
Caching on the Changing Web

Ying Xing

May 17, 2001

Abstract

Web caching is widely used to reduce access latency and network traffic. Achieving good
performance in web caching requires consideration of many factors, such as object sizes, retrieval
latencies, the objects’ autonomous updates, etc. While object sizes and retrieval latencies are
usually considered in the studying of caching algorithms, the validation costs due to the object
updates tend to be ignored by most of the works. However, when there are many objects in
the cache whose access rates are relatively slow compare to their change rates, the performance
of caching will be greatly impaired. In this work, we present two algorithms to improve the
performance of caching in the above case. The first algorithm considers both the object access
frequency and object update frequency using a single benefit-cost function. The second algo-
rithm uses multiple queues to separate frequently updated objects and infrequently updated
objects. By discounting the frequently updated and infrequently accessed objects in the cache,
the algorithms can effectively improve the performance of caching.

1 Introduction

Caching of web objects is widely used to reduce access latency and network traffic. Web caching
problems have different properties than traditional memory caching because web objects are more
complicated than memory pages. Web objects have different sizes, retrieval times, and are updated
autonomously at their sources. All these factors affect the performance of caching. Many studies
have examined how to incorporate object size and retrieval time into cache replacement policies [3, 9,
6], while few works consider the data consistency problem in replacement algorithms. In this paper,
we examine the performance of caching with different object access rates and update patterns, and
give a more complete picture of caching on autonomously changing data.

When data are updated autonomously outside the cache, validation costs must be paid to
maintain data consistency. If data access rates are much faster than data update rates, validation
costs can be, for simplicity, ignored in cache replacement policies. However, if the above condition
does not hold, the effectiveness of caching will be greatly impaired. In this case, considering data
validation cost as a factor in cache replacement policies may be beneficial. Obviously, if we need to
evict one object choosing from two objects with the save size, retrieval time and estimated access
frequency, we want to replace the one updated more frequently. In these work, we present two
algorithms implementing this idea and discuss their performance.

The rest of the report is organized as follows. Section 2 introduce the data consistency model
our work based on. Section 3 presents our caching algorithms. Section 4 and 5 introduce the
experimental setup and discuss the results. Related work is discussed in section 6. Section 7 and 8
introduce our future work and summarize the contribution of the present work.

1

2 Data Consistency Model

There are two data consistency models for autonomously updated data. The first one is strong
data consistency model, where no stale data can be returned. Each cached copy must be validated
with the server upon each request. This is very inefficient because of the unbounded Internet delay.
Thus, most web caches use the weak data consistency model, where stale data might be returned
occasionally. In the weak data consistency model, each cached object is assigned a Time-To-Live
(TTL) value when it is first cached. Before the time of now+TTL, the cached copy can be returned
upon request without validating it with the server. After that time, the cached copy is considered
expired. If an expired cached object is requested, a GET If-Modified-Since request is sent to the
server. The server will return a new object if the object has been updated since the provided time.

Our work is based on the weak consistency model and uses the adaptive TTL approach to set
the TTL for each web object. The adaptive TTL approach is widely used in web caching schemes.
In this approach, if the expiration time of an object is not provided by the web server, its TTL is set
as a constant times the object’s age, where age is defined as the amount of time since the object’s
last modification. The adaptive TTL approach is based on the observation that young objects tend
be modified more frequently than old objects. Thus TTL can also be used as an indication of an
object’s change rate.

3 Algorithms

3.1 Benefit-Cost Model

One basic goal of caching is to minimize the overall request response time. If the benefit of object i
is defined as the latency reduction, gained by caching object i, and the cost of caching i is defined as
the space i occupied, then the above goal is the same as maximizing the overall benefits with fixed
cost. This optimization problem is NP-hard. A suboptimal solution can be achieved by replacing
the object with the lowest benefit over cost value each time [10].

When validation cost is considered, the benefit-cost function of object i can be defined as

Vi =
Bi

Ci
=

ri · li − (vi − ui) · ci − ui · li
si

(1)

with the following parameters:

• ri - estimated access frequency of object i

• li - average retrieval time of object i

• vi - average validation frequency of object i

• ui - average observed update frequency of object i

• ci - average connection time to validate object i when it is not updated

• si - size of object i

This function can be understood as follows, When a time interval T is considered, object i is
expected to be referenced ri ·T times in interval T. If object i is not cached, then the total response

2

time of requests for object i is ri · li. If object i is kept in the cache, then the response time of a
request for i is 0 unless i is found to be expired. When i is found to be expired, a validation request
is send to the server. If i is not updated, the average response time of the validation cost is the
average connection time ci, otherwise, the average response time is the object’s average retrieval
time li. During interval T , on average, object i is validated vi ·T times and observed to be updated
ui ·T times. Thus the total response time of request for object i during interval T is (vi−ui)·ci+ui ·li
when i is cached. So the latency reduction gained by caching i is just ri · li − (vi − ui) · ci − ui · li.
That is the benefit of caching object i: Bi in equation 1.

3.2 TTL Integrated Algorithm

Although the above benefit-cost function is well formed, some parameters used such as ri, ui

can only be very roughly estimated, In this section, we introduce the TTL Integrated Algorithm
which uses an approximated form of equation 1 and achieve good performance by tuning an ”effect
parameter”.

The new benefit-cost function is derived from equation 1 by the following approximation:

• The current TTLi is used to approximate the average TTLi, thus vi can be approximated by
1

TTLi
.

• Assume the observed age of an object is roughly proportional to its average lifetime, where
lifetime is defined as the amount of time between the object’s two successive modification.
Then based on the adaptive TTL approach, ui can be approximated by a constant times

1
TTLi

.

• ci is approximated by a constant times li.

The approximated benefit-cost function is then:

V̂i =
B̂i

Ci
= (ri − C

TTLi
) · li

si
(2)

where C is a constant.
By having a constant C adjusting the balance between ri and 1

TTLi
, ri does not need to be

an absolute frequency anymore. It can be any relative value that can be used to compare the
estimated access frequency of two objects. For example, ri can be the access count estimated from
some LFU algorithm, or it can even be expressed by sequence number using the LRU algorithm.
The algorithm that is used to estimate ri is called the base algorithm.

Using equation 2 and a base algorithm estimating ri, the TTL integrated algorithm computes
a benefit-cost value for each object. The object with the lowest benefit-cost value is always chosen
to be replaced.

To achieve desired performance, constant C must be tuned to adjust the effect of validation
cost in the benefit-cost function. How to adjust C and it’s effect is discussed in Section 5.

3.3 TTL Based Multi-Queue Algorithms

Since the benefit-cost value for each object can only be very roughly estimated, the comparison
of the benefit-cost value between two object is often inaccurate. In this section, we separate the
objects into 4 classes and compare the benefit-cost between classes instead of between objects.

By comparing the access frequency and the change frequency, web objects can be classified into
the following groups:

3

• frequently accessed and infrequently changed (FAIC) objects

• infrequently accessed and infrequently changed (IAIC) objects

• frequently accessed and frequently changed (FAFC) objects

• infrequently accessed and frequently changed (IAFC) objects

The benefit value of these classes are compared in Table 1. Obviously, it’s beneficial to keep FAIC

FAIC IAIC FAFC IAFC
FAIC - > > >

IAIC < - ? >

FAFC < ? - >

IAFC < < < -

Table 1: Benefit comparison between classes.

objects in the cache and replace IAFC objects before other objects. The comparison between IAIC
objects and FAFC objects depends on the specific objects that are compared.

First, using the objects’ TTLs as an indication of their change frequency, we can separate all the
cached objects into two priority queues. Objects with TTL less than a threshold are maintained in
a queue called the short TTL queue. Objects with TTL larger than the threshold are maintained
in the other queue called the long TTL queue. The threshold is also termed the boundary TTL.
Many caching algorithms, such as LRU and LFU, can be used to estimate the objects’ relative
access frequency. We use one of these algorithms to sort the above priority queues by the objects’
estimated relative access frequency, such that the frequently accessed objects are at the top of the
queues and infrequently accessed objects are at the bottom of the queues.

When an object needs to be evicted from the queue, a decision must be made to choose the
bottom object from some queue. Below, we discuss three approaches for selecting the queues:

Short TTL Queue First: The bottom object in the short TTL queue is always chosen for re-
placement first. This is a straight forward approach based on the fact that IAFC objects are
at the bottom of the short TTL queue. However, by doing so, the FAIC objects that are on
the top of the short TTL queue are always evicted form the cache before IAIC objects that
are at the bottom of long TTL queue. One way to avoid this is to set a minimum queue length
for the short TTL queue. The top sub-queue with that minimum queue length in the short
TTL queue can be called steady queue. Objects inside steady won’t be replaced. When the
boundary TTL is set appropriately such that the benefit values of the objects at the bottom
of the steady queue is roughly equal to the benefit values of the objects at the bottom of the
long TTL queue, objects in the cache can be replaced in a rough order from objects with
small benefit to objects with large benefit.

End Compare: In this approach, the benefit value of the of the two bottom objects are compared
directly. The object with lower benefit is evicted from the cache. The performance of this
approach depend on how well the benefit value can be estimated.

Performance Feedback: The performance of a caching algorithm can be measured by the cache’s
latency reduction ratio [10]. For a set of requests, R, the cache’s latency reduction ratio is

4

defined as ∑
(li − si)
∑

li

where li is object i’s retrieval time and si is the real response time of the request for object
i. The summation is over all the requests. Many studies [1, 3, 6] and our experimental
results show that a cache’s hit ratio and latency reduction ratio is o(cache size). If we define
∑

(li − si) on set R as the total benefit of the cache, the marginal benefit of the cache can be
defined as 4total benefit

4cache size . Because the latency reduction ratio is o(cache size), the marginal
benefit of a cache decreases as cache size increases in general.

If we have two caches with different marginal benefit and we can increase the size of one of
the caches a little bit, then increase the size of the cache with larger marginal benefit results
in a larger total benefits of the two caches than increase the size of the cache with smaller
marginal benefit. If the total size of the two caches is fixed, the total benefits of the two
caches is maximized when the marginal benefits of the two caches are the same.

The two queues in our algorithm can also be viewed as two caches. Each time we need to
evict an object from a cache, we want to chose the cache with a smaller marginal benefit. The
real marginal benefit of a cache is hard to measure. So we just use the total benefit divided
by the size of the cache as an approximation of the marginal benefit. The total benefit is
proportional to the latency reduction ratio. Thus, each time when an object need to be
evicted from the cache, we choose the object in the queue with the smaller latency reduction
ratio divided the size of the cache. We call this approach Performance Feedback approach.

The above idea of using two virtual queues can also be extended to use multi-queues. The more
the queues, the harder it is to choose the boundary TTLs. In our experience, two or three queues
are enough.

4 Experimental Setup

The performance of the above caching algorithms are tested on a statistical generative object
update model and a statistical generative request model. These models are described below,

4.1 Web Object Model

There are 5 parameters of the web objects that are useful in our caching algorithms. They are
object size, retrieval latency, connection latency and lifetime. All these parameters should be
random variables. However, since we only want to study the impact of object change on the
performance of caching algorithms, except for lifetime, all the other parameters are held constant
across all the objects. In [8], the average ratio of connection latency over retrieval latency is 0.36
and 0.12 respectively in two traces. In our experiment, we use 0.2 which is roughly the average of
the above two ratio as the connection latency over retrieval latency ratio for all the objects.

The study in [5] shows that the events of a web object’s modifications usually happens as a
Poisson process. Thus the lifetime of a web object can be generated from an exponential distribu-
tion. It’s not very clear what distribution best characterize the distribution of the means of the
lifetimes. Gamma distribution are used in [5] and [2]. We test the performance of LRU on five
different distributions. The means of those distributions are set to be the same (30 days). Some of
these distributions are far from reality, but it is useful to compare the performance of caching with
different object update pattern. These five distributions are referred to as

5

• Single Point distribution - All the objects have the same lifetime mean (30 days).

• Fast Slow distribution - Half of the lifetime mean is set to be 1 day, and the other half is set
to be 59 days.

• Uniform distribution - The lifetime means are uniformly distributed between 0 and 60.

• Gamma1 distribution - This is a gamma distribution with 30 as its mean and a relatively
small variance. Most of the lifetime mean generated by this model are near to 30 days.

• Gamma2 distribution - This is a gamma distribution with 30 as its mean and a relatively
large variance. Using this model, there will be both a lot of fast changing objects and a lot
of slowly changing objects generated.

4.2 Request Model

Breslan et. al. have shown that requests in real web traces follow a Zipf-like distribution [1]. The
requests in our experiment are generated independently from a Zipf-like distribution. The inter-
arrival time between requests is exponentially distributed. The experiments we do with 1000, 000
objects and 1000, 000 requests show similar results with experiments with 100, 000 objects and
100, 000 requests. Since the experiments with the later parameter setting requires less memory are
much faster, we use the latter parameters setting for the experiments described here.

4.3 Compared Algorithms

Since the size, retrieval latency and connection latency parameters are the same for all the ob-
jects, we just use LRU as the base algorithm for all the algorithms presented in Section 3. These
algorithms are:

TTL Integrated LRU (TTL-I-LRU): This is the TTL Integrated algorithm with LRU as its
base algorithm. ri used here is the sequence number of the requests, which means the least
recently requested object has the smallest estimated access frequency.

Short TTL Queue First Multi-Queue LRU (SQF-MQ-LRU): This is a TTL Based Multi-
queue algorithm with the Short TTL Queue First approach. The LRU algorithm is used to
sort each priority queue.

End Compare Multi-Queue LRU (EC-MQ-LRU): This is also a TTL Based Multi-queue
algorithm with the LRU algorithm sorting the priority queues. The End Compare approach
is used to select the object to be evicted. The benefit of the object is estimated by

ttl

queue size

where ttl is the amount of time since the moment of the comparison until the object expires.
Since the objects compared are the bottom objects of the queues, and the queues are sorted
using the LRU algorithm, the larger the queue size, the longer the objects has been in the
cache. Thus the object is less likely to be referenced again in the near future. Since ttl is
how much time remains until this object may need to be validated again, the lower the ttl,
the less benefit we get from keeping the object. To make the queue sizes reflect the access
frequency of the bottom object of the queue, a minimum queue length need to be maintained
for each queue.

6

Performance Feedback Multi-Queue LRU (PF-MQ-LRU): This is the third TTL Based
Multi-queue algorithm with the LRU algorithm sorting the priority queues. The Performance
Feedback approach is used to select the object to be evicted. A minimum queue length must
be maintained for each queue for the latency reduction ratio to be meaningful.

4.4 Performance Metrics

We use the latency reduction ratio as the primary performance measurement since response time
is usually what the users care the most.

We also compare the hit ratio of the caches since it reflects the network traffic reduction. A
request for an expired object in the cache is counted as a cache miss in computing hit ratio.

5 Experimental Results

5.1 The impact of object changing on Caching

In the experiment, we first compare the performance of the LRU algorithm using different request
inter-arrival time. This is because an object’s change rate is only meaningful compare to the object’s
request rate, so we can fix the update pattern of the web objects and only change the request
rate. Figures 1 and 2 show the latency reduction and hit ratios with Gamma1 and Gamma2 object
lifetime mean distributions. It is not surprising that as the request rate decreases, The performance
is serious degraded. The latency reduction ratios are always higher than the hit ratios because the
expired data can still contribute to the latency reduction.

An interesting result is that when the performance of caching is tested on different lifetime
mean distributions with the same distribution mean, the performance varies greatly. Figure 3
compares the latency reduction and hit ratio of the LRU algorithm with the five different lifetime
mean distributions described in Section 4. The results show that the performance of caching is
related more to the percentage of fast changing objects than to the shape of the distributions. As
the percentage of fast changing objects increases, the performance decreases. It implies that those
objects with small reference over change frequency values impair the performance the most. The
motivation of the algorithms presented in Section 3 is simply to give these objects small benefit
value and evict them from the cache quickly.

Before discussing the performance of those algorithms, we first have a look at in what situations
it is suitable to apply those algorithms.

Firstly, if the request rates are fast enough for almost all of the objects, then it is not necessary
to use those algorithms because the performance of caching is influenced little and can only be
improved little. Secondly, if the request rates are too slow for almost all of the objects, the
performance can hardly be improved. Thus, only when there are both a lot of objects with small
access over change frequency values, and a lot of object with large access over change frequency
values, our algorithms are most useful. This situation is also close to what is seen in reality.

Next, we study the performance of those caching algorithms in Section 3 under the Gamma2
distribution which generates many fast changing and slow changing objects. The request inter-
arrival time mean used in the experiments is 0.1 minute.

7

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

Gamma 1

0.001
0.01
0.1
1
10

(a)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cache Size (Percentage)

H
it

R
at

io

Gamma 1

0.001
0.01
0.1
1
10

(b)

Figure 1: Performance of LRU algorithm on Gamma1 object lifetime mean distribution with dif-
ferent request inter-arrival rate. The mean of the Gamma2 distribution is 30 days. The mean of
the request inter-arrival time are 0.001, 0.01, 0.1, 1, 10 minutes respectively.

8

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

Gamma 2

0.001
0.01
0.1
1
10

(a)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cache Size (Percentage)

H
it

R
at

io

Gamma 2

0.001
0.01
0.1
1
10

(b)

Figure 2: Performance of LRU algorithm on Gamma1 object lifetime mean distribution with dif-
ferent request inter-arrival rate. The mean of the Gamma2 distribution is 30 days. The mean of
the request inter-arrival time are 0.001, 0.01, 0.1, 1, 10 minutes respectively.

9

0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

Single Point
Uniform
Gamma1
Fast_Slow
Gamma2

(a)

0 10 20 30 40 50 60 70
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

Single Point
Uniform
Gamma1
Fast_Slow
Gamma2

(b)

Figure 3: Performance of LRU algorithm on different object lifetime mean distributions. The
request inter-arrival mean is 0.1 minute.

10

5.2 Parameter Tuning

The algorithms in Section 3 all have some parameters which need to be tuned in order to achieve
optimal performance.

5.2.1 TTL Integrated LRU algorithm

The parameter for the TTL-I-LRU algorithm is the validation cost balance coefficient C. The
experimental results show that as C increases from 0, the latency reduction ratio and hit ratio of
TTL-I-LRU first increases then decreases. This is because, when C is 0, TTL-I-LRU algorithms
is reduced to the LRU algorithm. When C increases, the objects that change frequently get less
benefit value, thus they are evicted from the cache faster. So the performance get better. If C
is too large, the objects in the cache are mainly ordered by their TTL value. Those frequently
referenced objects can’t get enough value to stay in the cache. So the performance degrades. As
long as C is within a certain range, the performance of the TTL-I-LRU is always better than LRU.

The experimental results also show that the best value of C is approximately proportional to
the size of the cache. This is because, when the size of the cache increases, it takes longer for an
object to be evicted. Thus increase C helps to evict those frequently changed objects faster.

The best C is not exactly proportional to the size of the cache, but the correct range for this
parameter is very large. So C can just be roughly set to be a constant times the size of the cache,
eg. Figure 4 shows the performance of TTL-I-LRU with two different choice of the constant.

5.2.2 TTL Based Multi-Queue Algorithms

There are two parameters in the TTL Based Multi-Queue algorithms: the number of queues, and
the boundary TTLs. In our experiment, we test both two and three queues with different boundary
TTLs.

Figures 5, 6 and 7 show the influence of the choice of the boundary TTLs on the performance
of SQF-MQ-LRU, EC-MQ-LRU, and PF-MQ-LRU with 2 queues respectively. These algorithms
can also be called SQF-2Q-LRU, EC-2Q-LRU and PF-2Q-LRU respectively. The performance of
SQF-MQ-LRU is very sensitive to the choice of the boundary TTLs. This is because it always
evicts objects from one queue first. Thus, only when the boundary can be chosen correctly, can
SF-MQ-LRU evict objects in the roughly correct order. See the discussion in Section 3.

The performance of EC-MQ-LRU and PF-MQ-LRU is not very sensitive to the choice of the
boundary TTLs. This is because objects in both queue have opportunities to be evicted, and
good choice can be made dynamically. The benefit values of the bottom objects are compared in
EC-MQ-LRU. The average performance of the queues are compared in PF-MQ-LRU. Both of the
algorithms can achieve good performance with different boundary TTLs.

5.3 Performance Comparison

Figure 8 shows the the performance of different algorithms using their best or relatively good
parameters. The improvement of TTL-I-LRU is not as significant as the TTL based MQ algorithms.
The reason may be that using sequence numbers in LRU as an indication of reference frequency is
not a good choice. TTL based MQ algorithms use the object’s relative position in the queue as the
indication of reference frequency.

An interesting result in TTL based MQ algorithms is that the best performance of all the
algorithms are almost the same. Only EC-3Q-LRU performs a little better than the other algorithms
in hit ratio. This maybe because all these algorithms are based on the same basic idea, and when

11

0 10 20 30 40 50 60 70
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

TTL−I−LRU (C: 0.01 × Cache Size)
TTL−I−LRU (C: 0.05 × Cache Size)
LRU

(a)

0 10 20 30 40 50 60 70
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Cache Size (Percentage)

H
it

R
at

io

TTL−I−LRU (C: 0.01 × Cache Size)
TTL−I−LRU (C: 0.05 × Cache Size)
LRU

(b)

Figure 4: Performance of TTL-I-LRU algorithm

12

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

0.1
0.2
0.4
0.8
1.6
3.2
6.4
LRU

(a)

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

Cache Size (Percentage)

H
it

R
at

io

0.1
0.2
0.4
0.8
1.6
3.2
6.4
LRU

(b)

Figure 5: Performance of SQF-2Q-LRU algorithm with different TTL boundaries

13

0 5 10 15 20 25 30 35
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

0.1
0.2
0.4
0.8
1.6
3.2
6.4
LRU

(a)

0 5 10 15 20 25 30 35
0.15

0.2

0.25

0.3

0.35

Cache Size (Percentage)

H
it

R
at

io

0.1
0.2
0.4
0.8
1.6
3.2
6.4
LRU

(b)

Figure 6: Performance of EC-2Q-LRU algorithm with different TTL boundaries

14

0 5 10 15 20 25 30 35
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

0.1
0.2
0.4
0.8
1.6
3.2
6.4
LRU

(a)

0 5 10 15 20 25 30 35
0.15

0.2

0.25

0.3

0.35

Cache Size (Percentage)

H
it

R
at

io

0.1
0.2
0.4
0.8
1.6
3.2
6.4
LRU

(b)

Figure 7: Performance of PF-2Q-LRU algorithm with different TTL boundaries

15

0 5 10 15 20 25 30 35
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cache Size (Percentage)

La
te

nc
y

R
ed

uc
tio

n
R

at
io

SQF−2Q−LRU (0.2)
EC−2Q−LRU (0.2)
PF−2Q−LRU (0.4)
SQF−3Q−LRU (0.2−0.8)
EC−3Q−LRU (0.2−6.4)
PF−3Q−LRU (0.2−0.4)
TTL−I−LRU
LRU

(a)

0 5 10 15 20 25 30 35
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Cache Size (Percentage)

H
it

R
at

io

SQF−2Q−LRU (0.2)
EC−2Q−LRU (0.2)
PF−2Q−LRU (0.4)
SQF−3Q−LRU (0.2−0.8)
EC−3Q−LRU (0.2−6.4)
PF−3Q−LRU (0.2−0.4)
TTL−I−LRU
LRU

(b)

Figure 8: Performance comparison of different algorithms.

16

the boundary TTLs are chosen correctly, objects from different class can all of be evicted in a
relative correct order. Since using 2 queues works well enough to distinguish the four kinds of
objects defined in section 3, it seems that using 2 queues is usually good enough. It is not very
necessary to use 3 queues since the boundaries are harder to choose. Although the best performance
of TTL Based algorithms are very close to each other, we still prefer the End Compare approach
and Performance Feedback approach to the Short TTL Queue first approach. This is because the
Short TTL Queue First approach is too sensitive to the choice of boundary TTLs.

6 Related Work

While much research has been done on web cache replacement algorithms, few works consider the
objects’ updates in the replacement policies. Those replacement policies that explicitly consider
the objects’ update rates are introduced below,

Shim et. al. [10] integrate validation cost into a cache replacement policy using a profit function
defined for each object. Their profit function has a similar form to Equation 1. Absolute request
frequencies and change frequencies are estimated from records in the history. The performance
of their algorithm is compared with LRU, and LRU-MIN. Since object size and retrieval latency
are not major consideration in LRU and LRU-MIN, it is not very clear whether their algorithms
improves on LRU and LRU-MIN because they consider validation cost, or only because they take
size and latency into account. The trace they use is relatively small.

The GD-lifetime algorithm [7] is another way to integrate object update information with
estimated request frequency. They use the “lifetime” which refer to the time that object can
remain valid in the cache, as the base value for GD-Size algorithm. Their results only shows a
small positive effect on the performance.

Chen et. al. [4] study the lifetime behavior of web objects. They classify web objects into four
categories: highly mutable objects, stable documents, short life documents and others. The short
life documents are those object that are only accessed in a few days. They claim that keeping
highly mutable and short life time objects in the cache does not help to increase the cache hit ratio.
So they design a two-state TTL algorithm to evict highly mutable and short life objects faster.
The cache is divided into equal areas. When an object is cached the first time, it is put into the
first part of the cache. After a short time, if the object is still valid, it is moved to the second part
of the cache and is assigned a longer TTL. They claim a 2.8% hit ratio improvement on average
vs. two other TTL consistency algorithms.

7 Future Work

The current experiment is conducted using a statistical generative request and object update
model. The results are very encouraging. Our next step is to test the performance of the above
algorithms on the real web access traces. Various workloads will be of interesting.

We also want to study how to decide the boundary of the queues in TTL based Multi-Queue
algorithms automatically by analyzing the objects TTL distribution in the cache.

The current caching scheme does not actively refresh objects after they expire. For those
frequently accessed and frequently changed data, active refreshing might be useful in improving
the performance. Thus, we want to study how to use the limited bandwidth to achieve the best
performance improvement.

17

8 Conclusion

Web object’s are usually updated autonomously. When a weak data consistency policy is used,
web caches must pay validation costs for the requests of expired data. If the object request rate is
relatively slow there will be a fair amount of expired objects in the cache, and the the performance
of caching can be significantly degraded. In this work, we present two different approaches to
integrate the validation cost into web caching algorithms. By evicting infrequently accessed but
frequently changed objects before other objects, these algorithms can achieve better performance
than algorithms that do not consider validation cost. The experiments in this work are based on
the generative request and object update model. In our future work, we will test the performance
of those algorithms on real web access traces.

References

[1] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker, Web caching and Zipf-like
distributions: Evidence and implications, Proceedings of the INFOCOM ’99 conference, March
1999, http://www.cs.wisc.edu/~cao/papers/zipf-like.ps.gz.

[2] Brian E. Brewington and George Cybenko, How dynamic is the web?, Proceedings of the 9th
International WWW Conference, May 2000, http://www9.org/w9cdrom/264/264.html.

[3] Pei Cao and Sandy Irani, Cost-aware WWW proxy caching algorithms, Proceedings of the
1997 Usenix Symposium on Internet Technologies and Systems (USITS-97) (Monterey, CA),
December 1997, http://www.cs.wisc.edu/~cao/papers/gd-size.ps.Z.

[4] X. Chen and P. Mohapatra, Lifetime behavior and its impact on web caching, July 1999,
http://citeseer.nj.nec.com/chen99lifetime.html.

[5] Junghoo Cho and Hector Garcia-Molina, Synchronizing a database to improve freshnessr, Proc.
of ACM SIGMOD, 2000, http:://citeseer.nj.nec.com/cho00synchronizing.html.

[6] Sohudonohudong Jin and Azer Bestavros, GreedyDual* Web caching algorithms: Exploiting the
two sources of temporal locality in Web request streams, Proceedings of the 5th International
Web Caching and Content Delivery Workshop, May 2000, http://www.terena.nl/conf/wcw/
Proceedings/S2/S2-2.pdf.

[7] Balachander Krishnamurthy and Craig Wills, Proxy cache coherency and replacement – to-
wards a more complete picture, Proceedings of the ICDCS conference, June 1999, http:
//www.research.att.com/~bala/papers/ccrcp.ps.gz.

[8] Balachander Krishnamurthy and Craig E. Wills, Piggyback server invalidation for proxy cache
coherency, Computer Networks and ISDN Systems 30 (1998), no. 1-7, 185–193, http://www.
elsevier.nl/cas/tree/store/comnet/sub/1998/30/1-7/1844.pdf.

[9] Luigi Rizzo and Lorenzo Vicisano, Replacement policies for a proxy cache, Tech. Report
RN/98/13, UCL-CS, 1998, http://www.iet.unipi.it/~luigi/lrv98.ps.gz.

[10] Junho Shim, Peter Scheuermann, and Radek Vingralek, Proxy cache design: Algorithms,
implementation and performance, IEEE Transactions on Knowledge and Data Engineering
(1999), http://www.ece.nwu.edu/~shimjh/publication/tkde98.ps.

18

