
An Efficient Dynamic and Distributed Cryptographic Accumulator

JASMINKA HASIC

in collaboration with Roberto Tamassia and Michael T. Goodrich

May 13,2002

Abstract

We show how to use the RSA one-way accumulator to realize an efficient and dynamic authenti­
cated dictionary, where untrusted directories provide cryptographically verifiable answers to member­
ship queries on a set maintained by a trusted source. Our accumulator-based scheme for authenticated
dictionaries supports efficient incremental updates of the underlying set by insertions and deletions of
elements. Also, the user can optimally verify in constant time the authenticity of the answer provided
by a directory with a simple and practical algorithm. In particular, we show how to perform updates
and queries in 0(n1/ 2) time while keeping the constant-time verification algorithm exactly the same as
in previous inefficient schemes. In addition, at the expense of slightly increasing the conceptual com­
plexity of the verification, we show that there is an accumulator-based approach to the authenticated
dictionary problem that achieves O(nE)-time performance for updates and queries, while keeping 0(1)
verification time, where E is any fixed constant such that E > O. This work has applications to certificate
management in public key infrastructure and end-to-end integrity of data collections published by third
parties on the Internet.

Keywords authenticateddictionary,one-wayaccumulator,certificaterevocation,third-partydata pub­
lication, authenticationof cached data, dynamic data structure

1 Introduction
Modem distributed transactions often operate in an asymmetric computational environment. Typically,
client applications are deployed on small devices, such as laptop computers and palm devices, whereas
the server side of these applications are often deployed on large-scale multiprocessors. Moreover, several
client applications communicate with these powerful server farms over wireless connections or slow modem­
speed connections. Thus, distributed applications are facilitated by solutions that involve small amounts of
computing and communication on the client side, without overly burdening the more-powerful server side
of these same applications. The challenge we address in this paper is how to incorporate added levels of
information assurance and security into such applications without significantly increasing the amount of
computation and communication that is needed at the client (while at the same time keeping the computa­
tions on the servers reasonable).

A major aspect of our approach to this challenge is to replicate the computations of servers throughout
mirror sites in the network, so as to reduce the network latency experienced by users in their client appli­
cations. This approach is used, for example, by Akamai Technologies to push images and other content to
web servers that are close to client browsers. Thus, a user will in general be much closer to one of these
mirror sites than to the source of the service, and will therefore experience a faster response time from a
mirror than it would by communicating directly with the source. In addition, by off-loading user servicing
from the source, this distributed scheme protects the source from denial-of-service attacks and allows for

1

entries, and design specifications for content providers who wish to outsource the business of publishing
this information and processing transactions involving it. In this case, the players in our framework are as
follows: the source is a trusted organization (e.g., a stock exchange) that produces and maintains integrity­
critical content (e.g., stock prices) and allows third parties (e.g., Web portals), to publish this content on the
Internet so that it widely disseminated. The publishers store copies of the content produced by the source
and process queries on such content made by the users. In addition to returning the result of a query, a
publisher also returns a proof of authenticity of the result, thus providing a validation service. Publishers
also perform content updates originating from the source. Even so, the publishers provide this added value
and are able to charge for it without the added cost of deploying all the mirror sites in high-security firewall­
protected environments. Indeed, the publishers are not assumed to be trustworthy, for a given publisher may
be processing updates from the source incorrectly or it may be the victim of a system break-in.

Another application ofthe authenticated dictionary is in certificate revocation [27,36,37, 1, 13,25,21],
where the source is a certification authority (CA) that digitally signs certificates binding entities to their
public keys, thus guaranteeing their validity. These certificates are then used to authorize secure socket layer
(SSL) connections to e-stores and business-to-business exchanges. Nevertheless, certificates are sometimes
revoked (e.g., if if a private key is lost or compromised, or if someone loses their authority to use a particular
private key). Thus, the user of a certificate must be able to verify that a given certificate has not been
revoked. To facilitate such queries, the set of revoked certificates is distributed to certificate revocation
directories, which process revocation status queries on behalf of users. The results of such queries need to
be trustworthy, for they often form the basis for electronic commerce transactions.

Finally, we highlight how authenticated dictionaries could be used in military and research applications,
for they could be used for the authenticated querying of information repositories, such as coalition doc­
uments, mission logs, genomic databases [26], and astrophysical databases (like the object catalog of the
Sloan Digital Sky Survey [30, 12,31]). Given the significant defense and scientific benefits that can result
.from such querying, users need to be certain that the results of their queries are accurate and current.

1.3 Previous Related Work

Authenticated dictionaries are related to research in distributed computing (e.g., data replication in a net­
work [7, 29]), data structure design (e.g., program checking [8, 10, 11,41] and memory checking [9, 19]),
and cryptography (e.g., incremental cryptography [4,5, 19,20]).

Previous additional work on authenticated dictionaries has been conducted primarily in the context of
certificate revocation. The traditional method for certificate revocation (e.g., see [27]) is for the CA (source)
to sign a statement consisting of a timestamp plus a hash of the set of all revoked certificates, called cer­
tificate revocation list (CRL), and periodically send the signed CRL to the directories. A directory then
just forwards that entire signed CRL to any user who requests the revocation status of a certificate. This
approach is secure, but it is inefficient, for it requires the transmission of the entire set of revoked certifi­
cates for both source-to-directory and directory-to-user communication. Thus, this solution is clearly not
size-oblivious, and even more recent modifications of this solution, which are based on delta-CRLs [16], are
not size-oblivious.

Micali [36] proposes an alternate approach, where the source periodically sends to each directory the
list of all issued certificates, each tagged with the signed timestamped value of a one-way hash function
(e.g., see [40]) that indicates if this certificate has been revoked or not. This approach allows the system to
reduce the size of the query authentication information to O(1) words: namely just a certificate identifier and
a hash value indicating its status. Unfortunately, this scheme requires the size of the update authentication
information to increase to 8(N), where N is the number of all nonexpired certificates issued by the certifying
authority, which is typically much larger than the number n of revoked certificates. It is size-oblivious for
immediate queries, but cannot be used for time stamping for archiving purposes, since no digest of the

3

The rest of this paper is organized as follows. In Section 2 we review the exponential accumulator [6]
and other concepts used in our approach. We also present some basic tools that are used in the rest of
the paper, including a description of a straightforward application of the exponential accumulator to the
authenticated dictionary problem. We describe an improvement of this scheme that gives constant query and
verification times but linear update time in Section 3. This improvement, called precomputed accumulations,
consists of an efficient precomputation by the source of auxiliary data used by the directories to speed­
up query processing. In Section 4, we present our complete solution, which uses a second improvement,
called parameterized accumulations, to achieve a variety of tradeoffs between the query and update times,
while preserving constant verification time by the user. For example, we can balance the two times and
achieve O(vn) query and update time and O(1) verification time. An alternative solution is presented in
Section 5, where we present the parameterized accumulations scheme. This scheme, suitable for large
data sets, achieves O(nE) query and update time and 0(1) verification time, where E is any fixed constant
such that E > O. Section 6 discusses the security of our scheme. Finally, concluding remarks are given in
Section 8.

Throughout the rest of this paper, we denote with n the current number of elements of the set S stored
in the authenticated dictionary. Also, we describe the validation of positive answers to membership queries
(i.e., validating e E S). The validation of negative answers (i.e., validating e rf. S) can be handled with a
standard method, as discussed in Section 8.

2 Preliminaries
In this section, we discuss some important cryptographic concepts used in our approach.

2.1 One-Way Accumulators

An important tool for our scheme is that of one-way accumulator functions [6,3,22,39]. Such a function
allows a source to digitally sign a collection of objects as opposed to a single object.

The use of one-way accumulators originates with Benaloh and de Mare [6]. They show how to utilize an
exponential one-way accumulator, which is also known as an RSA accumulator, to summarize a collection
of data so that user verification responses have constant-size. Refinements of the RSA accumulator used
in our construction are given by Baric and Pfitzmann [3], Gennaro, Halevi and Rabin [22], and Sander,
Ta-Shma and Yung [39].

As we show in the next section, the RSA accumulator can be used to implement a static authenticated
dictionary, where the set of elements is fixed. However, in a dynamic setting where items are inserted and
deleted, the standard way of utilizing the RSA accumulator is inefficient. Several other researchers have also
noted the inefficiency of this implementation in a dynamic setting (e.g., see [40]). Indeed, our solution can
be viewed as refuting this previous intuition to show that a more sophisticated utilization of the exponential
accumulator can be made to be efficient even in a dynamic setting.

The most common form of one-way accumulator is defined by starting with a "seed" value Yo, which
signifies the empty set, and then defining the accumulation value incrementally from Yo for a set of values
X = {Xl,'" ,Xn}, so that Yi = f(Yi-l ,Xi), where f is a one-way function whose final value does not depend
on the order of the Xi'S (e.g., see [6]). In addition, one desires that Yi not be much larger to represent than
Yi-], so that the final accumulation value, Yn, is not too large. Because of the commutative nature of f,
a source can digitally sign the value of Yn so as to enable a third party to produce a short proof for any
element Xi belonging to X-namely, swap x, with XI! and recompute Yn-l from scratch-the pair (Xj,Yn-d is
a cryptographically-secure assertion for the membership of Xi in set X.

A well-known example of a one-way accumulator function is the exponential accumulator,

exp(y,x) = / mod N, (1)

5

Recall from Section 2.3 that picking a random solution takes O(k2) bit operations. Thus, the total
running time of finding a suitable prime is equal to running O(k2) primality tests.

One needs to be careful about choice of primality test because it could happen that the cost of prime
generation and verification dominates the cost of signing. One could use Miller-Rabin test, for example.
To reduce the probability of mistaking a composite number for a prime one could perform a number of
additional Miller-Rabin tests. Performing these tests could be costly. Fortunately, Cramer and Shoup [17]
give a fast primality testing algorithm that can be used here. It does additional tests between runs of Miller­
Rabin algorithm that reduce the primality checking time. They also state that empirical runs of algorithm
indicate running times that are suitable for signing schemes.

2.5 The Strong RSA Assumption

The proof of security of our scheme uses the strong RSA assumption, as defined by Baric and Pfitzmann [3].
Given N and x E ZN' the strong RSA problem consists of finding integers j, with 2 ~ j < N, and a, such that
we have af = x. The difference between this problem and the standard RSA problem is that the adversary is
given the freedom to choose not only the base a but also the exponent j.

Strong RSA Assumption: There exists a probabilistic algorithm B that on input 1r outputs an
RSA modulus N such that, for all probabilistic polynomial-time algorithms D, all c > 0, and
all sufficiently large r, the probability that algorithm D on a random input x E ZN outputs a and
j 2: 2 such that af = x mod N is no more than r»,

In other words, given N and a randomly chosen element x, it is infeasible to find a and j such that af =
xmodN.

2.6 A Straightforward Accumulator-Based Scheme

Let S = {el' e2, ... ,en} be the set of elements stored at the source. Each element e is represented by k bits.
The source chooses strong primes [33] p and q that are suitably large, e.g., p,q > 2~k. It then chooses a
suitably-large base a that is relatively prime to N = pq. Note that N is at least 23k • It also chooses a random
hash function h from a two-universal family as discussed in Section 2.3). The source broadcasts a, Nand
h to the directories and users, but keeps the p and q secret. For each element e, of S, the source computes
the representative of ei, denoted Xi, where Xi is a prime chosen as described in Section 2.4. The source then
combines the representatives of the elements by computing the RSA accumulation

and broadcasts to the directories a signed message (A,t), where t is a current timestamp.

2.6.1 Query

When asking for proof of membership of ei, the user submits e, to a directory. To prove that some query
item e, is in S, the directory computes the value

(2)

That is, Ai is the accumulation of all the representatives of the elements of S besides Xi and is said to be the
witness of e.. After computing Ai, the directory then returns to the user the representative Xi, the witness
Ai and the pair (A, t), signed by the source. Computing witness Ai is no trivial task for the directory, for it
must perform n - 1 exponentiations to answer a query. Making the simplifying assumption that the number
of bits needed to represent N is independent of n, the computation performed to answer a single query takes
O(n) time. Note that the message sent to the user has constant size; hence, this scheme is size-oblivious.

7

J'

We can process updates faster than O(nlogn) time, however, by enlisting the help of the source. Our
method in fact can be implemented in O(n) time by a simple two-phase approach. The details for the two
phases follows.

3.1 First Phase

Let S be the set of n items stored at the source after performing all the insertions and deletions required in the
previous time interval. Build a complete binary tree T "on top" of the representative values of the elements
of S, so that each leaf of T is associated with the representative Xi of an element e, of S. In the first phase,
we perform a post-order traversal of T, so that each node v in T is visited only after its children are visited.
The main computation performed during the visit of a node v is to compute a value x(v). If v is a leaf of T,
storing some representative Xi, then we compute

XCv) +-Xi mod <p(N).

If v is an internal node of T with children u and w (we can assume T is proper, so that each internal node
has two children), then we compute

xCv) +-x(u)x(w) mod <p(N).

When we have computed x(r), where r denotes the root of T, then we are done with this first phase. Since a
post-order traversal takes O(n) time, and each visit computation in our traversals takes 0(1) time, this entire
first phase runs in O(n) time.

3.2 Second Phase

In the second phase, we perform a pre-order traversal of T, where the visit of a node v involves the compu­
tation of a value A (v). The value A(v) for a node v is defined to be the accumulation of all values stored at
nodes that are not descendents of v (including v itself if v is a leaf). Thus, if v is a leaf associated with the
representative value Xi of some element of S, then A(v) = Ai. Recall that in a pre-order traversal we perform
the visit action on each node v before we perform the respective visit actions for v's children. For the root,
r, of T, we define A(r) = a. For any non-root node v, let z denote v's parent and let w denote v's sibling (and
note that since T is proper, every node but the root has a sibling). Given A(z) and x(w), we can compute the
value A(v) for vas follows:

A(v) +-A(zY(w) mod N.

By Corollary 2, we can inductively prove that each A(v) equals the accumulation of all the values stored
at non-descendents of v. Since a pre-order traversal of T takes O(n) time, and each visit action can be
performed in 0(1) time, we can compute all the Ai witnesses in O(n) time. Note that implementing this
algorithm requires knowledge of the value <p(N), which presumably only the source knows. Thus, this
computation can only be performed at the source, who must transmit the updated Ai values to the directory.

The performance of the precomputed accumulation scheme is summarized in Table 2.

space insertion time deletion time update info query time query info verify time

O(n) O(n) O(n) O(n) 0(1) 0(1) 0(1)

Table 2: Precomputed accumulation scheme for implementing an authenticated dictionary with an exponen­
tial accumulator.

The precomputed accumulations approach supports constant-time queries and linear-time updates. If n
is large, however, and updates occur frequently, then the linear-time computations at the source can take a

9

where Xmis the representative of em' Thus, a directory can answer a query in O(njp) time.
The performance of the parameterized accumulation algorithm is summarized in Table 3.

space insertion time deletion time update info query time query info verify time

O(n) O(p+n/p) O(p+n/p) O(p) O(n/p) 0(1) 0(1)

Table 3: Parameterized accumulations scheme for implementing an authenticated dictionary using an expo­
nential accumulator. We denote with p an integer such that I ~ P ~ n.

The parameter p allows us to balance the performance between the source and the directories, and
also between the cost for an update and the cost for performing queries. For example, we can balance
performance equally by setting p = rJill, which implies that both queries and updates in this scheme take
O(Vii) time. Note that for reasonable values of n, say for n between 10,000 and 1,000,000, Vii is between
100 and 1,000. In many cases, this is enough of a reduction to make the dynamic exponential accumulator
practical for the source and directories, while still keeping the user computation to be one exponentiation
and one signature verification. Indeed, these user computations are simple enough to even be embedded in
a smart card, a PDA, or mobile phone.

4.2 Improving the Update Time for the Source

We describe in this section how the source can further improve the performance of an update operation in
the parameterized scheme. Recall that in this scheme the set S is partitioned into p subsets, YI, Y2,"" Yp ,

and the source maintains for each Yj a value B], on behalf of the directories, that is the accumulation of
all the values not in Yj' Also recall that, for each group Yj, we let Yj denote the product of the items in Yj
modulo <I>(N). In the algorithm description above, the source recomputes Yj from scratch after any update
occurs, which takes O(njp) time. In this section we describe how this can be done in O(log(njp)) time.

The method is for the source to store the elements of each Yj in a balanced binary search tree. For each
internal node w in Tj, the source maintains the value y(w), which is the product of all the items stored at
descendents of w, modulo <I>(N). Thus, y(r(Tj)) = Yj, where r(1j) denotes the root of Tj. Any insertion
or deletion will affect only O(1og(njp)) nodes w in Tj , for which we can recompute their x(w) values in
O(log(njp)) total time. Therefore, after any update, the source can recompute a Yj value in O(log(njp))
time, assuming that the size of the Y/s does not violate the size invariant. Still, if the size of Yj after an
update violates the size invariant, we can easily adjust it by performing appropriate splits and joins on the
trees representing Yj, Yj_l, and/or Yj+I. Moreover, we can rebuild the entire set of trees after every Oin]p)
updates, to keep the sizes ofthe Yj sets to be O(njp), with the cost for this periodic adjustment (which will
probably not even be necessary in practice for most applications) being amortized over the previous updates.
This performance of the resulting scheme is summarized in Table 4.

space insertion time deletion time update info query time query info verify time
O(n) O(p+log(n/p)) O(p + log(n/p)) O(p) O(n/p) 0(1) 0(1)

Table 4: Enhanced parameterized scheme for implementing an authenticated dictionary using an exponential
accumulator. We denote with p an integer such that I ~ P ~ n.

In this version of our scheme, we can achieve a complete tradeoff between the cost of updates at the
source and queries at the directories. Tuning the parameter p over time, therefore, could yield the optimal
balance between the relative computational powers of the source and directories. It could also be used to
balance between the number of queries and updates in the time intervals.

11

space insertion time deletion time update info query time query info verify time

O(n) O(nE) O(nE) O(nE) O(nE) 0(1) 0(1)

Table 5: Hierarchical accumulations scheme for implementing an authenticated dictionary with an exponen­
tial accumulator, where 0 < E < 1 is a fixed constant.

The hierarchical accumulations scheme is likely to outperform in practice the parameterized accumula­
tions scheme only for large-scale authenticated dictionaries (say, containing billions of entries), where the
difference between nl/{c+l) and n l/2 is significant and offsets the added complication of changing the client
code and introducing the (c + 1)-level accumulation hierarchy

Theorem 5: The hierarchical accumulations scheme for implementing an authenticated dictionary over a
set of size n uses O(n) space and has the following performance, for a given constantE such that 0 < E < 1:

• the insertion and deletion times areO(nE
)) ;

• the update authentication information has size O(nE
) ;

• the query time is O(nE
) ;

• the query authentication information has size O(1); and

• the verification time is O(1).

6 Security
We now show that an adversarial directory cannot forge a proof of membership for an element that is not
in S. Our proof follows a closely related constructions given in [22, 39]. A very important property of the
scheme comes from representing elements e of set S with prime numbers x. If the accumulator scheme was
used without this stage, the scheme would be insecure. An adversarial directory could forge the proof of
membership for all divisors of elements whose proofs it has seen.

Theorem 6: In scheme defined in Section 2, underthe strongRSA assumption, a directory whose resources
arepolynomially bounded,can produce a proof ofmembership only for the elements thatarein S.

Proof: Our proof is based on related proofs given in [22, 39]. Assume an adversarial directory D has seen
proofs of membership for all the elements el ,e2, .. ' en of S. The trusted source has computed representatives
XI,X2"",Xn as suitable primes defined in Section 2.4. The witnesses AI,A2 ... ,An have been computed
as well, either solely by the trusted source, or by balancing the work between the trusted source and the
directories. The trusted source has distributed a signed pair (A,t). By the definition of the scheme, for all
1 '5: i '5: n,

• Xi is the prime representative of ei E S,

• .Ji3k < Xi < 23k (this is one of the conditions from Section 2.4),

• A~i modN=A.I

We need to show that directory D cannot come up with a triplet (en+l ,xn+l ,An+l) proving the member­
ship of a an element en+l that is not in the set S already. The proof is by contradiction. Suppose that D
has has found a triplet (en+l ,xn+1 ,An+l)' Then the following must hold and is checked by the user (it is not
necessary for xn+I to be a prime):

• .Ji3k < Xn+I < 23k

• h(xn+tl = en+l
• AXn+! mod N =An+l

13

" I • 7 • • 10
.. 10'

Figure 3: Insert,Quary,Remove

Figure 4 shows the effect of partitioning in the case when central authority performs all the work:

Figure 4: Partioning vs Not

The performance of the overall scheme can be adjusted according to the available resources. The more
work that the central authority can perform, the better overall performance. But the amount of work that
the central authority can perform if dependent on the update interval. Thus all these parameters need to be
accounted for when making choices for the partitioning of the dictionary.

8 Discussion and Conclusion
We have shown how to make the exponential accumulator function the basis for a practical and efficient
scheme for authenticated dictionaries, which relies on reasonable cryptographic assumptions similar to those
that justify RSA encryption. A distinctive advantage of our approach is that the validation of a query result
performed by the user takes constant time and requires computations (a single exponentiation and digital
signature verification) simple enough to be performed in devices with very limited computing power, such
as a smart card or a mobile phone.

An important aspect of our scheme is that it is dynamic and distributed, thus supporting efficient updates
and balancing the work between the source and the directories. A first variation of our scheme achieves a
complete tradeoff between the cost of updates at the source and of queries at the directories, with updates
taking O{p+log{njp)) time and queries taking O{njp) time, for any fixed integer parameter 1:::; p:::; n.
For example, we can achieve O{y'n) time for both updates and queries. A second variation of our scheme,
suitable for large data sets, achieves O{nE)-time performance for updates and queries, while keeping O(1)
verification time, where E. > 0 is any fixed constant.

Our scheme can be easily adapted to contexts, such as certificate revocation queries, where one needs
to also validate that an item e is not in the set S. In this case, we use the standard method of storing in the

15

[12]	 R. 1. Brunner, L. Csabai, A. S. Szalay, A. Connolly, G. P. Szokoly, and K. Ramaiyer. The science
archive for the Sloan Digital Sky Survey. In Proceedings ofAstronomical Data Analysis Software and
Systems Conference V, 1996.

[13]	 A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management using undeniable attestations.
In ACM Conference on Computer and Communications Security, pages 9-18. ACM Press, 2000.

[14]	 I. L. Carter and M. N. Wegman. Universal classes of hash functions. In Proc. ACM Symp. on Theory
ofComputing, pages 106-112, NY, 1977. Association for Computing Machinery.

[15]	 R. Cohen, M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Authenticated data structures for graph
and geometric searching. Technical report, Center for Geometric Computing, Brown University, 2001.
http://www.cs.brown.edulcgc/stmslpapers/authDatStr.pdf.

[16]	 D. A. Cooper. A more efficient use of delta-CRLs. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy, pages 190-202,2000.

[17]	 R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In ACM Conference
on Computer and Communications Security, pages 46-51, 1999.

[18]	 P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-party data publication. In
Fourteenth IFIP 11.3 Conference on Database Security, 2000.

[19]	 Fischlin. Incremental cryptography and memory checkers. In EUROCRYPT: Advances in Cryptology:
Proceedings ofEUROCRYPT, LNCS 1233, pages 393-408, 1997.

[20]	 M. Fischlin. Lower bounds for the signature size of incremental schemes. In 38th Annual Symposium
on Foundations ofComputer Science, pages 438-447, 1997.

[21]	 I. Gassko, P. S. Gemmell, and P. MacKenzie. Efficient and fresh certification. In International Work­
shop on Practice and Theory in Public Key Cryptography '2000 (PKC '2000), Lecture Notes in Com­
puter Science, pages 342-353, Melbourne, Australia, 2000. Springer-Verlag, Berlin Germany.

[22]	 R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In
Advances in Cryptology: Proc. EUROCRYPT, volume 1592 of Lecture Notes in Computer Science,
pages 123-139. Springer-Verlag, 1999.

[23]	 M. T. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip lists and commutative
hashing. Technical Report, Johns Hopkins Information Security Institute, 2000.

[24]	 M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictionary with
skip lists and commutative hashing. In Proc. 2001 DARPA Information Survivability Conference and
Exposition, volume 2, pages 68-82,2001.

[25]	 C. Gunter and T. Jim. Generalized certificate revocation. In Proc. 27th ACM Symp. on Principles of
Programming Languages, pages 316-329, 2000.

[26]	 R. M. Karp. Mapping the genome: Some combinatorial problems arising in molecular biology. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, pages 278­
285,1993.

[27]	 C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Communication in a Public
World. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[28]	 P. C. Kocher. On certificate revocation and validation. In Proc. International Conference on Financial
Cryptography, volume 1465 of Lecture Notes in Computer Science, 1998.

[29]	 B. Kroll and P. Widmayer. Distributing a search tree among a growing number of processors. SIGMOD
Record (ACM Special Interest Group on Management ofData), 23(2):265-276, 1994.

[30]	 R. Lupton, F. M. Maley, and N. Young. Sloan digital sky survey. http://www.sdss.orglsdss.html.

17

