
STATISTICAL METHODS OF MOTION
ESTIMATION FROM OMNI-DIRECTIONAL

IMAGE SEQUENCES

by

Feng Chen

B. S., Zhongshan University, 1990

Submitted in partial fulfillment of the requirements

for the Degree of Master of Science in the Department

of Computer Science at Brown University

Providence, Rhode Island

May 2001

Abstract

Recent research has proposed estimating structure from motion using omni-directional image se-

quences which facilitates accurate estimation. This project investigated the geometry involved in

non-linear projections, implemented various algorithms to perform coordinate/optical flow projec-

tion and 3-D motion parameter estimation, and proposed a direct method to compute motion on

the omni-directional images.

This project by Feng Chen is accepted in its present form by the Department of Computer Science

as satisfying the research requirement for the degree of Master of Science.

Date
Michael Black, Director

ii

Acknowledgements

I would like to thank my advisor Dr. Michael Black for his constant guidance and support, and Dr.

Seth Teller of Massachusetts Institute of Technology for a helpful discussion and providing camera

information and omni-directional image sequences.

iii

Chapter 1

Introduction

1.1 Background

The problem of determining world structure and motion from a sequences of images is an active

field in computer vision. Information about the structure and the motion is encoded into the

image sequences. The interpretation of such information consists of forming object hypothesis and

recovering the motion parameters. The results can be used in many applications such as 3-D image

reconstruction [10] and robot navigation [11].

The common approach to computing motion from image sequences includes two phases. The

first phase is to compute the optical flow field (velocity vectors) from the image sequences. The

second phase is to analyze the optical flow field and determine the motion parameters.

The interpretation of the optical flow is the main focus of this project. Most approaches that

have been previously investigated involve estimations on perspectively projected images. Researches

done by J. Gluckman and S. K. Nayar [8] proposed estimating motion parameters on a spherical

surface. This project verifies the spherical approach and also proposes direct estimation on the

omni-directional image and spherical surface.

1.2 Previous Works

1.2.1 The Brightness Constancy Assumption

The brightness constancy assumption is to assume that the brightness of a small surface patch (esp.

a pixel) is not changed by motion. It is a fundamental constraint in motion estimation for data

conservation. Let I(x, y, t) be the image intensity or brightness at point (x, y) at time t. Expanding

the derivative of the brightness I with respect to t leads to

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0 (1.1)

Let (u, v) denote the horizontal and vertical instantaneous velocity of point p, dx
dt and dy

dt , and

1

2

Ix, Iy, It denote the partial derivatives of the brightness function with respect to x, y and t. The

brightness constancy assumption can be written as

Ixu + Iyv + It = 0 (1.2)

(Ix, Iy) forms the local brightness gradient vector.

The data conservation error can be formulated as the sum-of-square differences over all regions

(points) in the image. Let E be the error function, it leads the following data conservation constraint:

E(u, v) =
∑

(Ixu + Iyv + It)2 (1.3)

where the summation is over all pixels in the image. This is usually called “Gradient-Based Method”.

Another way to derive brightness constancy constraint is the so-called “Correlation Method.”

The brightness constancy assumption can be expressed as:

I(x, y, t) = I(x + uδt, y + vδt, t + δt) (1.4)

assuming image velocity is approximately constant in the small neighborhood. The data conservation

error function is

E(u, v) =
∑

(I(x, y, t)− I(x + uδt, y + vδt, t + δt))2 (1.5)

Note that the above equation becomes 1.3 when I(x + uδt, y + vδt, t + δt) is approximated by

Taylor expansion and dropped the higher order terms.

As a special case, consider affine flow. Let

u = a0 + a1x + a2y (1.6)

v = a3 + a4x + a5y (1.7)

be the model of image flow of a region or the entire image. Regression methods can be easily applied

to the parametric form of the brightness constancy constraint and find parameters a0, a1, ..., a5 that

minimize the error function.

However, the brightness constancy assumption is often violated in the real world, primarily due

to the existence of multiple motions. There are many proposals to work out this problem, as shown

in the sub-sections below.

1.2.2 Motion Under Planar Perspective Projection

Consider the motion of a world point in the Cartesian coordinate system. Let P = (X, Y, Z) denote

the coordinates of this point at time t, and P ′ = (X ′, Y ′Z ′) the coordinates at time t′. The motion

of this point can be modeled as first rotating about the three axes and then translating along the

three directions:

P ′ = RP + T (1.8)

3

where

R =




1 −Ωz Ωy

Ωz 1 −Ωx

−Ωy Ωx 1


 (1.9)

is the approximated rotation matrix when the rotation is small. And

T =




Tx

Ty

Tz


 (1.10)

is the translation vector along three directions.

Bruss and Horn [4] developed a method to estimate motion using images through a perspective

camera. Consider the projection of a world point P = (X, Y, Z) to a image plane at the distance of

1 in Figure 1.1 , the coordinate of the image point is p = (x, y, 1). The perspective projection in the

Cartesian coordinate system can be described as:

x =
X

Z
(1.11)

y =
Y

Z
(1.12)

Let p = (x, y) and p′ = (x′, y′) denote the projection of P and P ′, it is easy to compute the

location of p′ given the rotation matrix and translation vector:

x′ =
X ′

Z ′ =
x− Ωzy + Ωy + Tx

Z

−Ωyx + Ωxy + 1 + Tz

Z

(1.13)

y′ =
Y ′

Z ′ =
y + Ωzx− Ωx + Ty

Z

−Ωyx + Ωxy + 1 + Tz

Z

(1.14)

Let ∆x and ∆y denote the displacements on x and y directions:

∆x = x′ − x =
−Ωxxy + Ωy(1 + x2)− Ωzy + Tx−Tzx

Z

−Ωyx + Ωxy + 1 + Tz

Z

(1.15)

∆y = y′ − y =
−Ωx(1 + y2) + Ωyxy + Ωzz + Ty−Tzy

Z

−Ωyx + Ωxy + 1 + Tz

Z

(1.16)

If the translation on z direction Tz is far smaller than the depth of the point Z, the field of view

is not very large, and the rotation is small, the above equations can be approximated as:

∆x = −Ωxxy + Ωy(1 + x2)− Ωzy +
Tx − Tzx

Z
(1.17)

∆y = −Ωx(1 + y2) + Ωyxy + Ωzz +
Ty − Tzy

Z
(1.18)

Now let τ = (τx, τy, τz) and ω = (ωx, ωy, ωz) denote the instantaneous velocity of translations

and rotations of a rigid object in the scene related to the camera, i.e., τ ← dT/dt, ω ← dΩ/dt, then

4

x

z

y

P=(X, Y, Z)

1

p=(x, y, 1)

0

Figure 1.1: View-centered coordinate systems. The world point P = (X, Y, Z) is projected onto the
image plane as point p = (x, y, 1)

the velocity of the projected point p = (x, y) on the image is exactly:

dx

dt
= −ωxxy + ωy(1 + x2)− ωzy +

τx − τzx

Z
(1.19)

dy

dt
= −ωx(1 + y2) + ωyxy + ωzz +

τy − τzy

Z
(1.20)

One can observe that the velocity is a linear function of translational and rotational parameters

τ and ω. Since the displacement forms of T and W are not used in this project, in the rest of this

report T and W will be used to denote τ and ω.

1.2.3 Robust Estimation and Multiple Motions

It is easy to see that in the above formulations of the brightness conservation constraint, a single

motion is assumed. However, in the real world multiple motions usually exist in a single frame.

5

While it is possible to shrink the field of view so that only one motion is included, a smaller region

is more susceptive to noise. This is often referred as “the Generalized Aperture Problem:” [9]

1. The field of view must be large enough to sufficiently constrain the solution;

2. The field of view must be small enough to avoid the existence of multiple motions.

In addition, the spatial coherence constraint also suffers from the same problem. It assumes

that the flow changes gradually within a small neighborhood. However, multiple motions in the

same frame create boundary discontinuity, which violates the smoothness assumption of the spatial

coherence constraint.

There are many approaches to dealing with such conflict. In [5], Adiv used an approach that

consisted of two stages. In the first stage the flow field is partitioned into connected segments of flow

vectors, where each segment is consistent with a rigid motion of a roughly planar surface. In the

second stage, segments are grouped under the hypothesis that they are introduced by a single, rigid

moving object. The hypothesis is tested by searching for 3-D motion parameters that are compatible

with all the segments in the corresponding group.

Jepson and Black [2] assumed a layered representation of and modeled the constraint lines within

a region as a mixture of distributions corresponding to the different layers. Then a modified version

of the EM-algorithm is used to compute a maximum likelihood estimate for the various motion

parameters.

In [9], Black and Anandan developed a framework based on robust estimation that addresses vio-

lations of the brightness constancy and spatial smoothness assumptions caused by multiple motions

and applied this framework to a number of common optical flow formulations: area-based regression,

correlation, and regularization with motion discontinuities.

1.2.4 Motion Computation from Optical Flow

Most motion estimation methods comprise two phases: the computation of optical flow and the

extraction of motion parameters. Under perspective projection, the motion equations are

u =
dx

dt
= −Ωxxy + Ωy(1 + x2)− Ωzy +

Tx − Tzx

Z
(1.21)

v =
dy

dt
= −Ωx(1 + y2) + Ωyxy + Ωzz +

Ty − Tzy

Z
(1.22)

where U is the 2× 1 vector to denote optical flow of a point on the image plane, T and Ω are 3× 1

motion parameter vectors, p is the 3 × 1 vector of the image point (z = 1) and Z the depth of the

point in the world.

By using vectorial notation, it can be re-written as

U =

[
u

v

]
=

[
1 0 −x1

0 1 −x2

]
(
T

Z
+ Ω× p) (1.23)

6

Bruss and Horn [4] derived a depth independent constraint to remove depth Z from the above

equation and obtained a bilinear constraint on T and Ω on every pixel. Later MacLean and Jepson

[17] derived the same bilinear constraint by applying different manipulation:

T T (p× U) + (T × p)T (p× Ω) = 0 (1.24)

From the above equation a least squares estimate of rotation can be obtained as a function

of translation. Substituting this rotation estimate back into the bilinear constraint gives a non-

linear constraint on translation. The translation can be estimated by minimizing the non-linear

constraint over all velocity vectors. Since both depth and translational parameter are unknown, the

translational parameter T can only be recovered up to a scale. Without losing generality, constraint

|T | = 1 is used in the estimation algorithm.

Jepson and Heeger [1] developed another linear algorithm which is called linear subspace method.

Given optical flow sampled at N discrete points in the image, one can construct a set of constraint

vectors τi

τi =
N∑

k=1

cik(Uk × pk) (1.25)

such that τi and T are orthogonal to each other:

τi · T = 0 (1.26)

The choice of ci = [ci1ci2...cik]T should suffice that they are orthogonal to all quadratic poly-

nomials of xk and yk. For N discrete points in the image, there are N − 6 linear constraints. The

estimate of T is the eigenvector corresponding to the smallest eigenvalue of
∑

τiτ
T
i .

Soatto and Brockett [15] investigated the structure from motion problem under the condition

that large noise is present. Similar to Bruss and Horn’s work, they developed a bilinear projection

method that iteratively estimates rotation and translation. The difference from Bruss and Horn’s

method is that they used a spherical projection model. The outline of this algorithm can be found

in Chapter 4 of this report.

Tian et. al. [16] compared several popular approaches for egomotion computation and obtained

quantitative benchmarks on their performance.

1.2.5 Motion Estimation under Non-Linear Projection

One problem in motion estimation from optical flow is the sensitivity to noise in the second step.

Despite the tradeoffs as indicated in the Generalized Aperture Problem, a large field of view always

facilitates motion estimation. With omni-directional image sequences, the motion field contains

global patterns that do not always manifest themselves in a small field of view, such as the focus

points of expansion and contraction. By using global patterns, the estimation tends to be steadier

and more accurate.

Another problem with planar perspective projection is the ambiguity of translational and rota-

tional fields. As illustrated in Figure 1.2, translation parallel to the image plane and rotation about

7

the vertical axis produce similar motion fields when the field of view is small. They are virtually

indistinguishable in the presence of noise. However, with large field of view such as a spherical

surface they appear to be quite distinct.

Figure 1.2: Ambiguity of flow field. (a) is translation flow being projected onto a sphere and a plane
parallel to the direction of translation. (b) is rotation flow being projected onto a sphere and a plane
parallel to the direction of rotation. (Figure from [8])

For this reason several methods have been proposed to compute motion using large field of view

or under non-linear projections. Yen and Huang [6] mapped 2-D image onto a unit sphere and

derived a non-iterative solution based on geometry and algebraic manipulation. Yagi et. al. used a

hyperbolic omni-directional camera to compute motion under the assumption that the camera moves

in a horizontal plane. Gluckman and Nayar [8] developed a method to map the image velocity vectors

to a sphere and then estimate apply the existing egomotion algorithm on the spherical surface.

1.3 Objective of the Research

The objective of this thesis research is to understand various methodologies and algorithms in the

area of motion estimation, study and investigate motion estimation under non-linear projection

models, formulate and experiment with new methods that could contribute to this subject.

Chapter 2

The Projection Models

2.1 Omni-Directional Cameras

It is well know in computer vision that increasing the field of view enhances the capability of many

vision applications such as motion estimation and 3-D image reconstruction. It has been further

proved that uncertainty in motion estimates depends on the shape of the image plane. A spherical

image plane provides lower ambiguity than a planar image plane as shown in Figure 1.2.

Other applications in which conventional cameras do not fit very well include robotic navigation,

video surveillance, immersive telepresence, video conferencing, mosaicing, and map building. For

example, in urban scene survey [10], a long baseline is usually assumed. With a conventional camera

it may require many more images to be captured than that with an omni-directional camera. Another

example is autonomous vehicle navigation, where an omni-direction camera is used to capture a wide

range of traffic situation and compute relative motions.

Omni-directional vision can be realized with rotating imaging systems, dioptric systems or cata-

dioptric systems. Rotating imaging systems revolve traditional cameras about the camera pinhole

and the stitch the images together to produce a panoramic view [7] [3]. It is comparable to a common

technology in photography, where photographers rotates camera on a tripod and shoots consecutive

frames. In the motion estimation domain, however, this method does help because it essentially

captures static scenes.

Dioptric systems use fish-eye lens to increase the field of view. Fish-eye lens have very short focal

length and when used with conventional camera, can capture a field of view that is approximately

a hemisphere. However, one intrinsic problem of fish-eye lens is the hardness to design one with a

single center of projection. Although some of them have small viewpoint locus, the acquired image

does not permit the construction of a totally distortion-free perspective image of the scene.

Catadioptric systems are combinations of mirrors and lens. They use a reflecting surface to

enhance the field of view and perspective lens to capture the image. A number of methods have

been proposed to build practical sensing systems. Nalwa [12] proposed aligning four planar mirrors

8

9

in the shape of a pyramid and achieving a single center of projection; Nayar [13] implemented a

parabolic based omni-directional imaging system with parabolic mirror, an orthographic lens system

and a CCD camera.

2.2 Parabolic Projection

Figure 2.1 illustrates the optical system of a parabolic omni-directional camera. The focal point of

the parabola lies on the origin of the coordinate system. Axis z is the axis of the parabola. Consider

a world point P = (X, Y, Z) heading to the focal point of the parabolic mirror, intersecting the

mirror surface at point p̂ = (x̂, ŷ, ẑ), then being reflected and falling onto the image plane at point

p = (x, y). The geometric properties of a parabola cause a ray pointing to the focal point to be

reflected parallel to the axis of the parabola. Let θ denote the polar angle between the incoming

ray and the z axis and φ the azimuth angel. The relation between θ and the z coordinate of the

reflecting point p̂ is

tan θ =
ρ

ẑ
(2.1)

where

ρ =
√

x̂2 + ŷ2 (2.2)

is the distance between the coordinate origin and point p̂. Coordinate ẑ can be solved [14] easily

through the differential equation that describes the parabolic surface:

ẑ =
h2 − ρ2

2h
(2.3)

It would be convenient to express p̂ in spherical coordinate. One important property is that the

spherical coordinate separates the depth of a world point from other two coordinates, which would

be shown useful later in motion estimation.

θ = arccos
ẑ√

x̂2 + ŷ2 + ẑ2
(2.4)

φ = arctan
ŷ

x̂
(2.5)

ρ =
√

x̂2 + ŷ2 =
h

1 + cos θ
(2.6)

The inverse of the above equations can be solved and expressions for x̂, ŷ obtained as:

x̂ =
h sin θ cosφ

1 + cos θ
(2.7)

ŷ =
h sin θ sin φ

1 + cos θ
(2.8)

Point p = (x, y) on the image plane has the same coordinate values as point p̂, assuming an

orthographic projection from the parabola to the image plane:

x = x̂ (2.9)

y = ŷ (2.10)

10

Given the above geometry one can figure out the projection of a 3-D object to the omni-directional

image plane. Consider a point in the world P = (X, Y, Z), which can be written in spherical

coordinates:

ρP =
√

X2 + Y 2 + Z2 (2.11)

θP = arctan
√

X2 + Y 2

Z
(2.12)

φP = arctan
Y

X
(2.13)

Point P can be mapped onto a point P0 on the omni-directional image plane:

P0 = (x0, y0) (2.14)

where

x0 =
h sin θP cosφP

1 + cos θP
(2.15)

y0 =
h sin θP sinφP

1 + cos θP
(2.16)

2.3 Spherical Projection

The projection of a world point P = (X, Y, Z) onto a unit sphere can be best described using

spherical coordinates. Assuming the center of the unit sphere is also the origin of the Cartesian

coordinates, equations for converting between Cartesian and spherical coordinates are

ρ =
√

X2 + Y 2 + Z2 (2.17)

θ = arctan
√

X2 + Y 2

Z
(2.18)

φ = arctan
Y

X
(2.19)

and

X = ρ sin θ cosφ (2.20)

Y = ρ sin θ sinφ (2.21)

Z = ρ cos θ (2.22)

Let P̂ = (ρ̂, θ̂, φ̂) be the projected point on the sphere, the relations between this point and the

world point P are

ρ̂ = 1 (2.23)

θ̂ = θ (2.24)

φ̂ = φ (2.25)

11

and

X̂ =
X√

X2 + Y 2 + Z2
(2.26)

Ŷ =
Y√

X2 + Y 2 + Z2
(2.27)

Ẑ =
Z√

X2 + Y 2 + Z2
(2.28)

(2.29)

The Cartesian relation is usually written as the simple form:

P̂ =
P

‖P‖ (2.30)

where ‖P‖ is the depth of the world point.

The geometry of spherical projection is illustrated in Figure 2.2.

12

x

y

z

0

P=(X, Y, Z)

p=(x, y)

φ
θ

y

p=(x, y, z)

x

Figure 2.1: Parabolic projection. The world point P = (X, Y, Z) is first projected onto the parabolic
surface at point p̂ = (x̂, ŷ, ẑ), then reflected image plane as point p = (x, y)

13

P=(X, Y, Z)

0

P=(X, Y, Z)

z

y

x

θ

ρ

1

φ

Figure 2.2: Spherical projection. The world point P = (X, Y, Z) is projected onto the spherical
surface at point P̂ = (X̂, Ŷ , Ẑ).

Chapter 3

Motion Estimation with

Omni-Directional Images

There are three approaches to computing motion parameters from a sequence of omni-directional

images:

1. Projecting images onto a unit sphere, computing optical flow, and estimating motion param-

eters.

2. Computing optical flow on the omni-directional images, projecting the images as well as the

optical flow onto the unit sphere, and estimating motion parameters.

3. Formulating the error function for the brightness constancy constraint, estimating motion

parameters that minimize this error function. This is called the direct method.

Omni−image

100 200 300 400 500

50

100

150

200

250

300

350

400

Spherical−image

50 100 150 200

20

40

60

80

100

120

140

160

180

200

Figure 3.1: The omni-directional image and its projection on the spherical surface.

Figure 3.1 shows one frame of the original omni-directional image and the projected spherical

image. Figure 3.2 is the original and mapped optical flow in both horizontal and vertical directions.

14

15

The mapped flow also includes z direction for depth change velocity because it lies on a 3-D sphere.

3.1 Estimation by Projecting the Optical Flow onto the Sphere

In section 1.2.5 the advantages of using omni-directional image and computing motion under non-

linear projection have been discussed. One such approach is to compute optical flow on the omni-

directional image plane and then map it to a unit sphere. Motion estimation is performed on the

surface of this unit sphere. There are several reasons to do this:

1. One problem to compute motion parameter is that T is coupled with scene depth ||P ||. By using

epipolar constraint, the depth of the scene point can be removed from the motion equation [8].

2. As indicated in 1.2.5, on the spherical surface the ambiguity between translational and rota-

tional motion can be better distinguished.

3. Existing ego-motion algorithms can be easily adapted to spherical projection.

Motion estimation on the sphere has two divergences as indicated in the beginning of this chapter.

In [8], the author believed that projecting the image onto the spherical surface introduced artifacts.

Note that most of the point on the sphere do not map to exact pixels on the omni-directional

image plane. Instead, they fall into some places in the middle. Interpolation is usually necessary to

obtain relatively accurate intensity values. Even though, the mapping is considered as some kind

of approximation. In approach 1 of the above discussion, the optical flow will be computed on this

approximated mapping. On the other hand, in approach 2 the projection of motion field does not

have such problem simply because only those vectors existed on the omni-directional image plane

will be mapped and used to compute motion parameters.

Figure 3.3 shows the geometry of the projection. Recall in Chapter 1 of this report, the instan-

taneous velocity of a 3-D world point P = (X, Y, Z) is described as rotations about three axes and

translations along the three directions:

dP

dt
= −T − Ω× P (3.1)

where Ω and T are motion parameters. Chapter 2 shows that the spherical perspective projection

of P is

P̂ =
P

‖P‖ (3.2)

where P̂ = (X̂, Ŷ , Ẑ) is the coordinates of the projected point on the sphere and

‖P‖ =
√

X2 + Y 2 + Z2 is the depth of the scene point. Taking derivatives of 3.2 with respect to t

and substituting in 3.1 leads to the following motion equation [8]:

U(P̂) =
1
‖P‖((T · P̂)P̂ − T)− Ω× P̂ (3.3)

where U(P̂) is the velocity of point P̂ on the spherical surface.

16

In the above equation, P̂ and U(P̂) can be obtained by projecting the coordinates and velocity

of the corresponding point on the omni-directional image onto the unit sphere. Once P̂ and U(P̂)

are known, T , Ω and depth ‖P‖ can be estimated using some optimization methods. Let p = (x, y)

denote the coordinates of the omni-directional image point (2-D point for short), and (u, v) be the

associated velocity. The polar angel θ and azimuth angel φ can be determined as follows:

θ = 2 arctan

√
x2 + y2

h
(3.4)

φ = arctan
y

x
(3.5)

Since the unit sphere has a radius of 1, the coordinates of the corresponding point on the sphere

are:

X̂ = sin θ cosφ (3.6)

Ŷ = sin θ sin φ (3.7)

Ẑ = cos θ (3.8)

Mapping the velocity vector consists two sub-steps. First, the coordinate system is changed to

spherical:

dX̂

dt
=

∂X̂

∂θ

dθ

dt
+

∂X̂

∂φ

dφ

dt
= cos θ cosφ

dθ

dt
− sin θ sin φ

dφ

dt
(3.9)

dŶ

dt
=

∂Ŷ

∂θ

dθ

dt
+

∂Ŷ

∂φ

dφ

dt
= cos θ sin φ

dθ

dt
+ sin θ cosφ

dφ

dt
(3.10)

dẐ

dt
=

∂Ẑ

∂θ

dθ

dt
+

∂Ẑ

∂φ

dφ

dt
= − sin θ

dθ

dt
(3.11)

Second, the spherical coordinate system is changed to the (x, y) coordinates on the image plane:

dθ

dt
=

∂θ

∂x

dx

dt
+

∂θ

∂y

dy

dt
=

2hx√
x2 + y2(h2 + x2 + y2)

dx

dt
+

2hy√
x2 + y2(h2 + x2 + y2)

dy

dt
(3.12)

dφ

dt
=

∂φ

∂x

dx

dt
+

∂φ

∂y

dy

dt
= − y

x2 + y2

dx

dt
+

x

x2 + y2

dy

dt
(3.13)

It is easy to use a Jacobian matrix to simplify the transformation equations. The Jacobian relates

partial derivatives in one coordinate system to those in another. Let

J1 =




2hx√
y2+x2(h2+y2+x2)

2hy√
y2+x2(h2+y2+x2)

− y
y2+x2

x
y2+x2


 (3.14)

and

J2 =




cos θ cosφ − sin θ sin φ

cos θ sinφ sin θ cosφ

− sin θ 0


 (3.15)

17

The mapping of the velocity vector can be written as:

U(P̂) = J2J1[u v]T (3.16)

With the knowledge of P̂ and U(P̂), the ego-motion problem is to estimate Ω and T such that

they minimize some error function. An algorithm that outlines the above procedure is as follows.

1. For each image point p=(x,y)

(a) Compute θ, φ for the ray

(b) Compute X̂, Ŷ and Ẑ

(c) Compute Jacobian matrices J1, J2

(d) Compute velocity vector U on the sphere

2. Invoke estimation method to determine the unknown parameters T and Ω from P̂ and U(P̂).

3.2 Estimation by Projecting the Image onto the Sphere

In the above section the optical flow is computed on the omni-directional image and then mapped

to a spherical projection model using the Jacobian of the transformation. Alternatively, the image

itself can be projected onto the sphere and then compute the optical flow. Although mapping the

image may introduce artifacts, in some cases they may not be severe. Experiment result shows the

motion parameter estimates are very close to those computed by the method in 3.1.

3.3 Direct Estimation on the Omni-Directional Images

The most straightforward way to motion estimation is to compute the parameters directly from the

omni-directional image sequence without computing the optical flow. The general idea is to formulate

the error function of the brightness constancy constraint (Equation 1.3). This error function is a

function of motion parameters T , Ω and scene depth R at each point, plus known variables such

as image coordinates and derivatives of image intensity. T , Ω and R are the best estimates that

minimize that error function.

Consider a point (x, y) on the omni-directional image plane and its associated velocity vector

(u, v). Through coordination transformation, x, y can be expressed as

x =
h sin θ cosφ

1 + cos θ
(3.17)

y =
h sin θ sin φ

1 + cos θ
(3.18)

and the velocity vector becomes

u =
dx

dt
=

∂x

∂θ

dθ

dt
+

∂x

∂φ

dφ

dt
+

∂x

∂ρ

dρ

dt
(3.19)

v =
dy

dt
=

∂y

∂θ

dθ

dt
+

∂y

∂φ

dφ

dt
+

∂y

∂ρ

dρ

dt
(3.20)

18

Since x, y are not related to depth ρ, the above equations are just:

u =
h(cosφdθ

dt − sin θ sinφdφ
dt)

1 + cos θ
(3.21)

v =
h(sin φdθ

dt + sin θ cosφdφ
dt)

1 + cos θ
(3.22)

On the other hand, the instantaneous velocity of a 3-D world point P = (X, Y, Z) is

dP

dt
= −T − Ω× P (3.23)

where Ω and T are motion parameters. Re-write it in component form:

dX

dt
= −Tx − ΩyZ + ΩzY (3.24)

dY

dt
= −Ty − ΩzX + ΩxZ (3.25)

dZ

dt
= −Tz − ΩxY + ΩyX (3.26)

Now change it to spherical coordinates:

X = R sin θ cosφ (3.27)

Y = R sin θ sin φ (3.28)

Z = R cos θ (3.29)

where R, θ, φ are indicated as in previous Figure. The left-hand side of the above equations are

dX

dt
= R cos θ cosφ

dθ

dt
−R sin θ sin φ

dφ

dt
+ sin θ cosφ

dR

dt
(3.30)

dY

dt
= R cos θ sin φ

dθ

dt
+ R sin θ cosφ

dφ

dt
+ sin θ sin φ

dR

dt
(3.31)

dZ

dt
= −R sin θ

dθ

dt
+ cos θ

dR

dt
(3.32)

and the right-hand side becomes:

dX

dt
= −Tx −Oy R cos θ + Oz R sin θ sinφ (3.33)

dY

dt
= −Ty −Oz R sin θ cosφ + Ox R cos θ (3.34)

dZ

dt
= −Tz −Ox R sin θ sin φ + Oy R sin θ cosφ (3.35)

Therefore, dθ/dt and dφ/dt can be solved as follows:

dθ

dt
=

cos θ sin φOy R− cosφTy −Oz R sin θ + cosφOx R cos θ + Tx sin φ

R sin θ
(3.36)

dφ

dt
= −−Tz sin θ + cos θTy sin φ + cos θ cosφTx −Ox R sinφ + Oy R cosφ

R
(3.37)

19

Substituting this back to the equation 3.19 and 3.20 to solve dx/dt and dy/dt:

dx

dt
= − h

R(1 + cos θ)
[(1 + cos θ cos2 φ− cos2 φ)Tx

+(cos θ cosφ sin φ− cosφ sin φ)Ty

−sin θ cosφTz + R(cos θ cosφ sin φ− cosφ sin φ)Ωx

+R(cos2 φ + cos θ − cos θ cos2 φ)Ωy −R sin θ sin φΩz] (3.38)
dy

dt
= − h

R(1 + cos θ)
[(cos θ cosφ sin φ− cosφ sin φ)Tx

+(cos θ − cos θ cos2 φ + cos2 φ)Ty

−sin θ sinφTz + R(cos2 φ− cos θ cos2 φ− 1)Ωx

+R(cosφ sin φ− cos θ cosφ sin φ)Ωy + R sin θ cosφΩz] (3.39)

where θ, φ can be written in terms of x and y:

θ = arccos
h2 − x̂2 − ŷ2

h2 + x̂2 + ŷ2
(3.40)

φ = arctan
ŷ

x̂
(3.41)

The estimate of T , Ω and R are the set of values that minimize the following error function:

E =
∑

(Ix
dx

dt
+ Iy

dy

dt
+ It)2 (3.42)

where the summation is over all pixels in the image. This function can be minimized by using

non-linear optimization methods.

An alternative way is to formulate the above function directly under spherical coordinates:

E =
∑

(Iθ
dθ

dt
+ Iφ

dφ

dt
+ It)2 (3.43)

where dθ
dt and dφ

dt are from equation 3.36 and 3.37.

20

Horizontal flow on the omni−image

100 200 300 400 500

100

200

300

400

Vertical flow on the omni−image

100 200 300 400 500

100

200

300

400

Horizontal flow on the sphere

50 100 150 200

50

100

150

200

Vertical flow on the sphere

50 100 150 200

50

100

150

200

Z−direction flow on the sphere

50 100 150 200

50

100

150

200

Figure 3.2: Optical flow on the omni-directional image plane and the spherical surface.

21

0

P=(X, Y, Z)

p=(x, y, z)

z

x

1

ρ

Figure 3.3: Computing optical flow on the sphere.

Chapter 4

Experiments

4.1 Projection Geometries

Experiment data were from MIT Laboratory of Computer Science. The camera uses a perspective

lens system to capture the rays reflected by the parabolic surface. Transformation between a device

point (xd, yd) (measured in physical units) and an image point (x, y) is:

x = fxxd + cx (4.1)

y = fyyd + cy (4.2)

where fx and fy are focal length of the perspective imaging system. They are different because the

pixels are not square. cx and cy are the principal point in pixels.

The following procedure outlined the transformation of a point on the omni-directional image to

a point on the parabolic surface, i.e., the intersection of the ray and the parabolic mirror.

1. Take a pixel (x, y) in the image, first transform its coordinates to the physical measurement

using the transformation (4.1) and (4.2).

2. Offset (xd, yd) by the mirror center xmirror, ymirror and produce the x and y coordinates for

the point on the parabolic surface:

x̂ = xd − xmirror (4.3)

ŷ = yd − ymirror (4.4)

3. Solve the z coordinate for the point on the parabolic surface:

ẑ =
h2 − x̂2 − ŷ2

2h
(4.5)

A series of experiments have been carried out to understand and verify the geometry of the

camera model. One such experiment is to take a rectangular image as input, project it to the

22

23

omni-directional image plane using the camera geometry, then re-project the omni image back to

the rectangular plane. Figure 4.1 shows the result of the three images. Artifacts can be observed

in the reconstructed image, especially in the region that is far from the center of the image. This is

because the mapping between the rectangular image plane and the omni-directional image plane is

not one-to-one.

Due to this fact the algorithm should iterate over the points on the target plane, compute the

corresponding original pixel and take the intensity of that pixel directly or through interpolation.

A simple version of linear interpolation was used in the experiments. If the target point has a

(fractional) coordinate of (i, j), then the intensity value Iij can be computed from the four points

that are immediately adjacent to this point:

Iij = (Ii0j0 (i1 − i) + Ii1j0(i− i0))(j1 − j) + (Ii0j1(i1 − i) + Ii1j1(i− i0))(j − j0) (4.6)

where Ii0j0 , Ii1j0 , Ii0j1 and Ii1j1 are the intensity values of the four adjacent points of (i, j).

4.2 Computing Motion on the Unit Sphere by Projecting

Optical Flow

In this experiment two omni-directional images are used as input. First, the dense optical flow is

computed by the Robust Flow [9] program. Then the image coordinates and the optical flow are

projected onto the unit sphere using the derivations outlined in Chapter 3. Finally, the coordinates

and velocity on the sphere are used to estimate translation and rotation by the bilinear constraint

algorithm.

The first sequence (Figure 4.2) is consisted with two images of an office scene. They have been

taken by rotating the omni-directional camera horizontally. Theoretically, the only motion parameter

that is not zero is the Ωy term, which corresponds to the rotation about the y-axis. The recovered

translation and rotation are:

T =




0

0

0


 (4.7)

Ω =




0.0000911

−0.0008408

−0.0001685


 (4.8)

One way to verify the motion estimate is to reconstruct the optical flow and use it to warp the

first image towards the second. The warping error can be calculated and compared to the warping

error with the original optical flow. In this sequence, the reconstructed flow has an RMS warping

error of 7.1113, comparing to the RMS warping error of the original image flow, 7.6814. The smaller

error in the reconstructed flow is primarily due to the noise.

24

An interesting observation is that the RMS error for the original image pair is only 6.2457.

However, the rotational motion is obvious.

In another sequence (Figure 4.2), both rotational and translational motions exist. The estimated

motion by the bilinear constraint algorithm is as follows:

T =



−0.9907

0.1339

0.0230


 (4.9)

Ω =




0.0001

0.0021

−0.0032


 (4.10)

One can observe a large horizontal motion in the image sequence which is corresponding to the

Tx term. Motions on the y and z directions and rotations are too small to be observed by human

eyes. The warping error using the reconstructed flow is 8.9386, comparing to the warping error of the

original optical flow 8.6749. As comparison, the error between two (unwarped) images is 11.0242.

However, the recovered optical flow is not accurate because the local extremum corresponding

to the so-called “bas-relief ambiguity” is dominant. In this case, the depth of the scene cannot be

fully recovered. The normalized depth is the best estimate about the shape. It is primarily due to

the existence of noise in the original frames and the optical flow.

4.3 Computing Motion on the Unit Sphere by Projecting

Image Only

Another experiment uses the same sequence which has both translation and rotation. Two omni-

directional images are projected onto the unit sphere. Then the optical flow is computed using the

projected image sequence. Same bilinear algorithm has been used to estimate motion. The recovered

parameters are:

T =



−0.9919

0.1099

0.0630


 (4.11)

Ω =




0.0001

0.0019

0.0002


 (4.12)

They are very close to the estimation result of the above section. In addition, the recovered

optical flow, though still not accurate for the same reason, produces a more stable warped image

than the one in the above section. The result somehow contradicts that of Gluckman and Nayar’s

prediction about mapping the image to the sphere and then computing optical flow. One possible

25

reason might be the numeric error introduced during the projection of the velocity field in method

3.1, especially when θ, φ close to zero or π/2.

4.4 Bilinear Constraint Algorithm

Two versions of motion estimation algorithms have been implemented. The first one is Jepson and

Heeger’s linear subspace algorithm. However, the estimation by this algorithm seems to have larger

error. For example, it gives a large motion along the z axis, which cannot be observed from the

image sequence intuitively. The reasons why this algorithm fails might be (a) this algorithm was

developed based on planar perspective projection model; (b) it only uses horizontal and vertical

optical flow, while on the sphere there are three velocities instead of two.

Another version of the estimation algorithm is adopted from Soatto and Brockett’s [15] bilinear

constraint algorithm. Let xi denote the coordinate of a point P̂i on the sphere and vi the associated

velocity vector. Construct operator x̂i such that xi × a = x̂ia where a is any vector. Let yi = −x̂ivi

and λi = 1/‖Xi‖ where ‖Xi‖ is the depth of the corresponding world point of P̂i. The outline of

the algorithm can be described as follows:

1. Check for data consistency. The velocity vector should be orthogonal to the direction vector

of the point, i.e., the velocity vector lies on the tangent plane of the point vector. If error is

greater than some threshold, stop.

2. Check for pure rotation. Assuming zero translation and estimate the rotation using least-

square method. If error is smaller than some threshold, stop and use the estimated rotation.

3. Initialize T = [0 0 0]′ and Ω = [0 0 0]′.

4. Choose a threshold for convergence test and iteratively estimate T and Ω:

Tk = argmin
∑
‖xiT

′(yi − x̂2
i Ωk)‖2 (4.13)

Ωk+1 = (
∑

x̂2
i TkT ′

kx̂2
i)

−1(
∑

x̂2
i TkT ′

kyi) (4.14)

k = k + 1 (4.15)

5. Check for local extrema. Compute the residuals for the three eigenvectors for
∑

(yi−x̂2
i Ωk)(yi−

x̂2
i Ωk)′ and choose the one that generates the smallest residual as T.

6. Check for bas-relief ambiguity. If all λi > 0, stop. Otherwise reduce the minimal value from

all λi so that all λi > 0. Use this to estimate the best T and Ω and go to the iteration step.

7. If after re-iteration there is no improvement on λi, stop. If it converges to the same estimate

it means the local extremum corresponding to the bas-relief ambiguity is dominant and the

normalized λi are the best estimate of the shape.

26

Original

50 100 150 200 250 300 350

50

100

150

200

Omni Image

50 100 150 200 250 300 350

50

100

150

200

Reconstructed

50 100 150 200 250 300 350

50

100

150

200

Figure 4.1: The original image is first projected to the omni-directional image plane and then re-
projected back to the rectangular image plane.

27

Optical Flow − U

100 200 300 400

50

100

150

200

250

300

350

400

Optical Flow − V

100 200 300 400

50

100

150

200

250

300

350

400

Target Image

50 100 150 200

50

100

150

200

Warped Image

50 100 150 200

50

100

150

200

Figure 4.2: The rotation only sequence.

28

Original Flow − U

100 200 300 400 500

100

200

300

400

Original Flow − V

100 200 300 400 500

100

200

300

400

Reconstructed Flow − U

100 200 300 400 500

100

200

300

400

Reconstructed Flow − V

100 200 300 400 500

100

200

300

400

Target Image

50 100 150 200

50

100

150

200

Warped Image

50 100 150 200

50

100

150

200

Figure 4.3: The sequence with both translational and rotational motion.

Chapter 5

Conclusion

Recent research proposed using omni-directional devices to capture motion instead of using conven-

tional cameras. The large field of view of those omni-directional cameras facilitates more accurate

motion estimation and enables applications with long baseline.

A few methods can be applied to compute motion parameters from omni-directional image se-

quences. One such way is to project the image and the optical flow onto a unit sphere and then do a

bilinear constraint optimization. An alternative way is to map the image onto the unit sphere, then

compute optical flow on the sphere and finally apply the optimization. Both methods have been

tested in this project. Contradicting to [8], the latter method produced better result than the for-

mer. In addition, this project also proposed a way to perform direct estimate on the omni-direction

image sequence without computing optical flow.

Future work on this project may include the correction of violations on brightness constancy

assumption due to the fact that area change might be significant in non-linear projection. The

direct method on the omni-directional plane would be another experiment that is worth to try.

29

Bibliography

[1] D. J. Heeger A. D. Jepson. Linear subspace methods for recovering translation direction. Spatial

Vision in Humans and Robots, pages 39 – 62, 1993.

[2] M. J. Black A. Jepson. Mixture models for optical flow computation. in Proc. Computer Vision

and Pattern Recognition, pages 760 – 761, 1993.

[3] N. Ahuja A. Krishnan. Panoramic image acquisition. Proc. of IEEE Conf. on Computer Vision

and Pattern Recognition, pages 379 – 384, June 1996.

[4] B. K. Horn A. R. Bruss. Passive navigation. Computer Vision, Graphics, and Image Processing,

21:3 – 20, 1983.

[5] G. Adiv. Determing three-dimentional motion and structure from optical flow generated by

several moving objects. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-

7(4):384 – 401, July 1985.

[6] T. S. Huang B. L. Yen. Determining 3-d motion and structure of a rigid body using the spherical

projection. Computer Vision, Graphics, and Image Processing, pages 21 – 32, 1983.

[7] S. E. Chen. Quicktime vr - an image based approach to virtual environment navigation. Com-

puter Graphics: Proc. of SIGGRAPH 95, pages 29 – 38, August 1995.

[8] J. Gluckman and S. K. Nayar. Ego-motion and omnidirectional cameras. Proc. of ICCV 98,

1998.

[9] P. Anandan M. Black. The robust estimation of multiple motions: Parametric and piecewise-

smooth flow fields. Computer Vision and Image Understanding, (1):75 – 104, January 1996.

[10] S. Teller M. E. Antone. Automatic recovery of relative camera rotations for urban scenes. Proc.

CVPR, pages II–282 – II–289, 2000.

[11] J. Santos-Victor N. Winters. Mobile robot navigation using omni-directional vision. Proc.

IMVIP 99, 1999.

[12] V. Nalwa. A true omnidirectional viewer. Tech Report, Bell Laboratories, February 1996.

30

31

[13] S. K. Nayar. Catadioptric omnidirectional camera. Computer Vision and Pattern Recognition,

1997.

[14] S. K. Nayar. Omnidirectional video camera. Proc. of DARPA Image Understanding Workshop,

May 1997.

[15] R. Brockett S. Soatto. Optimal structure from motion. Proc. to IEEE Int. Conf. on Computer

Vision, April 1997.

[16] D. J. Heeger T. Y. Tian, C. Tomasi. Comparison of approaches to egomotion computation.

Computer Vision and Pattern Recognition, 1996.

[17] R. C. Frecker W. J. MacLean, A. D. Jepson. Recovery of egomotion and segmentation of

independent object motion using the em algorithm. in Proc. of the 5th British Machine Vision

Conference, pages 13 – 16, 1994.

