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Nonparametric Representation of Neural 

Activity in Motor Cortex 

Abstract 

It is well accepted that neural activity in motor cortex is correlated to hand 

motion, previous studies of cosine tuning curve (Georgopoulos et al.. 1982) and 

a modified version (Moran and Schwartz. 1999) are examples at revealing such 

relationships. Here by analyzing multi-electrode recordings of neural activity 

and simultaneously recorded hand motion during a continuous tracking task. we 

introduce a nonparametric representation under a Bayesian framework. and fur­

ther apply Principle Component Analysis to reduce dimensions and noise. By 

rigorously comparing all the models with cross-validation. our model are shown 

superior to previous models at explaining the data. It also reveals the new aspects 

of MI neural coding: neurons encode speed as well as direction with non-Gaussian 

pattern of firing; conditional firing rate is better described by regions of smooth 

activity with relatively sharp discountinuites between them; and only four prin­

ciple components can count for about 80% of the variance. Finally we explain 

the superiority of nonparametric models and PCA from Bias/Variance Dilemma 

(Geman et al., 1992) point of view. 

keywords: conditional mean firing rate, regularization, tuning plot, receptive field, 

Principle Component Analysis, cross-validation, Bias/Variance Dilemma 
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1 Introduction 

The primary motor cortex (MI) plays an important role in movement control, yet its un­

derlying nature of coding is still under debate (Moran and Schwartz, 2000; Georgopoulos 

and Ashe, 2000; Todorov, 2000; Scott, 2000), of whether MI is coding musclejjoint-based 

variables, or hand-based variables. Nonetheless it is certain that the neural activity in 

MI is correlated with hand motion, and describing this relationship is vital for appli­

cations such as neuroprosthetics, which is more concerned with higher level end point 

movement. 

Previous studies have proposed several models, the cosine tuning curve (Georgopou­

los et oJ, 1982) and a modified version (Moran and Schwartz. 1999) are successful ex­

amples albeit their simple forms. However so far these models are parametric models. 

with strong assumptions such as unimodality. symmetry. fixed width. infinite smooth­

ness (vs. piecewise smoothness), strict linearity in speed etc. built inside the model. 

Actually these models are fit to data averaged over thousands of trials. cells and even 

hom different animals. the heterogeneity of individual cells are totally lost during the 

tremendous averaging. Recent improvement (Georgopoulos et oJ.. 2000) reveals that 

the profiles of neural activities with respect to direction have more variations and de­

tailed structures than as described by cosine tuning model. yet it is still a parametric 

model hence the inheritted disadvantage of superimposed bias. 

Here we explore the use of statistical learning methods for modeling the relation­

ship and specifically nonparametric model-free representations. Our goals are: (i) to 

investigate the nature of encoding in motor cortex. (ii) to characterize the probabilis­

tic relationship between ann kinematics (hand position or velocity) and activity of a 

simultaneously recorded neural population. 

A multi-electrode array (Figure 1) is used to simultaneously record the activity of 

25 neurons in the arm area of primary motor cortex (MI) in awake, behaving, macaque 

monkeys. This activity is recorded while the monkeys manually track a smoothly and 
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Figure 1: Multi-electrode array. A. 10X10 matrix of electrodes. Separation 400pm (size 

4X4 mm). B. Location of array in the MI arm area. C. Illustration of implanted array. 

randomly moving visual target on a computer monitor (Paninski et al., 2001). Statistical 

learning methods are used to derive Bayesian estimates of the conditional probability 

of firing for each cell given the kinematic variables (we consider only hand velocity 

here). Specifically, we use non-parametric models of the conditional firing, learned 

using regularization (smoothing) techniques with cross-validation, and further deduct 

noise by Principle Component Analysis. Our results suggest that the cells encode 

information about the position and velocity of the hand in space and they have much 

richer structures than previously shown. 

An early version of this work appeared in (Gao et al.. 2002) 

2 Methods 

2.1 Behavioral Task and Recordings 

The design of the experiment and data collection is described in detail in (Paninski 

et al.. 2001). Summarizing. a ten-by-ten microelectrode array (Bionic Technologies 

Inc., Salt Lake City, UT) with 1.5-mm-Iong platinized tip silicon probes (impedances 

between 200 and 500 k[2; 1 nA, 1 kHz sine wave) arranged in a square grid (400 pm 

separation) is chronically implanted in the arm area of primary motor cortex (MI) of a 

Macaque monkey (Figure 1) (Donoghue et al., 1998; Hatsopoulos et at., 1998; Maynard 

et al., 1999; Paninski et al., 2001). 

Previous behavioral tasks have involved reaching in one of a fixed number of direc­
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Figure 2: Smooth tracking task. (a) The target moves with a smooth random walk. 

Distribution of the position (b) and velocity (c) of the hand. Color coding indicates the 

frequency with which different parts of the space are visited. (b) Position: horizontal 

and vertical axes represent x and y position of the hand. (c) Velocity: the horizontal 

axis represents direction. -'if ::; () < 'if, and the vertical axis represents speed. ')'. 

tions (Fu et al.. 1995: Georgopoulos et al.. 1982: Wessberg et al.. 2000). To model the 

relationship between continuous. smooth. hand motion and neural activity, we use a 

more complex scenario where the monkey performs a continuous tracking task in which 

the hand is moved on a 2D tablet while holding a two-link. low-friction manipulandum 

(Wacom Technology Corp .. Vancouver. WA) that controls the motion of a feedback dot 

on a computer monitor (Figure 2a) (Paninski et oI. 2001). 

The manipulandum constrains hand movement to the plane parallel to the floor. Its 

x and y positions are digitil':ed at 167 Hz with accuracy of 0.25 mm and stored. The 

monkey receives a reward upon completion of a successful trial in which the manipu­

landum is moved to keep the feedback dot within a pre-specified distance of the target 

for a certain amount of duration. The path of the target is chosen to be a Gaussian 

process that effectively samples the space of hand positions and velocities: measured 

hand positions and velocities have a roughly Gaussian distribution (Figure 2b and c) 

(Paninski et al., 2001). No sample of path is repeated, each stimulus appears only 

once. Neural signals recorded simultaneously with behavioral task are amplified and 

sampled at 30 kHz per channel (Bionic), waveforms crossed an experimenter-set thresh­
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old are stored (from 0.4 ms before to 1.5 ms after the threshold crossing), and spike 

sorting is performed off-line to isolate the activity of individual cells (Maynard et al., 

1999). Recordings from 25 motor cortical cells are measured simultaneously with hand 

kinematics. 

2.2 Data Preprocessing 

In the following analysis, only trials last more than 4 sec long are used to minimize 

data contamination. The raw recordings of hand positions are smoothed using quintic 

natural B-spline (Woltring. 1986), and subsampled evenly at every 50 ms; tangential 

velocities are computed as derivatives at these grid points, then converted to polar 

coordinates,v = [T. e]T. here 'J" is speed. and moving direction e is the angle with hori­

zontal axis. with -rr ::; e ::; rr. 

Spike trains are binned using 50 ms windows. and in the following analysis we use 

spike counts 100 ms lag prior to corresponding kinematical samples. this particular 

choice of lag is made according to study in Moran and Schwartz (1999) and have been 

tested on the data set. 

2.3 Nonparametric Model of the Activity 

Here we only consider the neural activity conditioned on velocity, There are more de­

tailed investigations of all possible end point kinematics variables and their interactions 

elsewhere (Paninski et at., 2001). The velocity space [0, maximal speed] x [-rr, rr] is 

discretized on a 100 x 100 grid. Let Nv be the number of visits to state v. fv(k, c) be 

the spike counts within 50 ms window and 100 ms lag of c-th cell during the i-th visits 

of v. Empirical mean firing rate of cell c is then: 

Jv(c) = L fv(k, c)/Nv 
k 
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Figure 3: Observed mean conditional firing rate for three cells given hand velocity. The 

horizontal axis represents the direction of movement, e, in radians ("wrapping" around 

from -7[" to 7["). The vertical axis represents speed, '1', and ranges from 0 cm/s to 12 

cm/s. 

Shown in Figure 3 are examples of three cells. In the following index c is omitted 

without causing confusion. 

We view the measurements like Figure 3 as a stochastic and sparse realization of 

some underlying model that relates the neural firing to hand motion. Each model can 

be thought of as a type of ·tuning function" or "receptive field" (Paninski et al.. 2001) 

that characterizes the response of the cell conditioned on hand velocity. Previous stud­

ies have suggested several parametric models including cosine tuning function (Geor­

gopoulos et al.. 1982) and a modified cosine function (Moran and Schwartz. 1999). The 

disadvantages of these parametric models is the strong assumption superimposed about 

the shape of the tuning curves, Here we explore a totally model-free non-parametric 

representation of the underlying activity and adopting a Bayesian formulation. seek a 

maximum a posteT'iOT (MAP) estimate of a cell's conditional firing. 

We adopt a weak smoothness assumption, namely, Markov Random Field (MRF) 

(Geman and Geman, 1984) as prior distribution, that is, the neighboring states with 

velocities close to each other should have close conditional mean firing rate. Let g be the 

array of true underlying conditional neural firing and f be the corresponding observed 
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mean firing. We seek the posterior probability 

p(g I f) = IIv (~IIkP(fv(k) I gv) II{=lP(gv I gvJ) (1) 

where ~ is a normalizing constant independent of g, gv is the true mean firing at velocity 

v, gVi represents the firing rate for the i th neighboring velocity of v, and the neighbors 

are taken to be the four nearest velocities ("7 = 4). 

The first term on the right hand side represents the likelihood of observing a partic­

ular firing rate Iv (i) given that the true rate is gv. The second term is a spatial prior 

probability that encodes our expectations about 6g. the variation of neural activity in 

velocity space. In the special case of Gaussian likelihood and Gaussian prior. finding 

MAP of Equ 1 is equivalent to minimizing energy 

E(g) = ~ (~(fv(k) - 9v)2 + A~(gV - gvJ
2
) 

which is the standard form of regularizettion (Szeliski. 1989). here A is a parameter 

adjusting the amount of smoothing. Under two extrerues: when A is zero. the optimal 

g is the empirical conditional mean: when A is infinity. the optimal g is totally flat. 

One assumption here is that the cells are conditionally independent. independence is 

hard to test in general. here we only test a weak form. i.e. independence of pairs of cells. 

by constructing X2 test's two way table at each state. Due to very sparse frequencies 

of visit. most of the states ( 99.5%) do not have enough measurements to meet the 

requirement of the test. for those do. at less than 10% of these states the cell pairs 

reject the null (p-value < 0.05). Overall this assumption is fine under current setting. 

although incorporating dependence among cells has been clone elsewhere (Hatsopoulos 

et al., 1998). 
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Figure 4: Prior probability of firing variation (t::.g). (a) Log probability of firing vari­

ation computed from training data (blue). Log of proposed prior model (red) plotted 

for (J = 0.28. (b) Logarithm of the distributions shown to provide detail. 

2.3.1	 Likelihood 

Here we consider two genendive models of the nemal spiking process within 50 ms: a 

Poisson model. TJp. and a Gaussian model. Pc: 

1 f' 1j 1 (U-.r;)2)
pp(f I g) = f! Y e- • Pc (f I g) = ~ - exp - ') 2 . 

. y2K(J ~(J 

2.3.2	 Spatial Prior 

The MRF prior states that the firing . .'lv- at velocity v depends only on the firing at 

neighboring velocities. A simple choice of prior model for the distribution of t::.g is 

Gaussian distribution. namely. 

gf
Pc(t::.g) = _1 exp (_ (t::. )V'Fff(J 2(J2 

which corresponds to an assumption that the firing rate varies smoothly. 

A closer look at the data leads to "robust" prior: a histogram of the differences 

between adjacent velocities (we have done this separately for rand e but the differ­

ences exhibit the same same spatial statistics and hence the two are combined here) is 
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constructed and then normalized (see Figure 4). The logarithm of the distribution is 

also shown to give more detail about its shape. In particular, the heavy tailed distri­

bution exhibits the same sort of spatial variation observed in images of natural scenes 

(Huang and Mumford, 1999) and implies piecewise smooth data; that is, when there are 

distinct regions of smooth activity with sharp discontinuities between them. This is an 

advantage of nonparametric models over parametric models, in both cosine and related 

models (Georgopoulos et al., 1982; Moran and Schwartz, 1999; Georgopoulos et al., 

2000) they all have infinite smooth directives, none of them can model this piecewise 

smoothness. The data is well fit by Student's t-distribution of degree 3: 

3
2CT

PR(f~.g) = 1r(CT2 + !::>.g2\2 

whose negative logarithm belongs to a family of robust statistical error functions (Black 

and Anandan. 1996) which have been used extensively in machine vision and image 

processing for smoothing data with discontinuities (Black and Rangarajan. 1996: Geman 

and McClure. 1987). 

Here CT is the smoothing parameter. The optimal value of CT is computed for each 

cell using cross validation. More detailed description is in 2.5. 

2.3.3 MAP estimate 

Missing data is a computational problem here because of the sparse sampling of the 

state space. we impute the average conditional mean rate as the initial guess before 

computing the MAP estimate. 

The solution to the Gaussian+Gaussian (i.e. Gaussian likelihood and Gaussian 

prior) model can be computed in closed form but for the Poisson+Robust model no 

closed form solution for g exists and an optimal Bayesian estimate could be achieved 

with simulated annealing (Geman and Geman, 1984). Instead, we derive an approx­

imate solution for g in (1) by minimizing the negative logarithm of the distribution 

using standard regularization techniques (Black and Rangarajan, 1996; Terzopoulos, 
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1986; Blake and Zisserman, 1987) with missing data, the learned prior model, and a 

Poisson likelihood term (Nowak and Kolaczyk, 2000). Simple gradient descent (Black 

and Rangarajan, 1996; Blake and Zisserman, 1987) with deterministic annealing pro­

vides a reasonable solution. 

2.4 Principle Component Analysis 

Generally speaking nonparametric models may fit the noise in training data, here we 

further apply Principle Component Analysis (PCA) to the MAP estimate of above 

nonparametric method for dimension reduction, which essentially reduce the variance. 

Each tuning plot of 25 cells is columnized into a 10000 x 1 vector: T i from the training 

data. 5 i from the testing data. a set of principle components or bases {b j } is made 

up by the eigenvectors corresponding to the largest a few eigenvalues of the covariance 

matrix of the Ti 's, the number nb chosen by 80% variance criteria together with the 

descending rate of the eigenvalues. Then each 5 i is projected on the subspace of the 

bases. the coefficients {o,j} arc chosen such that: 

10000 nb 

min L NCu) (5;('u) - Lo'jbj (v))2 
~=1 j=1 

whereu is the state index. NCu) is the frequency of visiting state v. Note the weighted 

SUIll of squared enol' is used here to put more confidence on the states with more 

measmes. The projection 5 i of 5 i is then 

nb 

Si(V) = L aAi(v) 
j=1 

the noise reduced tuning plot we are seeking after reshaped into the usual square matrix. 

2.5 Evaluation 

To have a quantitative comparison of various models, we use the log likelihood criteria 

with cross-validation. More specifically, during cross-validation, each time 10 trials 
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out of 180 are left out for testing and models are fit on the remaining training data, 

yielding estimated conditional mean rate A(V), then on test data set we compute the 

log likelihood of the observed spike counts given the model. This provides a measure 

of how well the model captures the statistical variation in the training set. The whole 

procedure is repeated 18 times for different test data sets. 

Additionally, the sparse sampling of each trial determines the heterogeneity of the 

log likelihood results, hence only comparison on the same trial is valid, or equivalently 

taking log likelihood ratio (LLR) of two methods on each trial, that is: 

PI' (observed firing Imodel 1) ) 
LLR(modell. model 2) = log ( PI' (observed firing I model 2) 

Then to test whether one model is significantly better than the other. we apply a 

nonparametric test -~ Wilcoxon signed rank test (Splus, MathSoft Inc .. WA) since the 

histogram of these 18 numbers usually are not fit by any parametric probability density 

functions. 

The likelihood used here is by assuming independent Poisson distri bution of the bin 

counts. each bin with the predicted mean obtained by A(v) plug in observed velocity. 

The validness of this assumption is tested by goodness of fit of the residues to Gaussian 

distribu tion after normalization. namely: 

3 c;~ - A(V;) ~ 
T; = ­ 1 

2 A(V;)6 

where c; is observed count of a bin. here Anscombe residual is used instead of Pear­

son residual Cr; = C~) because of the high skewness of Poisson with small mean 
'\(V;) 

(McCullagh and NeIder, 1989) . 22 out of 25 cells have p-value L the other three have 

p-value < 10-4 . Overall this is a fine assumption. 
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Figure 5: Estimated firing rate for cells in Figure 3 using different models. 

Results 

Various models (cosine. a modified cosine (Moran and Schwartz. 1999). Gaussian+Gaussian. 

Poisson+Robust and PCA of Poisson+Robust) are fit to the training data. 

Observe that the patteI'll of firing is not Gaussian. Moreover. some cells appear to 

be tuned to motion direction. e. and not to speed. ,.. resulting in vertically elongated 

pattems of firing. Other cells (e.g. cell 19) appear to be tuned to particular directions 

and speeds: this type of activity is not well fit by the parametric models. 

The PCA yields surprisingly small amount of principle components. the first 4 eigen­

values count for about 80% of the variance, with the steepest descending rate between 

the first and the second ones. 

The bases confirmed that neurons are coding both direction as well as speed. The 

first principle component is low speed tuning with no distinction on directions, the rest 

three are direction tuning with different phases. 
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Figure 6: PCA of Poisson+Robust plot. (a) the eigenvalues; (b) the first four principle 

components. 

Method: Log Likelihood Ratio p-value 

G+G over Cosine 24.9181 7.6294e-06 

G+G over MIS 15.8333 0.0047 

P+R over Cosine 50.0685 7.6294e-06 

P+R over MIS 32.2218 7.6294e-06 

PCA of P+R over P+R 233.6086 7.6294e-06 

Table 1: Log likelihood ratio of pairs of models and the significance level by Wilcoxon 

signed rank test 

Table 1 shows a quantitative comparison using cross-validation. The positive val­

lIes in Table 1 indicate that the non-parametric models do a better job of explaining 

new data than the parametric models with the Poisson+ Robust fit providing the best 

description of the data, and PCA post-processing has a significant improvement. This 

P+R model implies that the conditional firing rate is well described by regions of smooth 

activity with relatively sharp discontinuities between them. 
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4 Discussion 

The better fit of nonparametric models and the great improvement of PCA are not 

surprising. It can be well explained from the Bias/Variance (Geman et at., 1992) point 

of view, which says the total error given a data set can be decomposed as bias and 

variance; bias is systematic error of the estimate, variance describes the dependence 

of the estimate on a particular realization of the data set. Here parametric models 

have strong bias of how the firing is coding movements and very little variance of the 

parameter fitting, hence they lose all the variabilities of different cells and different 

representations. By increasing the number parameters, such as Georgopoulos et oJ 

(2000). it allows more variability, hence it will definitely do better. Nonparametric 

models are model-free. so no bias at all. but they have high variance. i.e. the model 

can fit the noise of training data. so different realizations can lead to very different 

estimate. The reason why nonparametric models are doing better than parametric 

models here is because they reduce the strong bias of the parametric lllodels with a 

slight increase in variance and hence achieve a lower total error. PCA reduces the 

variance of nonparametric models without increasing much of the bias. so it increases 

the log likelihood significantly. 

Besides data fitting. non parametric models are saying the cells have much lllore 

variabilities than as described by the cosine model. Cells can be direction as well as 

speed tuned. or mixture of both, or even more variables which modeling is currently 

inhibited by the limited amount of data. The simple cosine tuning model is a good 

starting point but definitely not the end. 
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