-up

protocol (described in section 4.3.4) is initiated.

4.3.3 Subsequent Client Boots

When the Client is started other than the first time, it pings the Server to determine if the

server is reachable. If the ping is not successful it prompts the user whether to work off-

line or to exit the application. If the ping is successful, the start-up protocol (described

below) is initiated.

 15

If the user chooses to work offline, the Woodstock client retrieves the account and stock

information from its local files in order to display this information as it existed the last

time the user used the system. Whether working on-line or off-line, the client reads from

disk any pending transactions, successful transactions, and failed transactions in order to

populate their corresponding displays.

4.3.4 Startup Protocol

This protocol was designed so that it could be used for both the initial Client boot and

subsequent Client boots. The client starts the protocol by sending message

GetAccountAndStocksInfo_request to the Server. If the client is being booted for the first

time this message contains a flag asking the server to create a new account. Otherwise,

this message contains the account number of the client (which is stored on the client's

disk). The Server replies with message GetAccountAndStocksInfo_response which

contains two objects: one containing the client's account information and the other

containing the most recent stock prices stored in the Server. After the client gets this

response (it times out and informs the user if it doesn't get this response) it sends message

RegisterEventListeners_request to the Server. The server replies to this request with

message RegisterEventListeners_response. This message contains two aleph event

objects: the UpdateStocksInfoEvent, which is used by the server to multicast stock prices,

and the EndOfGame event, which is used by the server to multicast that the end of the

game has been reached. Upon receiving the RegisterEventListeners_response message,

the Client registers listeners for these events. Lastly, if there are any pending transactions

that need to be sent to the server, the client sends them using the Buy/Sell protocol

described in section 4.4.1.

4.4 Buying and Selling

When the user requests to buy or sell shares of a particular stock a pending transaction is

created, stored in memory, and saved to disk.

 16

If the client is working on-line, it pings the server. If the ping is successful, a status of

"sent" is given to this transaction and it is sent to the server using the Buy/Sell protocol

described below. If the ping is unsuccessful, the client changes from working on-line to

working off-line.

If the client is off-line, a status of "unsent" is given to the buy/sell transaction and a

message box informs the user that the transaction will be queued until a connection to the

server is established. Unsent pending transactions are sent to the server the next time the

client connects to the Server. Sending pending transactions upon reconnection4 is simple:

the file containing the pending transactions is read from disk and transaction requests that

don't have a "sent" status are sent to the server using the Buy/Sell protocol.

4.4.1 Buy/Sell Protocol

This protocol was designed so that it could be used for both buy and sell transactions.

The client starts by sending the message BuySellTransaction_request to the Server. This

message contains the type of transaction requested (buy or sell) and the transaction

parameters (e.g.., which stock to buy/sell, how many shares to buy/sell, price below

which to buy/price above which to sell). Upon receiving this message, the server

determines whether the transaction can be performed by checking conditions such as:

does the user have enough cash to buy the requested number of stocks? is the current

stock price below (or above) the price requested by the user? does the user own at least as

many shares of the stock that he requested to sell? If the transaction can be performed,

the Server updates the user's account information to reflect the buying/selling of the

requested shares. If the transaction can't be performed, it is considered to have failed.

Whether the transaction fails or succeeds, the Server sends a

BuySellTransaction_response message to the client informing it of the completion status

of the requested trading transaction. Upon receiving this message, the client removes the

transaction from the in-memory object (and its associated disk file) that stores the list of

pending transactions. If the transaction was successful, the client adds a corresponding

4 recall that a reconnection can only occur when the Client is shutdown and then started.

 17

entry to the in-memory object (and its associated disk file) that stores the trade history

and updates the relevant displays (e.g., the My Portfolio and Trade History panel). If the

transaction was not successful, the client adds a corresponding entry to the in-memory

object (and its associated disk file) that stores failed transactions, informs the user about

the failed transaction, and updates the relevant displays (i.e., the Failed Transactions

panel).

4.5 On-line vs. Off-line

During the startup protocol, the client pings the server. If the server can't be pinged, the

user is given the option to work off-line or to exit the application. If the user chooses to

work off-line, the client remains off-line and does not attempt to reconnect to the server

(this is discussed further in section 6.2). If the server can be pinged at startup, the client

starts in on-line mode. Whenever the user requests a buy or sell transaction, the client

pings the server before attempting to send it a message requesting the transaction. If the

ping is successful, the client remains on-line. If the ping is unsuccessful, the client

changes to an off-line status and it can never change back to an on-line status. In short,

while the client is running, (1) it can change from on-line mode to off-line mode if the

server can't be pinged when a user requests a buy/sell transaction; and (2) it can never

change from off-line mode to on-line mode.

4.6 Multicasting Stock Prices

A server thread retrieves stock prices from a web site every 30 minutes and multicasts

these prices to the clients. The multicast is done by signaling the UpdateStocksInfoEvent

(this is an Aleph event) and including as part of the signal the Java object containing the

new stocks information. Upon receiving the signal, the client sets its memory and disk

copies of the stock information to be this new object and updates its displays. Note that

all clients register a listener for the UpdateStocksInfoEvent during the startup protocol.

 18

4.7 Multicasting the End of the Game

The server multicasts the end of the game by signaling the EndOfGameEvent (this is an

Aleph event). Note that all clients register an EndOfGameEvent listener during the

startup protocol.

 19

5. Performance

This section provides general information on Woodstock's performance.

The Woodstock Client's startup time (from the moment the user double clicks the

Woodstock icon to the time the main screen is displayed) is approximately 38 seconds.

Most users describe this startup as "acceptably slow" (see section 7: user study). The time

to buy/sell a stock (from the moment the user hits the "enter" button up to the moment he

is given visual feedback on the transaction) is approximately 12 seconds, 3 of which are

due to the communications overhead between the client and the server. Most users found

this 12 second delay time to be "just fine" (see user study).

The Woodstock Server takes approximately 1.25 seconds to connect to and retrieve the

html from pcquote.com (this measure doesn't include the time to html-scrape the web

page). Parsing the html to retrieve the stock prices takes approximately 18 milliseconds.

Multicasting the stock prices takes approximately 1.3 seconds (from the time the Server

signals the event to the time the client receives the signal). A ping from the client to the

server takes approximately 61 milliseconds (from the time the client pings the server until

the client hears back from the server)

The aforementioned performance levels can't be significantly improved by algorithmic

enhancements to Woodstock due to the fact that Woodstock's performance is governed

by the speed of the processor being used, the wireless network, and the JVM on which it

runs.

 20

6. Issues, Solutions, and Work-arounds

6.1 Wireless Connection to the LAN

While developing and testing Woodstock, the author experienced a reoccurring problem

with the wireless connection to the LAN. Often times, upon inserting the LAN card, the

connection icon (in the task bar) would indicate that the CE device was successfully

connected when it was not (e.g., the client was unable to ping a workstation known to be

connected to the LAN). When this occurred, removing and re-inserting the LAN card did

not solve the problem. The author found that removing the card, soft-resetting the

machine, and then inserting the card solved the problem. The user study revealed that this

was indeed a common problem.

6.2 Changing IP

While the Woodstock client is running it is possible for the IP address of the machine in

which the client is running to change. For example, if the user removes the LAN card, the

IP address is set to 127.0.0.1. Currently, there is no way for Woodstock to detect that the

IP address changed. The problem arises because Java caches the IP address of the

machine in which it is running. If the address changes, the cache is not updated and calls

to any Java methods that retrieve the IP address (e.g., InetAddress.getLocalHost())

retrieve the cached (outdated) address.

Consider the scenario in which Woodstock is running using IP address A. Then the user

removes the card. The IP address is now 127.0.0.1. The user then re-inserts the card. The

IP address is now B. The user buys/sells a stock. Since the Woodstock client can ping the

Server, it sends it a message requesting the buy/sell transaction. Embedded in this

message is IP address A. The server processes the request no different than it would

process any other request and sends a message to the client to inform the completion

status of the request. The problem is that the server sends this message to address A (the

 21

old address) instead of address B (the new and correct address). We refer to this problem

as the changing IP problem. The scenario where the user removes the LAN card is not

the only one in which the changing IP problem can occur. It can also take place when the

machine goes out of the range of the wireless LAN and then gets back into the range.

If the Woodstock client is working on-line, there is no way for the client to determine that

the problem scenarios have occurred, and, therefore, there is no way to prevent the

problem from happening. However, the scenarios described are unlikely due to the fact

that the protocol for connecting to the LAN (DHCP) tries to use the same IP address that

it previously used. The user study provided evidence that this problem is unlikely since

the problem was never encountered during the study.

If the client is working off-line, there is a way to prevent the changing IP problem from

happening, although at the expense of some end-user functionality. To prevent the

problem, once the client is working off-line, it doesn't attempt to automatically get back

on-line. Hence, the only way that a user can connect to the server once the client is off-

line is to close the Woodstock client and launch it again. Ideally, instead, the client

would just reconnect automatically without user intervention. However, an automatic

reconnect could cause the changing IP problem. To see how the problem can occur,

consider the following scenario. The client is working off-line. This means that in a

previous attempt to ping the server, the ping was not successful. This could be because

the user started Woodstock without using the LAN card or because the user is out of

range of the wireless network. Then, the user inserts the LAN card or enters the range of

the wireless network. The CE device gets an IP address, B, and this address is different

from IP address A, which is the one it had before (if the LAN card was not inserted A =

127.0.0.1). At this point the Server is reachable, so the next time a buy/sell transaction

takes place the client pings the server and since the ping is successful, the client decides

that it has reconnected to the server and starts working in on-line mode. At this point, the

client machine's real IP address is B but Woodstock "thinks" (as explained in the

previous paragraph) that its address is A. Therefore, in order to prevent the problem, even

if the server can be pinged, Woodstock remains working off-line.

 22

An ideal solution to the changing IP problem would be to detect when the IP changes.

This could be done in various ways. Some ideas are: to override the Java implementation

of methods such as GetLocalHost() to not cache the IP address; to create a custom native

method that obtains the IP address via system calls; and to have a native demon process

(e.g., written in C++) that periodically gets the IP address and saves it to a file which is

periodically read by Woodstock. The evaluation of these, and other ideas, is an area of

interesting future work.

6.3 Suspending the Client

Another issue encountered was in regards to the "suspend" functionality of Windows CE.

Consider the scenario where the Woodstock client is on-line and the user suspends the

CE device without closing the Woodstock application or removing the LAN card. When

the user "unsuspends" the machine (turns it on) and it is still within the range of the

wireless LAN, the actual IP address of the machine usually remains unchanged. Given

that the IP address didn't change it should be possible for the user to keep working on-

line and therefore Woodstock's functionality should be no different than what it was

before the user suspended the machine. The problem is that Server might have dropped

the connection due to connections clean-up (see section 4.2 for a discussion on this clean-

up). If the server drops the connection, the next time the user requests a buy/sell

transaction, the client pings the server and the server's communication manager, as

expected, creates a new connection for this client. However, subsequent messages from

the client never get to the server. Further analysis is needed to determine the exact cause

of the problem. It is interesting to note that this problem never occurred during the user

study. The study revealed that users always closed the Woodstock client before

suspending their machines.

 23

6.4 Vulnerability

Woodstock is vulnerable to client and server crashes as well as network partitioning. It

could be made more robust by implementing atomicity of its buy/sell transactions. This

would be an interesting area of future research. Aleph's current transaction model could

be extended to support atomic distributed transactions (among different Processing

Elements) and Woodstock could be modified to use these Aleph transactions to

implement its buy/sell transactions.

6.5 Web Site Access

The Woodstock Server accessed a web site every 30 minutes to retrieve stock

information. On average, it took approximately 1.25 seconds to connect to and retrieve

information from the web site (not counting html-scraping time). However, the user study

revealed that sometimes the Server would wait a seemingly infinite amount of time when

attempting to connect and retrieve data from the web site. Further analysis needs to be

performed to determine the exact cause of this problem. A simple solution would be to

add a time out period after which the data retrieval is cancelled and then restarted. We

note that this problem can be recreated, but there is no certainty as to when it will occur.

That is, the Server needs to be running for a few days before the problem occurs. During

the user study the problem was "fixed" by manually stopping and restarting the server.

6.6 Client/Server Communications

The user study revealed that sometimes during the startup protocol, the client would ping

the server and the server's communication manager would create a connection object for

the client (as expected), but the ping would be unsuccessful (i.e., it timed out). The author

found that this problem is not unique to the wireless environment as it was initially

thought (i.e., running a Woodstock client on a workstation yielded the same problem).

 24

Further analysis is needed to determine the cause of this problem. We note that, similar to

the problem discussed above, this problem can be recreated but there is no certainty as to

when it will occur. That is, the Server needs to be running for a few days and the client

needs to connect and disconnect a few times before the problem occurs. This problem

caused users to not be able to connect to the Woodstock Server, but after trying to

connect again for a few times (by restarting the client application), users were able to

connect.

6.7 UI Issues

The UI was developed using two libraries obtained from the World Wide Web5. These

libraries were initially tested to make sure they looked and behaved as expected when run

on Windows CE. The UI was coded on Windows 95 as the look and feel of a Java

application run on Windows CE is very similar to the look and feel when run under

Windows 95. One issue encountered was that the mouse-clicked AWT event was not

triggered most of time. Due to this problem, a user had to tap on a UI button multiple

times before the expected behavior was achieved. The author noted that a mouse-pressed

event was always triggered when the user tapped the screen. Hence, the solution was to

always use the mouse-pressed event instead of the mouse-clicked event. A second issue

was that a key-up event was being triggered when it shouldn't have been (e.g. when the

user never pressed a key). The work-around was to remove the logic for handling this

event from the code (this logic was not being used by Woodstock but it existed as part of

one of the libraries used). A third issue was that mouse-pressed events were being

triggered on the incorrect AWT components. Specifically, when tapping on a table's

header component6, a mouse-pressed event was triggered in the table's data component.

Conversely, when tapping on the table's data component, a mouse-pressed event was

triggered in the table's header component. The problem was resolved by looking at the x

5 these libraries were (1) Table Bean (from http://www.datacomm.ch/tstuder/resources/index.html) and (2)

l2fprod (from http://members.nbci.com/l2fprod/html/packages.html)
6 The display tables that are extensively used in Woodstock are implemented using one AWT component
for the table header and a different AWT component for the table data.

 25

and y coordinates of the mouse-pressed event and using them to infer the actual

component on which the tap occurred. Note that these issues were all specific to

Windows CE (and Personal Java) as the same sequence of events that caused the

incorrect behaviors in Windows CE worked as expected in Windows 95.

 26

7. User study

Eight users played the Woodstock game for a period of two weeks. The purpose of the

user study was twofold: to test the system and to determine its usability. The author

periodically monitored the Server's status during the test to gather information about its

behavior. Each user was given a questionnaire to fill out during the game and/or after the

completion of the game, but only 7 users completed it. Appendix C contains this

questionnaire. The author maintained verbal communication with the users during the

testing period in order to gather feedback in addition to that in the questionnaire. Despite

experiencing some problems (described below), all users were able to successfully use

the application over the two week period.

7.1 Software Problems

On the client side, one user reported that the splash screen sometimes remained displayed

for a "long time" after exiting the application when a connection to the server couldn't be

established at startup. One user also reported that, on one occasion, the stock prices

stored in the client's disk (which are displayed when the client is working off-line) were

not as current as they should have been (they should be as current as the most recent

stock prices obtained from the Woodstock Server). Further analysis needs to be done in

order to find the exact cause of these problems. On the server side, two issues were found

which were described in sections 6.5 and 6.6.

7.2 Functionality

All users found Woodstock to be easy to learn and found the buying/selling process

intuitive, although two users initially thought that when buying/selling a stock

Woodstock would wait until the stock had reached the requested price before performing

the transaction. All users commented positively on the "look" of the UI and its ease of

use. Most users found this "look-and-feel" to be what they liked most about Woodstock.

 27

As for what users disliked the most, a majority of users mentioned the initial triple screen

drawing of the tab displays7.

All users agreed that the information displayed was useful (i.e., none of the information

was unnecessary). When asked for additional information that they would have liked to

see, most users wanted more stock data (e.g., stock prices at closing time from the

previous day, a plot of stock prices). As far as additional functionality, the two most

requested items were: (1) Woodstock should go from off-line to on-line automatically

(without having to restart the application) and (2) when buying/selling a stock, the user

should be able to ask Woodstock to wait until the stock reaches the requested price before

performing the transaction.

7.3 Performance

Six users found the performance when buying/selling stocks to be "just fine" and one

found it to be "acceptably slow". Five users found the performance when starting up

Woodstock to be "acceptably slow" and two found it to be "unacceptably slow". As far as

navigating through the tabbed panels, five users found it acceptably slow and two users

found it to be just fine. Ideally, the system's performance would be perceived as "just

fine" by all users. These results indicate that, even though the performance is not ideal,

most users find it to be acceptable which suggests that the system is usable from a

performance standpoint.

7.4 Connectivity

As mentioned in section 6.1, the study revealed that the problem of not connecting to the

LAN even after inserting the LAN card was common (all users experienced it). The

author found this out via verbal communication with the users. The user test also revealed

7 the author was not able to fix this problem despite investing significant time and effort. The problem
seems to be related to the way in which AWT Paint messages are generated and processed in one of the
public domain UI libraries used in Woodstock.

 28

that even if the client machine was connected to the LAN, sometimes a connection to the

server couldn't be establish (this is a problem with Woodstock that is explained in section

6.6). The author found this problem by monitoring Woodstock's behavior during the user

study. The questionnaire failed to make the distinction between not being able to connect

to LAN vs. not being able to connect to the Woodstock Server and therefore it wasn't

very useful in obtaining information about the ability to connect to the server.

As far as maintaining the connection to the server (i.e., being able to ping the server

before performing a buy/sell transaction), most users never lost the connection, one user

lost the connection most of the time and one user lost it some of the time. These results

are in accordance with the fact that radio frequency based wireless networks are known to

be subject to interference.

 29

8. Conclusions

In discussing the conclusions, it is helpful to decompose Woodstock into two different

(yet related) levels: the end-user stock trading game and the technical machinery behind

this end-user functionality.

From the standpoint of the stock trading game, the user study suggests that Woodstock's

functionality and user interface are very effective in allowing users to play the game. The

study also suggests that, even though the performance is not perceived as ideal, the

current performance levels are not deterrents to the use of the application.

From the technical standpoint, the design, development, and testing of Woodstock was

found to be a valuable experience in the creation of client/server systems in general, and

in the creation of systems written in Java using wireless Windows-CE based clients in

particular.

The issues found involving atomicity of transactions, handling Windows CE's suspend

mode, and handling an IP address that can change while the client is running, are

common to any distributed wireless system using Windows CE based clients. The study

of these issues is applicable to a wide range of projects and are considered by the author

to be important and interesting areas of future work.

 30

 31

Appendix A: Woodstock Files

The following is a list of the files used by Woodstock.

Woodstock Server

stocksinfo file - contains price information for each of the stocks available for the user to

transact: the current stock price, the price at which the stock started when the market was

opened, the lowest price for the day, and the highest price for the day.

accountsinfo file - contains the account information for all client accounts. Each account

contains an account number, user name, e-mail address, amount of "cash" available, total

amount of cash invested, and the number and type of shares currently held in this

account.

accountsbalance file - this is a human readable file which contains information about the

client accounts. The accounts are sorted descendingly by profit made. This file is created

when the end of the game is reached and is used by the Woodstock administrator to see

the profits made by each of the Woodstock players.

hraccountsinfo file - this is a human readable file which contains information about the

client accounts. It is updated every time a client account is modified (for example, when a

buy transaction takes place). This file was created so that the Woodstock administrator

can monitor the status of the accounts at any point in time.

 32

Woodstock Client

stocksinfo_client file - Conceptually, this is the client's copy of the server's stockinfo file.

accountinfo_client file - Conceptually, this is the client's copy of the part of the server's

accountinfo file that contains information for this client's account.

tradehistory file - contains the information needed for the trade history display.

pendingtrans file - stores the client's pending transactions (which are displayed in the

pending transactions tab).

failedtrans file - contains the information needed for the failed transactions display.

 33

Appendix B: User Questionnaire

Functionality

1. Circle your answer. On a scale from 1 to 5 how easy was it to learn how to use

Woodstock? (1 = easiest, 5 = hardest) 1 2 3 4 5

2. Circle your answer. On scale from 1 to 5, how intuitive was the process of buying a

stock? (1 = very intuitive, 5 = very unintuitive) 1 2 3 4 5

3. Circle your answer. On scale from 1 to 5, how intuitive was the process of selling a

stock? (1 = very intuitive, 5 = very unintuitive) 1 2 3 4 5

4. Did the software behave unexpectedly when buying a stock? If so, how?

5. Did the software behave unexpectedly when selling a stock? If so, how?

Performance

In the following questions please circle 1, 2 or 3.
 1 = unacceptably slow (it is so slow that it is unusable)
 2 = acceptably slow (it is slow but I can live with it)
 3 = just fine

6. How was the performance when buying a stock? 1 2 3
7. How was the performance when selling a stock? 1 2 3
8. How was the performance when starting up Woodstock? 1 2 3
9. How was the performance when navigating through the tabbed panels? 1 2 3

Connectivity

10. Circle your answer. When starting Woodstock and expecting it to connect to the
Woodstock Server:

 1 = I was always able to connect to the server
 2 = most of the time I was able to connect to the server
 3 = most of the time I was not able to connect to the server

 34

11. While Woodstock was running, how often did you lose your connection to the
Woodstock Server?

 1 = never
 2 = most of the time I did not lose the connection to the server
 3 = most of the time I lost the connection to the server

General

12. What did you dislike most about Woodstock?

13. What did you like most about Woodstock?

14. Was there any information that you would have liked to see displayed that wasn’t

displayed?

15. Was there any information that was displayed but that you didn't need at all?

16. What functionality would you like Woodstock to have that it doesn't have now?

17. Did you experience any problems with Woodstock that completely prevented you

from using it?

18. Additional comments. (comments are more than welcome!)

35

Appendix C: Woodstock Screen Shots

 Appendix C: Woodstock Screen Shots

 36

 Appendix C: Woodstock Screen Shots

 37

 Appendix C: Woodstock Screen Shots

 38

39

Appendix D: Woodstock Web Site

Appendix D: Woodstock Web Site

 40

Appendix D: Woodstock Web Site

 41

Appendix D: Woodstock Web Site

 42

