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Abstract

In an environment like the web, where new data is continuously being generated and where users
continuously need to receive new data, traditional data management techniques fall short. When users
periodically poll the data sources for updates, unacceptably high server loads result. Publish/subscribe
systems provide a solution to the polling problem by delivering relevant data to interested users as new
data gets generated. Users declare the data they are interested in through long-term queries called pro�les,
and the system sends data to these users as new data gets generated.

A major problem in a publish/subscribe system is eÆciently deciding which pro�les match new data
when there are a large number of pro�les. In this research, we have investigated several index structures
and pro�le matching algorithms to provide scalable operation of a publish/subscribe system. We have also
analyzed the e�ect of overlap among pro�les on the performance of the indices.

1 Introduction

Web has brought new opportunities and problems for both publishing and retrieving data. There is a huge
amount of continually growing information on the web. The need to locate and access data also grows in
parallel. Even if we assume that e�ective mechanisms to locate data exist, we still have the problem of getting
immediate updates as new data of interest gets generated. Using traditional data management techniques, we
can not do better than polling the data sources for new data. However, this is both cumbersome and leads
to unacceptably high server loads. Publish/subscribe systems provide a solution to the polling problem by
automatically delivering relevant data to interested users as new data gets generated. Users declare the data
they are interested in through subscriptions and the system sends data to these users as it receives matching
data from the data sources. Besides, the users need not worry about locating the relevant data sources any
more.

Publish/subscribe systems are modeled in two major ways: group-based and content-based [FLPS00]. In
group-based approach, data objects are grouped into subject categories and users subscribe to these groups to
receive any data of that subject category. On the other hand, content-based approach allows the users to get
subscribed to more speci�c data in terms of content. This way, users do not have to receive every data that is
included in a broad subject category; they can be more selective. Subscriptions contain detailed speci�cations
of content of data the users wish to receive. We call such speci�cations pro�les. A pro�le can be thought of
as a long-term query.

A major problem in a publish/subscribe system is eÆciently deciding which pro�les match new data when
there are a large number of pro�les. This problem is important to solve to achieve scalable operation of the
system against increasing number of pro�les and the rate of new data arrival. To be able to match pro�les
in an eÆcient way upon new data arrival, we need to perform some pre-processing on the pro�les that will
organize and prepare them for the matching step.

The traditional approach to matching individual queries to large amount of data is building indices on the
data. In our case, the roles of queries and data are reversed. Now we have a large number of queries and we
wish to match individual data items against those queries. Based on this analogy, we consider building indices
on the queries to handle the pro�le matching problem.

The paper continues with presenting the related work in the next section. Later we present the basic
system architecture and the data model that we consider in Section 3. The index structures and the matching
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algorithms together with their performance evaluation are discussed in Section 4. Section 5 presents the
contributions of our work. Finally, we conclude the paper by discussing the future work in Section 6.

2 Related Work

We can discuss the related work under three main headings:

� Rule evaluation in active databases
A similar problem to the pro�le matching problem we are considering has previously been attacked in
the context of active databases. The problem considered was eÆcient evaluation of rules/triggers (each
consisting of predicates) upon the occurrence of an event.

[HCKW90] proposes IBS (Interval Binary Search) tree structure to facilitate predicate matching in
database rule systems. The focus of the work is on dynamism, i.e., making the tree easily-modi�able
upon insertions and deletions of predicates. The tree should also be kept balanced not to lose eÆciency.
This tree structure resembles our Cluster Index. However, there are some di�erences in building methods.
[HJ96] both provides a survey of selection predicate indexing algorithms and proposes a new indexing
scheme for active databases based on Interval Skip Lists (IS-Lists). Dynamism issues for IS-Lists are
also discussed. IS-Lists scheme is easier to implement but does not provide improvement over other
existing methods in terms of evaluation performance. Finally, [OM97] provides a decision tree approach
to �ltering rules in trigger enabled databases. This tree ensures that each predicate is evaluated at most
once, but the worst case is equivalent to the naive algorithm of evaluating all the predicates. They also
allow disjunctions in triggering expressions. Dynamic addition and deletion of trigerring expressions
is not handled. Moreover, the binary decision tree is not guaranteed to be the optimal one since this
problem is known to be NP-complete. None of these works have considered join predicates.

� Selective dissemination of data
There are two major related works in the area of selective dissemination of data: SIFT (Stanford
Information Filtering Tool) [YGM94] and XFilter [AF00]. Both propose index structures and algorithms
for eÆcient matching of documents against large number of pro�les. However, the data models and the
pro�le languages used are di�erent.

In SIFT [YGM94], a document is a collection of words and a pro�le is a sequence of distinct words. A
pro�le matches a document if all words in the pro�le appear in the document. Inverted sets are used
as the basis for the index structures. Three indexing methods are proposed: In the counting method, a
hash table maps words to inverted sets of pro�les that contain them. All distinct words in a document
are applied to this structure and by counting the number of matching words, matching pro�les are
determined. Key method is a variation of the counting method in which a pro�le appears in the inverted
list of one of its words. Finally, the tree method uses a trie-like structure and exploits the similarity of
pro�les by storing identifying pre�xes of pro�les in a tree structure instead of a hash table.

XFilter system is a more recent system which aims at eÆcient �ltering of XML documents [AF00]. In
this system, pro�les are represented as queries using XPath language which can specify path expressions
over XML data. Documents are XML documents with schema hidden in tags rather than plain text
documents. XPath enables pro�les to refer to schema information in documents. XFilter uses a more
sophisticated inverted index than SIFT's. For each pro�le, a Finite State Machine (FSM) whose states
represent element tags in XPath query is constructed. Inverted set index is built over the states of the
FSMs of pro�les. An event-based XML parser is used to trigger the states in FSMs of pro�les which in
turn decide which pro�les match the XML document being parsed.

These systems do not emphasize dynamism. Furthermore, join operations in pro�les and overlap among
user pro�les have not been addressed by any of these systems.

� Matching pro�les in content-based publish/subscribe systems
Our work is not the �rst attempt to solve the problem of matching pro�les in content-based pub-
lish/subscribe systems.

In [FLPS00], an event noti�cation service is described which embodies an event model, a subscription
language and a set of matching algorithms. Events are a set of attribute-value pairs and subscriptions
are conjunctions of constant predicates. A subscription is satis�ed by an event if the bindings for
the attributes provided by that event makes the subscription true. The matching algorithms provided
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in [FLPS00] exploit predicate redundancy and dependencies between predicates. Some of them also
distinguish between equality and non-equality predicates to improve eÆciency. [ASS+99] presents a
similar system where the subscriptions are pre-processed into a matching tree. Each node in this tree
is a test on some of the attributes and the edges are results of such tests. Leaves of the tree contain
the subscriptions. Matching is realized by traversing this tree to obtain the subscriptions at the leaves.
Expected time complexity of the presented method is sub-linear in the number of subscriptions. Another
important work that needs to be cited is [BCM+99]. It describes Gryphon system developed at IBM
which aims at eÆciently distributing large amount of data to many clients. In [BCM+99], particularly
the problem of multicast where there are multiple brokers, each capable of event matching is presented.
This kind of an architecture is to realize publish/subscribe in a distributed fashion. The brokers route
events to other routers which are closer to the client that needs to receive the events. Hence, matching
is not accomplished at a centralized location, but it is distributed among multiple brokers.

All of the above mentioned systems focused on constant predicates in subscriptions. We propose alter-
native algorithms for matching pro�les that contain both constant and join predicates.

Additionally, as we shall discuss later, there are data structures designed to solve some problems in com-
putational geometry which are closely related and applicable to our problem. Next, we present our solution
to the pro�le matching problem. We defer the discussion of our contributions to Section 5.

3 Preliminaries

3.1 Basic Architecture

There are two major parties in a publish/subscribe system: data sources that are continuously generating new
data and users that are continuously in need to receive new data. The functionality of the publish/subscribe
system is to act as a medium for these two parties to reach each other. First, users submit subscriptions to
the system. Later on, as new data arrives from the data sources, the system redirects the relevant ones to the
subscribed users.

In a publish/subscribe system, users declare their interest in receiving data from the system through
subscriptions. Subscriptions can take two major forms. In group-based publish/subscribe systems, the sub-
scriptions simply specify the subject category the users wish to get subscribed. This means that they are
willing to receive any document on that subject category. In content-based publish/subscribe systems, how-
ever, rather than getting subscribed for all the documents on a certain subject, users subscribe to some of the
documents on that subject by declaring more detailed information on their data interests.

Profile
DB

Profile

Profile

Profile

Profile

Subscriptions
Data
New

UsersData Sources

Matcher
Profile

New Data

Document
DB

Figure 1: Publish/subscribe system architecture under consideration

In this project, we are considering a content-based publish/subscribe system where users get subscribed
to the system through pro�les (see Figure 1). Generally speaking, pro�les are persistent queries which de�ne
the data that the users wish to receive. They both function as a tool that allows users to specify their data
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interests as well as a �lter that facilitates the delivery of data to interested users. The system stores these
pro�les in a Pro�le Database. On the other side, new data is arriving from the data sources. Although it is
not a requirement, the system may also be storing the arriving data in a Document Database 1. The crucial
component in the system is the Pro�le Matcher which is responsible for deciding which users should receive a
newly arrived data object. This decision has to be made based on the pro�les stored in the Pro�le Database.
The naive way of making the matching is by comparing each user pro�le against the data object one by one.
However, this approach would not scale with the number of users (i.e. pro�les) and also the rate of data arrival
to the system. Therefore, our purpose is to �nd a more clever mechanism to perform the matching.

3.2 The Data Model and The Pro�le Language

Before we discuss how we can handle the pro�le matching problem, we need to state our assumptions about
the data model and the pro�le language we are using.

We consider each data object/document as a collection of value assignments to attributes. It is similar to
a record in the relational model. However, we do not assume that the record is in a prede�ned schema, i.e.,
there is no restriction on which attributes are allowed to appear in a document and what range and type of
values they are allowed to take.

We take pro�les each of which is a conjunction of constant and join predicates. It is like a simpli�ed
version of the WHERE clause of a relational query. However, it does not contain any negations or disjunctions.
Predicates are simple equality or inequality constraints on the values that a set of attributes can take for the
document to qualify for user's interest. Values are chosen from ordered domains like integers. Join predicates
specify the constraints on attributes in a newly arrived document and an old document that may be stored in
the Document Database. Old documents to be joined by the new document need to be quanti�ed. Therefore
we use either a universal or existential quanti�er together with the join predicates. Universal quanti�er (8)
denotes that we want the relationship between the attributes to occur for all the documents that are stored
in the Document Database and existential quanti�er (9) denotes that we want the relationship to hold for at
least one old document.

Below are some examples to illustrate pro�les:

Example 1 documents whose author is "Smith"
author = "Smith"

Example 2 call for papers for conferences in the area of "Databases" which are issued after 2000
area = "Databases" AND year > 2000 AND doc type = "CFP"

Example 3 data that is about books by "Smith" whose price is in the range [10, 30] and which is di�erent
than the ones that have been received up to now

author = "Smith" AND 10 <= price <= 30 AND 8 d (isbn 6= d.isbn)

4 Index Structures

We faced the problem of data matching in traditional database systems before. There, we had large amount of
data stored in the database and that data needed to be matched against user queries by the query processor.
To facilitate this matching, we built indices on the data. In publish/subscribe systems, the role of queries and
data are reversed. Now we have large number of user queries (i.e. pro�les) stored in the system and we wish
to match a data object against these queries. Instead of indexing the data, now we can build indices on the
queries to facilitate pro�le matching.

In this section, we �rst present what kind of indices can be used on constant predicates followed by indices
we can use on join predicates. Then we describe how we can combine the two techniques. We also present
performance evaluation for each of the index structures.

4.1 Index Structures on Constant Predicates

We developed two basic index structures: the Cluster Index and the Interval Index. We also tried mixing these
two indices together to come up with a better index and we called this third index the Hybrid Index. It turned
out that there are other data structures that were developed to solve a related problem in computational

1We call data objects documents since we think in terms of the web context.
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geometry: the windowing queries problem [dBvKOS00]. Two of these data structures that can also be used
for our problem are the Segment Tree and the Interval Tree [dBvKOS00]. We also implemented these two
structures to compare with ours. In this section, we describe each of these �ve structures and present both
theoretical and experimental comparison.

Before getting into details of each index, let us �rst mention about some basic principles that apply to
these structures.

� We handle the problem one attribute at a time. Therefore, we build one index tree per attribute. To
map each attribute to its corresponding index tree, we use hashing on attribute names.

� By handling each attribute separately, we reduced the problem to the following: Given a set of intervals
for an attribute speci�ed in the pro�les and given a data point speci�ed by the value assigned to the
attribute in the new document, �nd the list of pro�le intervals which contain that data point.

� In all the structures, index tree is a variation of the binary search tree. At the end of the search performed
on the tree, we end up with a set of pro�les.

� The set of pro�les are denoted by bit vectors. There is one bit per pro�le in the vector. A bit being
1 indicates positive view about the matching of the corresponding pro�le. In the Cluster Index, a bit
vector shows which pro�les may match whereas in the other indices, it shows which pro�les do match.

� There are two methods used in building the index trees:

{ based on the endpoints of the intervals, as in the Cluster and the Interval Tree Index

{ based on the elementary intervals between consecutive endpoints, as in the Interval and the Segment
Tree Index

The Hybrid Index involves both approaches.

We use the following example to illustrate each of the indices in the next coming sections:

Example 4

Profiles:

P0: 10 � x � 25 ^ 70 � y � 110
P1: 20 � x � 45 ^ 60 � y � 90
P2: 30 � x � 40 ^ 70 � y � 80
P3: 45 < x < 50 ^ 40 < y < 50
P4: x � 40 ^ y � 30
P5: x = 55 ^ 20 � y � 80
P6: 5 � x � 45 ^ y = 50
P7: x = 35 ^ y = 20
P8: 60 � x � 65
P9: 100 � y � 120

Document:

D: x = 20 ^ y = 80
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4.1.1 Cluster Index

The main idea in the Cluster Index is to group pro�les based on a given attribute's value. At each level of the
index tree, the pro�les are splitted into two groups. Tree node contains the value that is used as the splitting
point, which we call the key. All the pro�les for which the interval to be satis�ed by the attribute lies to the
left of the key (i.e. less than the key) go to the cluster represented by the left subtree and all the rest go to
the cluster represented by the right subtree.

The keys are chosen from the set of endpoints of the intervals covered in the pro�les for that particular
attribute. First we sort the endpoints. Then we search for a good point to be chosen as the key. We use two
criteria to decide how good a splitting point is:
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� The tree should be kept as balanced as possible so that the depth of the tree does not become large.

� We should keep the number of pro�les that appear in both subtrees (to the left of the chosen key and
to the right of the chosen key) as small as possible. This is also to keep the tree size under control.

Since these two criteria are opposing with each other, we need to �nd a compromise. We use the following
simple scoring function: (i) get the di�erence between the number of pro�les going to the two subtrees to
measure how balanced the split is, (ii) count the number of pro�les that appear in both subsets to measure
the amount of repetition, (iii) add these together. The key which results in the smallest score is chosen as the
best key.

We perform the search for the key in a binary search fashion. We start by choosing the dn=2eth point
in the endpoint list and calculate its score. Then we do the same for the sublist which has more number of
pro�les. Each time we compare scores and keep track of the key whose score is the minimum. For example,
assume that the sorted list of endpoints is [2; 6; 19; 21; 23; 48; 50]. First we take 21. Let's say 3 pro�les lie to
the left of 21 and 4 pro�les lie to the right of 21 and the total number of pro�les is 5. Then the score for
21 would be (4-3)+(4+3-5) = 3. Since the number of pro�les to the right of 21 is more than the number of
pro�les to the left of 21, we choose 48 as the next candidate key. Let's say 5 pro�les lie to the left of 48 and 2
pro�les lie to the right of 48. Its score would be (5-2)+(5+2-5) = 5. Since 3 < 5, 21 would be a better choice
that 48. We continue like this until we examine the whole list (For this example, we only need to check 23
now).

In addition to the key, a bit vector is stored in each node which denotes the set of pro�les that have the
possibility of being satis�ed (i.e. matched by the document) right before the split. This bit vector is computed
depending on the chosen key at the parent node 2.

We continue splitting and computing the corresponding bit vectors until either we are left with clusters
of size 1 or we can not split anymore. We decide that we can not split any more when whatever endpoint is
chosen, one or both of the clusters are equivalent to the parent cluster. This occurs when the intervals have
very high overlap. The nodes of the tree at the leaf level contain only bit vectors since no key is needed to
split any further.

30
1110101000

35
1110101100

45
1111111110

50
0101011010

60
0000010010

0110101100 0101001000

0000010000 00000000100110101000

< >=

1100101000

Figure 2: Cluster Index on attribute x

Figure 2 shows the Cluster Index tree for x attribute for the pro�les given in Example 4. To match
document D given in the example on this tree, we traverse the tree all the way down to the leaf level by
making comparisons with the key at each node on the path. The bit vector at the leaf gives us the cluster of
pro�les which have the possibility of matching the document. The bold arrows in Figure 2 show the path to
be followed to match x attribute of D which is assigned value 20. Note that we build a similar tree for the y
attribute and we do a traversal to match y attribute of D. The bit vectors obtained after each traversal are
propagated. After the �nal traversal, we end up with a cluster of pro�les which should be checked to �nd the
exact answer. The smaller the size of this �nal cluster is, the less number of pro�le evaluations are to be done
at the end. Therefore, it is important that we have small clusters at the leaves of the index trees.

2For the Cluster Index, we actually do not need to store bit vectors in the inner nodes. We show them here for illustration.
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4.1.2 Interval Index

Interval Index is a binary search tree built on elementary intervals. Elementary intervals are obtained
from the partitioning of the range of values for a particular attribute created by the endpoints speci�ed
in the pro�les. For example the list of elementary intervals created by the list of endpoints [2; 5; 18; 30] is
[(�1; 2); [2; 2]; (2; 5); [5; 5]; (5; 18); [18; 18]; (18; 30); [30; 30]; (30;+1)]. Hence, the list of elementary intervals
consists of open intervals between two consecutive endpoints, alternated with closed intervals consisting of a
single endpoint [dBvKOS00]. For n distinct endpoints, there are 2n+1 elementary intervals. In this example,
we show an in�nite range for values but we can also limit the range using �nite values. Note that each ele-
mentary interval is disjoint from all the others. Thus, if a given point is found to be in an elementary interval,
it can not be in another elementary interval at the same time.

Each node in the index tree consists of an elementary interval and a bit vector. The bit vector denotes the
pro�les that would be satis�ed if the attribute's value were found to be in that elementary interval. As we are
building a binary search tree, we choose the dn=2eth elementary interval from the sorted list of elementary
intervals to place into the root node. Then we compute the corresponding bit vector. The chosen interval
splits the list of elementary intervals into two equal size sublists. The sublist to the left is used to build the
left subtree and the right sublist is used to build the right subtree in a similar fashion, until all the elementary
intervals are placed into the tree. The smaller the number of elementary intervals, the smaller the tree size
will be. Therefore, we apply the following optimization: Before we create a node for an elementary interval,
we check whether there is any pro�le satis�ed by that elementary interval. If no such pro�le exists, we do not
need to create a node for that elementary interval.

[30, 30]

[10, 10] [45, 45]

(35, 40) [60, 60]

(60, 65)(45, 50)[40, 40](30, 35)[25, 25](10, 20)[5, 5][0, 0]

(0, 5) (20, 25)

(5, 10) [20, 20] (25, 30) [35, 35] (40, 45) [55, 55] [65, 65]

1000101000

0000100000

0000100000 0000101000 1100101000 0110101000 0000000010

0000101000 0100101000 0110101100 0100001000 0000000010

0100001000

00000000100110101000

01101010001000101000 0001000000

1100101000

1100101000

0110101000

0000010000

Figure 3: Interval Index on attribute x

Figure 3 shows the Interval Index tree for x attribute in Example 4. To match document D given in
the example on this tree, starting from the root node, we search for the interval which contains the value
20 assigned to x. As soon as we �nd such an interval, we declare the bit vector stored in the corresponding
node as the set of pro�les that match as far as the x attribute is concerned. Hence, we do not always need
to traverse until the leaf level. However, if we search until the leaf level and still can not come up with a
matching interval, then we decide that none of the pro�les match. The bold arrows in Figure 2 show the path
to be followed to match the x attribute of the given example. As in the Cluster Index, we need to do a similar
search for the y attribute as well and the resulting bit vectors are to be combined.

4.1.3 Hybrid Index

As we mentioned before, Cluster Index may not have good performance when the clusters at the leaves are of
large size. The reason is that all the pro�les in those clusters have to be evaluated one by one. This situation
occurs when the overlap among pro�les is high and we can not split them into smaller clusters.

We developed the Hybrid Index to solve this problem. The idea is to �rst build a Cluster Index and then
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to build Interval Index on clusters at the leaves of the Cluster Index. This way we can avoid all pro�les in the
clusters from being evaluated as if no index existed on them.

[10, 10]

[25, 25](10, 20)[5, 5][0, 0]

(0, 5) (20, 25)

(5, 10) [20, 20] (25, 30)
0000101000 0100101000

1000101000

0000100000

1100101000

1000101000

interval
index

0000100000 0000101000 1100101000

30

35

45

50

60

0110101000

< >=

0000010000 0000000010

0000010010

0101011010

0101001000

1111111110

1110101100

0110101100
1110101000

1100101000

1100101000

Figure 4: Hybrid Index on attribute x

Figure 4 shows the Hybrid Index tree for x attribute in Example 4. The top half of the tree is exactly
same with the Cluster Index. Then we apply Interval Index to the leaf clusters of size larger than 1 3. We
only illustrate one of the Interval Index trees in Figure 4 for convenience. To match document D, we perform
the search as we do for the Cluster and the Interval Indices. Again, the bold lines show the path we follow to
match 20 for x.

We expect the Hybrid Index to perform better than the Cluster Index when the degree of overlap between
the pro�les is high. We present its performance against both the Cluster and the Interval Indices in the
following sections.

4.1.4 Geometric Data Structures

When we handle our problem of deciding which pro�les match a given data object one attribute/dimension at a
time, we end up with a problem that has been worked on before in the �eld of computational geometry: Given
a set of intervals, report the ones that contain a given query point. Three known data structures developed
to solve this problem are: Segment Tree, Interval Tree and Priority Search Tree. We exclude Priority Search
Tree from our discussion since it is developed for a special case of windowing queries and we need to perform
a transformation on the intervals and points to be able to use this structure [dBvKOS00]. Below we describe
how we implemented and used the remaining two structures.

� Segment Tree

Segment Tree structure is similar to our Interval Index in that it also is built on elementary intervals.
However, elementary intervals are stored only at the leaves. Inner nodes store the union of their child

3Actually, it is not usually advantageous to apply the Hybrid Index to very small clusters. Therefore, we set a parameter
minimum cluster size and start applying the Hybrid Index for clusters that are equal (or larger when no more splits are possible)
to that parameter. To be able to apply this exibility, we need to store bit vectors in every node of the Cluster Index.
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intervals. The basic principle is to reduce the number of nodes where a speci�c interval is stored. If
an interval is covered by a lot of elementary intervals, then it is better be placed higher in the tree. In
our Interval Index, we do not try to minimize the number of times a pro�le interval is stored in the
nodes because we are using bit vectors to store and process pro�le sets eÆciently. However, we apply
an optimization to reduce the number of elementary intervals to be stored, as mentioned before.

The way Segment Tree is built is also di�erent. It is built in a bottom up fashion. Again we have an
ordered set of elementary intervals. We combine them in pairs. Union of each pair of intervals is used
to create a parent node. The root node is the union of all the elementary intervals.

......... .............

[0, 45)

[0, 5)

[0, 0] (0, 5) [5, 5] (5, 10)

[10, 20)

[20, 20]

[0, 65]

(20, 25)[10, 10] (10, 20)

[45, 65]

........
...........

[0, 10)

0000100000

0100001000
[10, 25)

[0, 25)

0100000000

[20, 25)

0000001000

0000100000
[25, 45)

[5, 10)

Figure 5: Segment Tree Index on attribute x

Figure 5 illustrates the index tree for the x attribute of our example. To match x = 20 on this tree,
starting from the root, we check each interval until we reach a leaf node. The choice of whether we
should follow the left branch or the right branch of the tree is made by checking the children intervals
to see which of them contain the point. As we move from one node to one of its children, we collect
the bit vectors. Taking a logical OR of all the bit vectors we collected gives us the list of pro�les that
match. In Figure 5, we do not show the whole tree and the bit vectors for all the nodes. We only show
the part of the tree that is relevant to our example and the bit vectors that contain at least one 1's in
them (because other bit vectors have no contribution to the resulting bit vector).

Note the important di�erence between the Segment Tree and our Interval Index in pro�le interval
matching: in the Segment Tree, we must always traverse until we reach the leaf level to �nd the matching
intervals whereas in the Interval Index, we stop traversing the tree as soon as we �nd a matching
elementary interval. This di�erence is important in terms of the number of predicate evaluations (i.e.
value comparisons) to be made.

� Interval Tree

This data structure, like the Cluster Index, makes use of the sorted endpoints rather than the elementary
intervals. A chosen endpoint is again used to split the pro�les into groups. However, no pro�le appears
in more than one group. This is achieved as follows: when a point is chosen as the splitter, all the
intervals that contain that point are stored at the node where that point is stored. Of the remaining
intervals, the ones that are smaller than the point (i.e. to the left) are stored in the left subtree and the
rest go to the right subtree. Additionally, the intervals to be stored at a node are stored twice: (i) as a
list sorted in increasing order of their left endpoints, (ii) as a list sorted in decreasing order of their right
endpoints. We did not use bit vectors for these because the order of each pro�le in the lists is important
and this order can not be captured using bit vectors.
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[0][0] [5] [5]

[3] [3] [8] [8]

35
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55

50 65

[4, 6, 1, 2,   ] [1, 6, 2, 4, 7]7

Figure 6: Interval Tree Index on attribute x

Figure 6 illustrates the data structure more clearly. To match x = 20, we do the following: Since 20 < 35,
we will proceed in the left direction. Before we move on to the left child node, we �rst need to check
the list of pro�les on the left in order. Starting at the interval with the leftmost endpoint, we report all
the intervals that contain the point. As soon as we see an interval that does not contain 20, we stop
and move on to the left subtree. In our example, intervals for pro�les 4, 6, 1, 2 (given in bold) contain
20, but interval for pro�le 7 does not. Then we continue to the left. Since 20 < 25, we need to again
check the left list which only contains interval for pro�le 0. This interval also contains 20 and we report
pro�les [4; 6; 1; 2; 0] as matching.

As illustrated, while pro�le matching, we not only traverse on the Interval Tree, but also search through
the lists attached to the nodes. Therefore, even though the storage requirements seem to be advantageous
for this type of tree, performance may not be good in terms of number of evaluations.

4.1.5 Theoretical Evaluation

We can analyze the performance of the data structures in terms of the following measures:

� Build Time

This is a measure that shows how eÆciently we can build the tree. This is not related to the matching
performance of the indices that we are primarily after. However, it is still a useful measure. In all of
the indices the primary determinant of this complexity is the sorting phase. Therefore, build time is
O(nlogn) per attribute, where n is the number of pro�les. For k attributes, it becomes O(knlogn).

� Storage

We measure storage complexity in terms of the number of nodes. It is in the order of number of pro�les
for each attribute, i.e. O(kn) in total. Note that at each node, we are storing bit vectors each of size n
bits. Therefore, if we measure the space complexity in terms of bits, we need to multiply the complexity
term by n. Although we have not implemented yet, we consider using compression techniques to store
the bit vectors. Besides, we may not need to store the bit vectors at each node as they are if we consider
parent-child relationships between the nodes and store only the bits that are not possible to generate
from the bit vector of the parent/children.

� Evaluation Time

Evaluation time corresponds to the number of predicate evaluations (value comparisons) to be made for
matching. This is the most important measure for us since we are more concerned with the eÆciency of
the matching phase. Before we present the results, note that the naive algorithm which evaluates each
pro�le in sequence without using any index would perform O(kn). A more clever algorithm that could
do better than the naive algorithm in absence of any index would be, what we call, the lazy algorithm.
This algorithm would stop doing predicate evaluations in a pro�le as soon as it evaluates a predicate to
false because pro�les are conjunctions and a pro�le matches only if all of its predicates are evaluated
to true. This algorithm would perform 
(n) in the best case since it would have to evaluate only one
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Index Number of Evaluations

Cluster O(kn), 
(klogn)
Interval O(klogn), 
(k)
Hybrid �(klogn)
Segment Tree �(klogn)
Interval Tree O(kn), 
(klogn)

Table 1: Theoretical comparison of the indices in terms of number of predicate evaluations

predicate from each pro�le. The performance is still in the order of number of pro�les and we expect to
get better results from the indices.

Table 1 lists the results for n pro�les with k di�erent attributes. The two endpoint-based methods, the
Cluster Index and the Interval Tree Index have the worst case performance of O(kn). The reason for
this is that, when the amount of overlap among pro�les is really high, these indices would not be able
to perform any splits. The index trees would be of depth 1 (only the root node) and we would have
to evaluate each predicate in each pro�le one by one to perform the matching. On the other hand,
when the overlap is not very high, then these indices would have attribute trees of depth O(logn) and
would achieve O(klogn) number of comparisons. Whether the overlap is high or low, the Hybrid Index
ensures that we do not do more than O(klogn) number of predicate evaluations since it recovers the
disadvantages of the Cluster Index by using Interval Index. Interval Index by itself has the worst case
performance of O(klogn), but can do better in the best case where the matching interval is found very
early in the tree (at the root node for example). In this case, performance becomes independent of the
number of pro�les. Segment Tree Index has similar performance to the Interval Index except that its
best case performance is equal to its worst case performance which is O(klogn). Overall, our Interval
Index has the best performance. It is also interesting to note that elementary interval-based methods,
namely, the Segment Tree and the Interval Index (also the Hybrid Index indirectly) perform better and
independently from the overlap among pro�les.

4.1.6 Experimental Evaluation

We performed some simple experiments to verify our theoretical evaluations and to quantify the e�ect of
overlap on performance which was not very obvious from the theoretical results. In our experiments, we
concentrated on measuring how pro�le matching time in terms of the number of predicate evaluations changes
with the increasing number of pro�les. As we were expecting some changes in performance as the amount
of overlap among pro�les change for some of the indices, we also performed an experiment to analyze this
change.

Figure 7 shows the results we obtained for our �rst experiment. In this experiment, we used 50 randomly
generated documents. We also generated 100 to 1000 pro�les. Both the documents and the pro�les were
containing 2 attributes of the same names. Predicates in the pro�les were in the form of closed intervals of
size 10. We used Zip�an distribution to control the generation of the pro�les. Skew determined how dispersed
the pro�les would be from an origin. The direction of dispersion was determined uniformly at random. For
this experiment, the overlap range was held low ([1, 20] percent) to exclude its e�ect. We would like to get
a general idea of how the average matching performance of the indices scale with the increasing number of
pro�les. As the graph suggests, all indices perform well compared to no-index case where we would have to
do 2 � 100 = 200 to 2 � 1000 = 2000 predicate evaluations on the average for 50 documents. This number
changes in [18, 47] for the worst performing index in Figure 7. Although all performed well, we can see that
our Interval Index and Cluster Index were the best of all. It was interesting to see that Hybrid Index did
not beat Cluster Index at low degrees of overlap. We explain this result as Hybrid Index paying a constant
penalty when it switches from one type of index to the other.

The �rst experiment does not tell us how overlap among pro�les a�ect the performances. In our second
experiment, we took 100 pro�les and 50 documents generated in the same way. This time instead of varying
the number of pro�les, we varied the size of the intervals covered by the pro�les to be able to change the
overlap among them. We obtained overlap percentage in the range of approximately [10, 98]. The result is
provided in Figure 8. It shows that the Interval Index and the Segment Tree Index are not inuenced by the
overlap increase and they have a steady performance. Both the Cluster Index and the Interval Tree Index are
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Figure 7: Average number of evaluations over 50 documents vs Number of pro�les
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Figure 8: Average number of evaluations over 50 documents vs Percent overlap

highly a�ected from the increase in overlap. Hybrid Index takes over the Cluster Index as we expected but it
can only do this after a very high degree of overlap (above 90 percent).

As a result, our Interval Index performs always better than the others. Our Cluster Index performs well
as long as the overlap is not very high.

4.2 Index Structures on Join Predicates

A user's data interest may be spanning several documents. An instance of this situation is where the user
wishes to correlate between some document that he has received before (or even if he has not received, he
imagines that it is probable that the system might have received it/some source might have generated it) and
a new document. For example, the user might be interested in documents published after all the documents he
has received before (or all the documents being stored in the Document Database). This requires a comparison
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Figure 9: Joins between old documents and a newly arriving document

between the dates of all the old documents and the date of the newly arriving document. There may also be
cases where the user wants this comparison to hold at least for one old document.

As seen in Figure 9, this comparison is similar to performing a join operation between two relations in a
relational database. The major di�erence is that now one of the relations contain only one record (the new
document). Also, now we have the queries (i.e. pro�les) and one of the relations (i.e., old documents) stored
in the system, but we do not know the other relation (i.e., new document) until it arrives to the system.

To accomplish pro�le matching eÆciently when we have join predicates, this time we need to index the join
predicates. However, we also have old documents participating in the joins and they also need to be eÆciently
accessed. Therefore, together with the join predicates, we need to index the data stored in the Document
Database.

The documents in the Document Database can be indexed using conventional index structures like B-
Trees [Bay72]. However, we consider augmenting such an index structure with document bit vectors (similar
to pro�le bit vectors used in the previous section) for our purposes. These bit vectors will be used later to
determine which old documents are likely to satisfy the join predicates given in the pro�les. Each such vector
will be of length equal to the number of documents in the Document Database and a bit of value 1 will indicate
that the corresponding document is satisfying the join predicate. As in constant-only predicates, we consider
that we have one augmented B-tree per attribute. We are not getting into details of this index here, but we
will show how it is used in the following paragraphs.

To match join predicates eÆciently when a new document comes to the system, we use a join table. Each
entry of this table corresponds to either a simple join expression consisting of one quanti�ed join predicate or
a complex join expression which is basically a pointer to a quanti�ed expression tree which has AND operators
in the inner nodes and simple join predicates at the leaves. We do not store the complete tree in the entry but
we just point to simple join predicates that are to be found on the leaves which are stored as separate entries
in this table.

Example 5 better illustrates the index we are proposing and how it is used for matching.

Example 5

Pro�le Database: Document Database:
P1: 9 d (price < d.price) D1: price = 10 AND year = 2000 AND author = "Smith"

P2: 8 d (year > d.year) D2: price = 25 AND year = 1999

P3: 9 d (author = d.author)

Join Table:

join expressions document bit vector pro�le bit vector
quanti�er join pair <old, new> operator

9 <price, price> < 00 100 �
8 <year, year> > 11 010

p
9 <author, author> = 10 001

p

011

New Document:
price = 30 AND year = 2001 AND author = "Smith"
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In Example 5, three pro�les are stored in the Pro�le Database and two old documents are stored in
the Document Database. All of the pro�les only contain simple quanti�ed join predicates. We store these
predicates in a join table. For each entry in this table, we also store a document bit vector and a pro�le bit
vector. The document bit vector column is initially empty. We can only �ll it out when we receive the new
document. However, the vectors in the pro�le bit vector column can be computed at compile-time. A pro�le
bit vector shows which pro�les would be satis�ed if the corresponding join predicate were evaluated to be
true. Again, there is one bit per pro�le and a bit value of 1 indicates that the corresponding pro�le would be
satis�ed.

At run-time, i.e., when a new document is received at the system, we apply the following procedure for
pro�le matching on the join table:

current profile bitvector = 000

for each entry of the Join Table with new join attribute appearing in the new document

get the document bit vector from the B-tree on the relevant attribute

if existential quantifier and there is at least one bit 1 in the document bit vector

current profile bitvector = OR(current profile bitvector, profile bit vector)

else if universal quantifier and all bits in document bit vector are 1 then

current profile bitvector = OR(current profile bitvector, profile bit vector)

output current profile bitvector

How we applied this procedure to the example is also illustrated above. Boldface bit vectors show the bit
vectors computed at run-time. Since the �rst join predicate is quanti�ed as existential and there is no 1 bit in
the corresponding document bit vector, we do not use the �rst pro�le bit vector. On the other hand, for the
second join predicate, all the bits in the document bit vector are found out to be 1 and since this predicate is
universally quanti�ed, we take the corresponding pro�le bit vector (010) and OR it with the initial pro�le bit
vector (000), obtaining 010. The third entry's document bit vector contains one 1 bit and since the predicate
is existentially quanti�ed, its corresponding pro�le bit vector (001) should also be taken and ORed with the
current pro�le bit vector (010), giving us the result 011. This result says that given the Pro�le Database and
the Document Database, when a new document as given in the example arrives, the matching pro�les are P2
and P3.

Organizing join predicates this way has the following bene�ts:

� Each distinct join predicate is considered at most once.

� Augmented B-Tree enables us to �nd the matching old documents easily in logarithmic time.

4.3 Using the Index Structures on Constant and Join Predicates Together

Until now, we have presented how we handle constant and join predicates separately. In this section, we
discuss how we can use them in combination.

4.3.1 How to Apply them Together

Each index structure basically functions as a �lter against pro�les. Each time we complete using an index, we
are left with the collection of pro�les that still have the possibility of matching the given data item. Hence,
we consider application of constant and join index structures as two major phases in this �ltering process: (i)
we can �rst apply one of them on the complete set of pro�les, (ii) then we apply the other one on the set of
pro�les that survive the �rst phase. In other words, the resulting pro�les obtained by passing pro�les through
one of these indices in the �rst phase will be further �ltered through the other index in the second phase.

Filtering based on join predicates is supposed to have nearly the same cost with �ltering based on constant
predicates. The reason is that we are building B-tree-like indices on each attribute in the document base
that is being joined with an attribute from the new document as stated in the pro�les. Therefore, both the
join index and the constant index require logarithmic time per attribute. The di�erence will come from the
di�erence between the number of di�erent attributes in constant predicates and the join predicates and from
the di�erence between the number of old documents (D) and number of pro�les (N).

Here is a rough comparison of di�erent cases:

1. when there is no index at all:
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for each profile

for each document

if document matches the profile

report the profile

break;

N : number of pro�les
D: number of documents
c: average number of conjuncts per pro�le

Worst case number of predicate evaluations = N �D � c
2. �rst phase: �lter through the index on join predicates

second phase: �lter through the index on constant predicates

j: number of join predicates/conjunctions
k0: number of di�erent attributes in constant predicates which also appear in the new document

after the �rst phase is applied

Worst case number of predicate evaluations = j � logD+ k0 � logN
3. �rst phase: �lter through the index on constant predicates

second phase: �lter through the index on join predicates

k: number of di�erent attributes in constant predicates which also appear in the new document (k � k0)
j0: number of join predicates after the �rst phase is applied (j0 � j)

Worst case number of predicate evaluations = k � logN + j0 � logD

It is out of question that having an index is more eÆcient than not having any. Choice between 2 and 3
highly depends on the relative values of D, N and j, j0 and k, k0. We can not know k0 and j0 before we see
a new document. However, given j, k, N and D (and maybe some statistics about the distribution of coming
documents), we can estimate which phase is more bene�cial to apply �rst.

4.3.2 Pre-�ltering

Constant predicates impose certain constraints to be satis�ed by the newly arriving documents whereas join
predicates impose constraints to be satis�ed by the documents in the Document Base as well as the new
documents. Filtering based on each of these group of constraints in isolation is only possible after a new
document arrives to the system. However, when we consider the two groups together, we may have an
opportunity to perform some �ltering at compile-time (i.e., before the new document arrives) based only on
the old documents. We call this early �ltering process pre-�ltering. Pre-�ltering may provide eÆciency in
run-time �ltering by reducing the number of pro�les to be matched and hence preventing the use of certain
parts of the indices we have built.

The above mentioned case is not the only case that provides opportunity for pre-�ltering although it is the
most important one. Below we list the cases in which we can apply pre-�ltering:

� Existence of a given attribute:
For each d.attribute that is found in each pro�le, the Document Database should at least contain one
document d which has an attribute named attribute. In other words, a B-tree should exist on attribute
named attribute. Otherwise, that document base can not satisfy the corresponding pro�les and need
not be checked when a new document comes.

� Constant predicates on old documents:
For each d.attribute OP constant or constant1 OP1 d.attribute OP2 constant2 in each pro�le,
this predicate should be satis�ed by at least by one document in the Document Database. If a universal
quanti�er is also provided, then the predicate should be satis�ed by all the old documents.
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� Constant predicates and join predicates together:

Example 6

price = 10 AND 9 d (d.price = price) implies the constraint 9 d (d.price = 10)

As Example 6 illustrates, we can infer new and compile-time-applicable constraints when we consider
constant and join predicates together. In this particular example, the inferred constraint may replace
the join predicate. However, this may not always be the case. Example 7 below shows a case where we
would lose information if replaced the join predicate. Rather, we should use the inferred constraint as
an additional one which still can contribute to pre-�ltering.

Example 7

price < 10 AND 9 d (d.price = price) implies the constraint 9 d (d.price < 10)

We need to generalize the exempli�ed cases to be applicable to other similar cases. For each (d.a OP1

a) AND (a OP2 c) in each pro�le where a is an attribute name, c is a constant and d refers to an old
document in the Document Database, Table 2 can be used to reveal implicit constraints on document
d: 4

OP1 = < � > �
OP2

= d.a = c d.a < c d.a � c d.a > c d.a � c

< d.a < c d.a < c d.a < c

� d.a � c d.a < c d.a � c

> d.a > c d.a > c d.a > c

� d.a � c d.a > c d.a � c

Table 2: Generalization of implicit constraints to be inferred from (d.a OP1 a) AND (a OP2 c).

The �rst row in the Table 2 (where OP2 is =), contains the constraints that can replace the join predicates.
The rest should be used as additional constraints. We do not show it here, but a similar table could be
built for constant predicates in interval format, i.e., constant1 OP1 attr OP2 constant2.

To above cases should be identi�ed and pre-�ltering should be applied in an eÆcient fashion. Briey, our
approach to this problem is to list all the implied constraints for each pro�le; then to treat each of these the
same way we treat the pro�les themselves and build an index similar to our indices for constant predicates;
and �nally to pass each old document in the Document Database through this index and obtain a pre-�lter
bit vector which shows the pro�les that survived. As new documents get added to the Document Database,
we need to pass them through the pre-�lter �rst and update the pre-�lter bit vector accordingly.

Once we have a pre-�lter bit vector, we use it as our starting set of pro�les to apply the pro�le indices.

5 Contributions

We believe our work has the following contributions:

� We proposed three new index data structures to facilitate matching of constant predicates. We showed
that one of our index structures, Interval Index, performed slightly better than two existing data struc-
tures in terms of best case performance. In terms of worst case, its performance is similar to the Segment
Tree. All of the structures under investigation perform far better than the naive and lazy algorithms
in general. We discovered that some of the indices show sensitivity to the amount of overlap among
pro�les. We conducted experiments to analyze this.

� Our pro�les allow joins between the set of previously received data and a newly arriving data. To our
knowledge, there is no previous work on matching join-capable pro�les eÆciently.

4Attribute names in join predicate do not necessarily have to be the same. However, it is important that the attribute name
referring to the new document in the join predicate be the same as the attribute name in the constant predicate.
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� We used bit vectors both to represent the set of matching documents as well as the set of matching
pro�les. These bit vectors enable us to perform set operations like intersection and union easily, simply
by taking ANDs and ORs of the vectors, respectively.

6 Future Work and Conclusion

We would like to investigate the following problems in the future:

� Pro�le indexing and data delivery for disjunctive pro�les with utilities
Right now, the user can specify one data item of interest since we allow only conjunctive pro�les. When
we allow disjunctions in the pro�les, he can also specify multiple data items that he wishes to receive.
We can also let him specify preferences among these items in terms of utility or priority. Then we need
to match and deliver the higher utility items earlier than the other ones. Moreover, since our focus was
on the eÆciency of the pro�le matching, we have not considered how the delivery of matching data items
to multiple users can be performed eÆciently. This problem also requires further investigation.

� Modi�cations to the index structures when the pro�les are updated
Right now the index structures we proposed are all static. Modi�cations would require them to be built
from scratch. It is not very likely that users would want to update their pro�les very frequently since
they usually specify long-term data interests. However, it is expected to be quite often that new users
get subscribed to the system. Therefore, we should develop methods for easy insertion of new pro�les
to the existing index structures. Other kinds of modi�cations (like deleting users, updating existing
pro�les) should also be handled afterwards.

� EÆcient storage of indices on disk
We assumed that the indices �t into the memory and have not considered how they could be mapped to
disk so that they can be eÆciently retrieved later. This is also an important issue to consider as future
work. Also, we need to investigate the compression techniques to store the bit vectors eÆciently as well.

To sum up, in this work, we investigated how we can realize eÆcient pro�le matching using indices on
pro�les. Our results show that evaluation time scales well with the increasing number of pro�les when indices
are used. Furthermore, we showed that the overlap among pro�les can a�ect the performance of some of the
indices and can perhaps be exploited to build better indices.
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