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ABSTRACT
One way that software transactional memory implementa-
tions attempt to reduce synchronization conflicts among trans-
actions is by supporting different kinds of access modes.
One such implementation, Dynamic Software Transactional
Memory (DSTM), supports three kinds of memory access:
WRITE mode, which allows an object to be observed and
modified, READ mode, which allows an object to be ob-
served but not modified, and TEMP mode, which allows an
object to be observed for a limited duration.

In this paper, we examine the relative performance of
these modes for simple benchmarks on a small-scale mul-
tiprocessor. We find that on this platform and for these
benchmarks, the READ and TEMP mode implementations
do not substantially increase transaction throughput (and
sometimes reduce it). We blame the extra bookkeeping in-
herent in these modes.

In response, we propose a new SNAP access mode. This
mode provides almost the same behavior as TEMP mode,
but admits much more efficient implementations.

1. INTRODUCTION
Dynamic Software Transactional Memory (DSTM) [7] is

an application programming interface for concurrent compu-
tations in which shared data is synchronized without using
locks. DSTM manages a collection of transactional objects,
which are accessed by transactions. A transaction is a short-
lived, single-threaded computation that either commits or
aborts. If the transaction commits, then these changes take
effect; otherwise, they are discarded. A transactional ob-
ject is a container for a regular Java object. A transac-
tion can access the contained object by opening the trans-
actional object, and then reading or modifying the regular
object. Changes to objects opened by a transaction are not
visible to other transactions until the transaction commits.
(Changes are discarded if the transaction aborts.) Trans-
actions are linearizable [8]: they appear to take effect in a
one-at-a-time order.
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If two transactions open the same object at the same time,
a synchronization conflict occurs, and one of the conflict-
ing transactions must be aborted. To reduce synchroniza-
tion conflicts, an object can be opened in one of several
access modes. An object opened in WRITE mode can be
read or modified, while an object opened in READ mode
can only be read. WRITE mode conflicts with both READ
and WRITE modes, while READ mode conflicts only with
WRITE.

DSTM also provides TEMP mode, a special kind of read-
only mode that indicates that the transaction may release
the object before it commits. Once such an object has been
released, concurrent accesses of any kind do not cause syn-
chronization conflicts. It is the programmer’s responsibility
to ensure that releasing objects does not violate transaction
linearizability.

The contribution of this paper is to examine the effec-
tiveness of these access modes on a small-scale multipro-
cessor. We find that the overhead associated with READ
and TEMP modes mostly outweighs any advantage in re-
ducing synchronization conflict. To address this issue, we
introduce a novel SNAP (snapshot) mode, an alternative to
TEMP mode with much lower overhead. SNAP mode pro-
vides almost the same behavior as TEMP, but much more
efficiently.

2. RELATED WORK
Transactional memory was originally proposed as a hard-

ware architecture [6, 16], and continues to be the focus of
hardware-oriented research [13]. There have also been sev-
eral proposals for software transactional memory and similar
constructs [2, 1, 9, 12, 15]. Others [10, 14] have studied the
performance of read/write locks.

An alternative approach to software transactional mem-
ory (STM) is due to Harris and Fraser [5]. Their STM
implementation is word-based : the unit of synchronization
is a single word of memory. An uncontended transaction
that modifies N words requires 2N + 1 compare-and-swap
calls. Fraser [4] has proposed a FSTM implementation that
is object-based : the unit of synchronization is an object of
arbitrary size. Here, an uncontended transaction that mod-
ifies N objects also requires 2N +1 compare-and-swap calls.
Herlihy et al. [7] have proposed an object-based DSTM
implementation, described below, in which an uncontended
transaction that modifies N objects requires N +1 compare-
and-swap calls, but sometimes requires traversing an addi-
tional level of indirection. In both object-oriented STM im-
plementations, objects must be copied before they can be



modified. Marathe and Scott [11] give a more detailed com-
parison of these STM implementations.

3. DSTM IMPLEMENTATION
Here we summarize the relevant aspects of the DSTM

implementation (a more complete description appears else-
where [7]).

When transaction A attempts to open an object, it may
discover that the object has already been opened by a trans-
action B. A can decide either to back off and give B a chance
to complete, or it can proceed, forcing B to abort. The pol-
icy decision is handled by a separate Contention Manager
module.

Each time a transaction opens an object, it checks whether
it has been aborted by a synchronization conflict, a process
called validation. This check prevents an aborted trans-
action from wasting resources, and also ensures that each
transaction has a consistent view of the transactional ob-
jects.

When a transaction opens a transactional object, it ac-
quires a reference to a version of that object. If the object
is opened in WRITE mode, the transaction may modify that
version, and otherwise it may only observe that version.

Opening an object in WRITE mode requires creating a
new version (by copying the old one) and executing a compare-
and-swap instruction. When an object is opened in READ
mode, the transaction simply returns a reference to the most
recent committed version. The transaction records that ref-
erence in a private read table. To validate, the transaction
checks whether each of its version references is still current.
This implementation has the advantage that reading does
not require an expensive compare-and-swap instruction. It
has two disadvantages: validation takes time linear in the
number of objects read, and the contention manager can-
not tell whether an object is open in READ mode. For this
reason, we call this implementation the invisible read.

Because of these disadvantages, we devised an alterna-
tive READ mode implementation, which we call the visible
read. This implementation is similar to WRITE mode, ex-
cept that it does not copy the current version, and the object
keeps a list of reading transactions. Validating a transaction
takes constant time, and reads are visible to the contention
manager. Each read does require a compare-and-swap, and
opening an object in WRITE mode may require traversing
a list of prior readers.

Similarly, TEMP mode also has both visible and invisible
implementations. Releasing an object either causes the ver-
sion to be discarded (invisible) or the reader removed from
the list (visible).

4. BENCHMARKS
An IntSet is an ordered linked list of integers providing

insert() and delete() methods. We created three bench-
marks: WRITE, READ, and RELEASE. Each benchmark
runs for twenty seconds randomly inserting or deleting val-
ues from the list. The WRITE benchmark opens each list
element in WRITE mode. The READ benchmark opens
each list element in READ mode until it discovers the el-
ement to modify, which it reopens in WRITE mode. The
RELEASE benchmark opens each element in TEMP mode,
releasing each element after opening its successor (similar to
lock coupling). Each experiment was run using the Polite

Invisible Visible
WRITE 36.6 22.3
READ 4.9 (13.5%) 23.9 (107.3%)
RELEASE 19.9 (54.5%) 21.2 (95.2%)

Table 1: Single-Thread Throughput

contention manager which uses exponential back-off when
conflicts arise. For example, when transaction A is about to
open an object already opened by transaction B, the Polite
contention manager backs off several times, doubling each
expected duration, to give B a chance to finish. If B does
not finish in that duration, then A aborts B, and proceeds.

The benchmarks were run on a machine with four In-
tel Xeon processors. Each processor runs at 2.0 GHz and
has 1 GB of RAM. The machine was running Debian Linux
and each experiment was run 100 times for twenty sec-
onds each. The performance data associated with individ-
ual method calls was extracted using the Extensible Java
Profiler [3]. Each benchmark was run using 1, 4, 16, 32,
and 64 threads. The single-thread case is interesting be-
cause it provides insight into the amount of overhead the
experiment incurred. In the four-thread benchmarks, the
number of threads matches the number of processors, while
the benchmarks using 16, 32, and 64 thread show how the
transactions behave when they share a processor. To control
the list size, the integer values range only from 0 to 255.

5. BENCHMARK RESULTS
Table 1 shows the single-processor throughput (transac-

tions committed per millisecond) for both the invisible and
visible implementations. In the single-thread benchmarks,
there is no concurrency, and hence no synchronization con-
flicts, so the throughput numbers reflect the modes’ inherent
overheads.

To ease comparisons, the READ and RELEASE through-
put numbers are labeled with their percentages of the com-
parable WRITE benchmark. (For example, the invisible
READ’s throughput of 4.9 is 13.5% of the invisible WRITE’s
throughput.)

The invisible WRITE had better throughput than the vis-
ible WRITE, because when the visible WRITE opens an ob-
ject, it checks whether any transaction has the object open
in READ mode. Even though there are no such transactions
(in a single-threaded benchmark), the check takes time. The
invisible READ performed poorly because it validates each
object previously open for READ each time a new object is
opened. The visible READ performed slightly better than
WRITE because it does not need to copy the object version.
The invisible RELEASE performed better than the invisi-
ble READ because it releases objects, and once an object is
released, it no longer needs to be validated.

Table 2 shows the time (in nanoseconds) for common
method calls. The WRITE and “READ & TEMP” rows
show the time needed to open an object in those modes,
the UPGRADE row shows the time needed to upgrade from
READ or TEMP mode to WRITE mode, and the RELEASE
line shows the time needed to release an object opened in
TEMP mode. These timings to not always mirror the bench-
mark throughput numbers because the visible implementa-
tion incurs all its overhead in calls to the open() method,



Invisible Visible
WRITE 180 730
READ &TEMP 280 135
UPGRADE 250 160
RELEASE 90 40

Table 2: Common Method Call Timings (nanosec-
onds)

while the invisible implementation incurs costs each time
the current transaction is validated as a side-effect of other
DSTM calls.

We now turn our attention from single-thread executions,
where overhead dominates, to multi-thread executions, where
we hope to see gains in READ or RELEASE mode due to
reduced synchronization conflicts.

Table 3 shows the transactions-per-millisecond through-
put of the invisible implementation for varying numbers of
threads, and Table 4 does the same for the visible imple-
mentation.

Surprisingly, perhaps, the concurrency allowed in READ
and TEMP did not overcome the overhead in either im-
plementation (with one minor exception). In the invisible
implementation, a transaction takes an excessive amount of
time to traverse the list because it must validate its read-
only table with each DSTM API call. A transaction at-
tempting to insert a large integer may never find the inte-
ger’s position in the list before being aborted. In the visible
implementation, the single-threaded benchmark has a slight
advantage because it does not need to copy the version be-
ing opened. In the multithreaded benchmarks, however, the
visible implementation incurs overhead because it must tra-
verse and prune a non-trivial list of readers.

We ran a number of other experiments, including longer
lists and adding additional delays (“work”) to transactions.
The results, omitted here for brevity, are essentially un-
changed: overall, READ and TEMP modes do not enhance
throughput.

Naturally, these results are valid only for the specific im-
plementation and platform tested here. It may be that plat-
forms with more processors, or a different contention man-
ager, or different internals would behave differently. Never-
theless, to address the problem of increasing throughput on
our four-processor platform, we devised a new SNAP mode
described in the next section.

6. SNAPSHOT MODE
In an attempt to find a low-overhead alternative, we de-

vised a new snapshot mode for opening an object.

public TMCloneable open(SNAP)

throws DeniedException

This method returns a reference to the version that would
have been returned by a call to open(READ). It does not
actually open the object for reading, and the DSTM does
not keep any record of the snapshot. All methods throw
DeniedException if the current transaction has been aborted.

The version argument to the next three methods is a
version reference returned by a prior call to open(SNAP).

public void snapValidate(TMCloneable version)

throws DeniedException, SnapshotException

The call returns normally if a call to open(SNAP) (or open(READ))
would have returned the same version reference. Otherwise,
the call throws a SnapshotException. Throwing this ex-
ception does not abort the current transaction, allowing the
transaction to retry another snapshot.

public TMCloneable

snapUpgradeRead(TMCloneable version)

throws SnapshotException, DeniedException

If the version argument is still current, this method opens
the object in READ mode, and otherwise throws an excep-
tion (SnapshotException).

public TMCloneable snapUpgradeWrite(TMCloneable)

throws SnapshotException, DeniedException

If the version argument is still current, this method opens
the object in WRITE mode, and otherwise throws an ex-
ception (SnapshotException).

Objects opened in TEMP mode are typically used in one
of the following three ways. Most commonly, an object is
opened in TEMP mode and later released. The transaction
will be aborted if the object is modified in the interval be-
tween when it is opened and when it is released, but the
transaction will be unaffected by modifications that occur
after the release.

Entry entry = (Entry)tmObject.open(TEMP);

...

entry.release();

The same effect is achieved by the following code fragment:

Entry entry = (Entry)tmObject.open(SNAP);

...

tmObject.snapValidate(entry);

The first call returns a reference to the object version that
would have been returned by open(TEMP) (or open(READ)),
and the second call checks that the version is still valid.
There is no need for an explicit release because the transac-
tion will be unaffected if that version is changed (assuming
it does not validate again).

Sometimes an object is opened in TEMP mode and never
released (which is equivalent to opening the object in READ
mode). To get the same effect in SNAP mode, the transac-
tion must apply snapUpgradeRead to the object, atomically
validating the snapshot and acquiring READ access.

Finally, an object may be opened in TEMP mode and
later upgraded to WRITE mode. The snapUpgradeWrite()
method provides the same effect.

To illustrate how one might use SNAP mode, figure 1
shows the code for a insert() method based on SNAP
mode. It is not necessary to understand this code in detail,
but there are three lines that merit attention. As the trans-
action traverses the list, prevObject is a reference to the last
transactional object accessed, and lastObject is a reference
to that object’s predecessor in the list. In the line marked
A, the method validates for the last time that lastObject is
still current, effectively releasing it. If the method discovers
that the value to be inserted is already present, then in the
line marked B, it upgrades access to the predecessor entry
to READ, ensuring that no other transaction deletes that
value. Similarly, if the method discovers that the value to be



1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 36.6 35.7 32.9 29.6 24.7
READ 4.9 (13.5%) 1.7 (4.7%) 0.6 (1.7%) 0.5 (1.8%) 0.5 (2.2%)
RELEASE 19.9 (54.5%) 8.5 (23.7%) 4.2 (12.6%) 3.8 (12.8%) 3.7 (15.1%)

Table 3: Invisible Implementation

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 22.3 23.1 21.4 20.0 17.6
READ 23.9 (107.3%) 0.1 (0.3%) 0.2 (0.9%) 0.2 (1.1%) 0.2 (1.2%)
RELEASE 21.2 (95.2%) 0.03 (0.1%) 0.1 (0.7%) 0.2 (1.0%) 0.3 (1.6%)

Table 4: Visible Implementation

inserted is not present, it upgrades access to the predecessor
entry to WRITE, so it can insert the new entry.

The principal benefit of SNAP mode is that it can be im-
plemented very efficiently. This mode is “stateless”, in the
sense that the DSTM run-time does not need to keep track of
versions opened in SNAP mode (unlike READ mode). The
snapValidate, snapUpgradeRead and snapUpgradeWrite calls
simply compare their arguments to the object’s current ver-
sion. Moreover, SNAP mode adds no overhead to transac-
tion validation.

7. SNAP BENCHMARKS
The results of running the same benchmark in SNAP

mode instead of TEMP mode are shown in Tables 5 (in-
visible) and 6 (visible). For both visible and invisible imple-
mentations, SNAP mode has substantially higher through-
put than both READ and TEMP mode. Opening an object
in SNAP mode takes about 100ns, including validation. It
takes about 125ns to upgrade an object opened in SNAP
mode to to WRITE mode.

Even though invisible SNAP mode outperforms invisible
READ and TEMP, it still has lower throughput than in-
visible WRITE. We believe this disparity reflects inherent
inefficiencies in the invisible READ implementation. The
invisible SNAP implementation must upgrade to invisible
READ mode whenever it observes that a value is absent (to
ensure it is not inserted), but transactions that open objects
in invisible READ mode are often aborted, precisely because
they are invisible to the contention manager.

While the result of combining invisible READ and SNAP
modes is disappointing, the result of combining visible READ
and SNAP modes is dramatic: here is the first alternative
mode that outperforms WRITE mode across the board.

To investigate further, we implemented some benchmarks
that mixed “modifying” method calls with “observer” (read-
only) method calls. We introduced a contains() method
that searches the list for a value. We tested benchmarks
in which the percentages of modifying calls (insert() and
delete()) varied were 50% (Table 7), 10% (Table 8), 1%
(Table 9), and 0% (Table 10). Each of the SNAP mode
benchmarks had higher throughput than its WRITE coun-
terpart, and was the only benchmark to do so.

8. CONCLUSIONS
More research is needed to determine the most effective

methods for opening objects concurrently in software trans-
actional memory. We were surprised by how poorly READ
and TEMP modes performed on our small-scale benchmarks.
While our SNAP mode implementation substantially out-
performs both READ and TEMP modes, it is probably
appropriate only for advanced programmers. It would be
worthwhile investigating whether or not a contention man-
agement scheme could increase the throughput of read trans-
actions, or if there are more efficient designs for tracking
objects open for reading.

Notice that the DSTM guarantees that every transaction,
even ones that are doomed to abort, sees a consistent set
of objects. For the invisible read, this guarantee is expen-
sive, because each object read must be revalidated every
time a new object is opened. An alternative approach, used
in Fraser’s FSTM [4], does not guarantee that transactions
see consistent states, but uses periodic checks and handlers
to protect against memory faults and unbounded looping
due to inconsistencies. The relative merits of these two ap-
proaches remains an open topic for further research.



public boolean insert(int v) {
List newList = new List(v);

TMObject newNode = new TMObject(newList);

TMThread thread = (TMThread)Thread.currentThread();

while (thread.shouldBegin()) {
thread.beginTransaction();

boolean result = true;
try {
TMObject lastNode = null;
List lastList = null;
TMObject prevNode = this.first;

List prevList = (List)prevNode.openSnap();

TMObject currNode = prevList.next;

List currList = (List)currNode.openSnap();

while (currList.value < v) {
if (lastNode != null)

/*A*/ lastNode.snapValid(lastList);

lastNode = prevNode;

lastList = prevList;

prevNode = currNode;

prevList = currList;

currNode = currList.next;

currList = (List)currNode.openSnap();

}
if (currList.value == v) {

/*B*/ prevNode.snapUpgradeRead(prevList);

result = false;
} else {
result = true;

/*C*/ prevList = (List)prevNode.snapUpgradeWrite(prevList);

newList.next = prevList.next;

prevList.next = newNode;

}
// final validations
if (lastNode != null)
lastNode.snapValid(lastList);

currNode.snapValid(currList);

} catch (SnapshotException s) {
thread.getTransaction().abort();

} catch (DeniedException d) {
}
if (thread.commitTransaction()) {

return result;

}
}
return false;

}

Figure 1: SNAP-mode insert method



1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 36.6 35.7 32.9 29.6 24.7
READ 4.9 (13.5%) 1.7 (4.7%) 0.6 (1.7%) 0.5 (1.8%) 0.5 (2.2%)
RELEASE 19.9 (54.5%) 8.5 (23.7%) 4.2 (12.6%) 3.8 (12.8%) 3.7 (15.1%)
SNAP 62.4 (170.7%) 16.7 (46.8%) 10.9 (33.2%) 10.2 (34.6%) 9.6 (39.0%)

Table 5: SNAP with Invisible

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 22.3 23.1 21.4 20.0 17.6
READ 23.9 (107.3%) 0.1 (0.3%) 0.2 (0.9%) 0.2 (1.1%) 0.2 (1.2%)
RELEASE 21.2 (95.2%) 0.03 (0.1%) 0.1 (0.7%) 0.2 (1.0%) 0.3 (1.6%)
SNAP 104.8 (469.9%) 62.3 (269.6%) 56.4 (263.2%) 42.2 (210.7%) 37.8 (214.9%)

Table 6: SNAP with Visible

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 22.1 23.0 21.4 19.6 17.2
READ 23.3 (105.6%) 0.2 (0.8%) 0.5 (2.3%) 0.9 (4.8%) 1.1 (6.6%)
RELEASE 20.8 (94.2%) 0.1 (0.4%) 0.5 (2.2%) 0.8 (4.3%) 1.1 (6.3%)
SNAP 108.4 (491.5%) 81.0 (352.1%) 72.4 (337.7%) 59.5 (302.9%) 31.7 (184.0%)

Table 7: Visible with 50% Modification

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 22.3 22.9 20.9 19.4 17.2
READ 23.6 (106.0%) 0.5 (2.3%) 2.8 (13.4%) 3.9 (20.1%) 3.1 (18.2%)
RELEASE 21.1 (94.7%) 0.4 (1.7%) 2.4 (11.7%) 3.2 (16.7%) 3.0 (17.6%)
SNAP 109.7 (491.6%) 86.9 (379.4%) 88.1 (420.7%) 58.3 (300.7%) 19.8 (115.1%)

Table 8: Visible with 10% Modification
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