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Chapter 1

Introduction

In the classic theory of expected utility (see, for example, [14]), an individual faces a decision among

lotteries, or options with uncertain outcomes. For example, if an individual is driving from San

Francisco to NASA Ames Research Center, he might ask himself, “should I take Highway 101 or

Interstate 280?” In making this decision, the individual trades off distance against scenery against

travel time, weighing in the uncertainty about traffic conditions, to estimate the utility of each

option. According to this theory, the decision that is taken is one that maximizes expected utility.

In this paper, we study what we call the meta-choice problem, namely “Given a query, what

set of options should an information retrieval system present to a user?” given that the user is an

expected utility maximizer. Naive solutions to this problem may produce options that satisfy a

typical user’s wants and needs—for example, in the driving directions case, presenting a set of ten

options comprising the ten quickest routes (in expectation). A set of such options, while maximizing

the expected utility of a typical user, is likely to be highly redundant, and thus unsatisfactory across

a diverse user population.

In formulating the meta-choice problem, we propose objectives we believe are more suitable than

maximizing the expected utility of a typical user, and we describe practical algorithms to optimize

these objectives. The output of such algorithms is a small set of diverse options, among which most

users are likely to find a desirable choice. Some specific applications of meta-choice to information

retrieval systems include the following:

• best-1 selection problem: This problem is faced by orbitz.com, for example, whose goal is to

suggest several alternative travel itineraries to a user, even if the user will ultimately take only

one.

• best-k selection problem: This problem is faced by news.google.com, for example, whose goal

is to provide pointers to several articles, preferably coming from different perspectives, in

response to a user’s query about, say, “Saddam Hussein.”

• Search engines: Given the query “python,” return some links about snakes & some about the

comedian, in addition to links about the programming language.

1



2

• Recommender systems: Given the query “laptop, under 3 pounds and under $3,000,” return

some IBMs, some MACs, some Dells, etc.

1.1 Contextual Preferences

Our approach to the meta-choice problem depends on an adequate representation of user preferences.

In multiattribute decision theory [6], preferences are described in terms of various attributes, or

features, of the alternatives: e.g., in the driving example above, relevant attributes may include

distance, scenery, travel time, number of turns, number of lights, and highway time. For some

kinds of decisions, however, this form of representation is far too rigid. Indeed, context-dependent

preferences [13] are an alternative to the classical theory of choice, which relies on the assumption

of stable preferences.

We introduce an alternative context-based representation of user preferences. Formally, a context

is characterized by n discrete attributes. In particular, attribute j takes values in the set Ωj , and the

set of all contexts is given by Ω =
∏n

j=1
Ωj . We assume that the ith context occurs with probability

pi. These probabilities model the fact that sometimes people travel for business, while other times

people travel for pleasure; and sometimes it is sunny, but other times it is raining; etc.

We rely on multiattribute utility functions to describe user preferences. These functions are

defined on the set of options S, where each option ~x ∈ S is characterized by m features (or attributes).

In particular, the utility function Ui : S → R describes the user’s preferences in the ith context. A

simple example of a utility function is, for option x ∈ S, compute a linear combination of x’s feature

values: i.e., Ui(x) = ~wi · ~x =
∑m

k=1
wikxk, for some weighting ~wi of the features. Note that our

contextual representation of preferences is nonlinear.

Our contextual representation of preferences should not be interpreted as a noisy representation

of a user’s true underlying preferences, in which case the user’s optimal choice (or set of choices)

could be computed w.r.t. the expected value of his contextual preferences. Rather, it is designed

to model different contexts under which a user’s optimal choices are truly different. An optimal

solution to the meta-choice problem should be a set of options that satisfies the user in multiple

contexts.

Our contextual representation of preferences is sufficiently general to be used to model either a

single user, in which case each context describes attributes of that user and his environment, or an

entire population of users (where each user is associated with one or many contexts). An information

retrieval system could adopt the former point of view if it had knowledge of the user performing the

search, or the latter if it had knowledge about the user population but not the individual user.

Given contextual preferences, one approach to meta-choice would be to probe the user for his

precise context, and to respond to his query with his preferred option in that context. This explicit

approach, however, would be invasive and potentially annoying to users. Alternatively, in this

paper, we advocate the design of information retrieval systems that solve the meta-choice problem

by optimizing w.r.t. uncertainty over context.
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1.2 Selection Problem

We assume that an individual’s (or population’s) preferences can be constructed by combining

context-dependent utility functions according to the likelihood of each context. Given this contextual

representation of preferences, the objective is to present a set of options to the user in response to a

query that maximizes his utility, in expectation. This expectation is computed with respect to the

uncertainty over contexts. Recall that the context is known only to the user—it is too invasive for

the system to query the user for his context.

We now formally describe one variety of meta-choice, namely the selection problem, and propose

several algorithmic solutions. This setup is not specific to navigation systems, but is applicable to

many information retrieval (IR) systems, including orbitz.com and news.google.com. We describe

the problem and our algorithms with this more general framework in mind.

1.2.1 Formal Problem Statement

Assume the set S of size L� 0 contains all relevant options that might be selected by an IR system

in response to a user’s query. The objective of an IR system is to select some subset T ⊆ S of

options to present to the user. Typically, |T | = l � L. Given this set of options, the user then

chooses T ′ ⊂ T , with |T ′| ≤ l. Before we can define the IR system’s objective function, we must

first make some assumptions about how the user makes his choices. Ultimately, the IR system’s

objective depends on the user’s behavior, which in turn depends on his (contextual) preferences.

We assume the user’s preferences are described by a context-based distribution over multiat-

tribute utility functions. In particular, we are given a probability distribution p over contexts,

where pi denotes the probability of the ith context. Corresponding to each context is a combinato-

rial, multiattribute utility function Ci : 2S → R, which assigns utility to subsets of options.

Our formulation of the selection problem is based on the assumption that the user is a util-

ity maximizer: Given the IR system’s selection T ⊆ S, a utility maximizing user optimizes his

combinatorial utility function over all subsets T ′ ⊆ T of size no more than k.

User Behavior: Given selection T ⊆ S, we assume the user maximizes his combinatorial, multiat-

tribute utility function Ci in the ith context as follows:

max

T ′ ⊆ T

|T ′| ≤ k

Ci(T
′)

Depending on the task at hand (not the context), the assumption that the user is utility maximizing

can give rise to a variety of behaviors. For example, in some tasks, such as news analysis, the user

reads a small (say k) number of articles; in other tasks, such as transportation assistance, the user

picks a single route (k = 1).

Given this assumption about how the user solves his optimization problem, we now state the

selection problem, which is the optimization problem faced by the IR system. If the current context
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is known, say i∗, then the IR system aims to solve the following context-dependent optimization

problem:

Context-Dependent Selection: Given combinatorial, multiattribute utility function Ci∗ , choose

a subset T ⊂ S of size no more than l that maximizes the user’s utility: i.e., find

T ∗ ∈ arg max

T ⊆ S

|T | ≤ l

max

T ′ ⊆ T

|T ′| ≤ k

Ci∗(T ′)

In general, the context is unknown, and the IR system aims to solve the following stochastic

version of the aforementioned optimization problem, which yields a context-independent solution.

In this, our most general formulation of selection, the user is interested in at most k options among

those presented by the system.

Best-k Selection: Given combinatorial, multiattribute utility functions Ci, choose a subset T ⊂ S

of size no more than l that maximizes the user’s utility, in expectation: i.e., find

T ∗ ∈ arg max

T ⊆ S

|T | ≤ l

∑

i

pi















max

T ′ ⊆ T

|T ′| ≤ k

Ci(T
′)















The best-1 selection problem is the special case of best-k selection in which k = 1. In the ith

context, the user’s evaluation of a set T is determined by the quality of the best single option x ∈ T

according to utility function Ui : S → R: i.e., Ci(T ) = maxx∈T Ui(x), given T ⊂ S. Such preferences

are called unit-demand preferences. Best-1 selection specializes best-k selection:1

Best-1 Selection: Given multiattribute utility functions Ui, choose a subset T ⊂ S of size no more

than l that maximizes the user’s utility, in expectation: i.e., find

T ∗ ∈ arg max

T ⊆ S

|T | ≤ l

∑

i

pi

(

max
x∈T

Ui(x)

)

The best-1 selection problem is an appropriate description of many practical IR applications,

and the problem on which we focus our experiments.

1Note the following: for T ⊂ S, maxT ′⊆T Ci(T
′) = maxT ′⊆T maxx∈T ′ Ui(x) = maxx∈T Ui(x).
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1.3 Heuristic Solutions

One naive approach to approximating a solution to the selection problem is to average the distri-

bution of utility functions over contexts, thereby arriving at a description of the user in the typical

context, and to solve the context-dependent selection problem in this typical case. This so-called

expected value method, which ignores most of the distributional information, is well-known to be

suboptimal in general [2]. Several alternatives, which make further use of distributional information,

are possible.

Hill-Climbing

Local search is an alternative approach by which to solve the selection problem. Initialize the search

at random to a subset T ⊂ S with |T | = l. Score this subset using σ : 2S → R, as follows:

σ(T ) =
∑

i

pi









max
T ′ ⊆ T

|T ′| ≤ k

Ci(T
′)









As an improvement step, evaluate all the elements of the current solution, and replace, say, the

worst element (given some means of scoring options) with another, particularly if an improvement

is found.

Time permitting, random restarts can be used with such a search procedure to escape local

optima.

One means of scoring options x ∈ S is via marginal utilities. The marginal utility of an option

x ∈ S relative to a set T is the added benefit obtained by x’s presence. Given combinatorial utility

function Ci : 2S → R in context i, for all x ∈ S, T ⊆ S, the marginal utility µi(x | T ) of option

x ∈ T relative to set T is given by:

µi(x | T ) = Ci(T )− Ci(T \ {x}) (1.1)

The expected value of the marginal utility is defined in the obvious way:

µ(x | T ) =
∑

i

piµi(x | T ) (1.2)

A Greedy Heuristic

The following greedy heuristic is applicable to the context-dependent selection problem: starting

with the empty set, add options in non-increasing order of marginal utility, until the set contains l

options. This greedy heuristic is a (1−1/e)-approximation algorithm of the NP-hard problem: choose

a subset T ⊂ S of size no more than l that maximizes the submodular function f , assuming free

disposal: i.e., f(T1) ≤ f(T2) whenever T1 ⊆ T2 [10, 11]. Submodularity, which captures the idea of

diminishing returns, can be defined in terms of marginal utility. A function f : 2S → R is submodular

iff T1 ⊆ T2 ⊆ S implies µf (x | T1) = f(T1) − f(T1 \ {x}) ≥ f(T2) − f(T2 \ {x}) = µf (x | T2). The
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submodularity property implies that the marginal benefit of adding x to the set of options T1 is at

least as great as the marginal benefit of adding x to the set of options T2 whenever T1 ⊆ T2.

To solve, for example, the selection problem, we propose the following variant of the aforemen-

tioned greedy heuristic: starting with the empty set, add options in non-increasing order of the

expected value of marginal utility, until the set contains l options.

Theorem This greedy heuristic is a (1−1/e)-approximation algorithm of the NP-hard problem:

choose a subset T ⊂ S of size no more than l that maximizes the submodular function g(T ) =
∑

i pifi(T ), given fi(T ) submodular for all i and
∑

i pi = 1, and assuming free disposal.

Proof A non-negative linear combination of submodular functions is again submodular. In

particular, g(T ) is submodular. Moreover,

µg(x | T ) = g(T )− g(T \ {x}) (1.3)

=
∑

i

pi (fi(T )− fi(T \ {x})) (1.4)

=
∑

i

piµi(x | T ) (1.5)

= µ(x | T ) (1.6)

Now the result follows immediately via the theorem in [10, 11].

Observation The function Ci(T ) = maxx∈T Ui(x) is submodular, assuming free disposal.

Proof Assume T1 ⊆ T2. We must show µ(x | T1) ≥ µ(x | T2). Equivalently, we must show

Ci(T1)− Ci(T1 \ {x}) ≥ Ci(T2)− Ci(T2 \ {x}). Three cases arise:

• Ci(T1) > Ci(T1 \ {x}) and Ci(T2) > Ci(T2 \ {x}): In this case, Ci(T1) = Ci(T2) = Ui(x).

This observation, together with the fact that Ci(T2) ≥ Ci(T1) (i.e., free disposal), implies the

result.

• Ci(T1) > Ci(T1 \{x}) and Ci(T2) = Ci(T2 \{x}): Ci(T1)−Ci(T1 \{x}) > 0 = Ci(T2)−Ci(T2 \

{x}).

• Ci(T1) = Ci(T1 \{x}) and Ci(T2) = Ci(T2 \{x}): Ci(T1)−Ci(T1 \{x}) = 0 = Ci(T2)−Ci(T2 \

{x}).

The fourth case, namely Ci(T1) = Ci(T1 \ {x}) and Ci(T2) > Ci(T2 \ {x}) does not arise for this

particular choice of combinatorial utility function.

Remark If we define Ci(T ) in terms of combinatorial utility functions: i.e.,

Ci(T ) = max
T ′⊆T

Ci(T
′)

this fourth case could indeed arise. Rule it out by assuming no complementarities.

Corollary Our greedy heuristic is a (1 − 1/e)-approximation algorithm for solving best-1

selection, assuming free disposal.



Chapter 2

Experiments with a Navigation

System

In the remainder of this paper, we describe simulation experiments we conducted to solve the best-1

selection problem in an experimental navigation system. Recall that in best-1 selection problem, the

user picks (at most) one of the options presented by the IR system, namely that which maximizes

his utility. For example, a user searching for a route from Providence, RI to Cambridge, MA is

shown several solutions to his query, although ultimately he takes only one route.

2.1 Data Set

Our experiments utilized data obtained from the Rhode Island Geographic Information System

(RIGIS). The RIGIS data contains segmented representations of the roads in Rhode Island, speci-

fying multiple characteristics for each, e.g., road grade, speed limit, length. The data also contains

a series of planar point locations corresponding to each road segment. Intersections are defined by

their planar point location and a list of connected streets. We augmented this data by randomly

distributing fictitious stop signs and traffic lights, natural choices for route attributes that might

also be important to a user.

2.2 Task Generation

We simulated a series of user queries for driving directions. In order to test our algorithms on a

variety of routing queries, we generated routing tasks at random. A routing task is defined as a pair

of intersections. First, an arbitrary source intersection was chosen. Next, the data set was probed

at a random for an appropriate destination intersection. The first intersection found within a small

threshold of the desired distance from the source was selected, yielding a complete routing task.

Repeating this process allowed for fast and easy generation of large bodies of routing tasks.

7
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It is important to note that distances between point locations in the data set correspond to

real-world distances. That is to say, the Euclidean distance between two intersections in the data

set is approximately equivalent to the actual “as the crow flies” distance between the intersections.

For our tests, we generated routing tasks within three broad categories, which we refer to as 10,

15, and 20 mile tasks, indicating the desired distances of the tasks in each category. Not surprisingly,

the “as the crow flies” distance between two points is a crude indicator of the actual length of a

path between them.

As an extreme example consider two points on opposite sides of the Strait of Gibraltar, approxi-

mately 13km wide at its narrowest. A path along streets between these two locations (if such a path

exists) would almost certainly be much longer than 13km.

Nonetheless, we refer to tasks by their length indicator alone, e.g., “a 10 mile task”, when, in

fact, the (shortest path) solution to the task may not be of length exactly 10 miles. The approximate

correspondence between our generation parameters and the actual lengths of the shortest solutions

to the routing tasks over a series of trials is shown in Table 2.1.

Task Length Indicator # Trials Mean Length (mi.) Std Deviation (mi.)
µ σ

10 mile 392 17.35 6.61
15 mile 396 24.64 9.31
20 mile 389 30.71 7.55

Table 2.1: Correspondence between task length indicator and actual length

2.3 Preference Representation

In these experiments, we relied on our contextual model of preferences, that is, we assume a popula-

tion of users, each with his own individual preferences. To represent of an individual’s preferences,

we assume a weighted additive utility model. In particular, given vector x describing an option’s

attributes and user i’s “profile” (i.e., weight vector) wi, user i’s utility function Ui(x) = wi · x.

Although we rely on a weighted additive utility model, the units with which our route attributes

are measured cannot be added together to yield meaningful results. It is nonsensical to take linear

combinations of, for example, distance in feet and number of stop signs. Our simple solution to this

problem is to use normalized costs for each of the attributes, where a route is described not by its

actual attributes, but by ratios of each of its attribute values to the best possible attribute value,

given the routing task. We determine these “cost normalization factors” by computing the extremal

solutions to the routing task: e.g., the solution optimizing for distance alone, or for time alone, or for

number of road segments alone. Once the cost normalization factors for the task have been obtained,

the cost to a user of a route is a weighted linear combination of that route’s normalized attributes.

Two of our attributes, number of stop signs and number of stop lights, have the possibility of taking
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on value zero for some routing tasks. In these cases we must make an arbitrary choice for the

normalization factor, which we set at 1

100
. In this way, we penalize the use of a stop sign or light

with cost 100 whenever an extremal solution with zero stop signs or lights exists.

2.4 Population Generation

A population is a set of profiles describing user preferences. Each user profile in a population is

defined as a vector of length 5 with all entries between 0 and 1, inclusive. Each entry is a measure

of the cost that a user assigns to the five attributes: distance, pass time, number of unique roads

traveled, number of stop signs, and number of stop lights.

We considered 15 different populations. The first of these is what we refer to as the “basis

population,” the population containing users who assign cost 1 to a single characteristic and cost

0 to all others, with each basis user present in equal proportions. Next, there are the “planar”

populations made up of two unique profiles chosen from the set of basis profiles, in equal proportions.

There are
(

5

2

)

= 10 such planar populations.

We also considered 2 populations drawn from uniform random distributions. The first was a

population for which each cost element in a profile was generated independently, and the second was

a population with correlated costs for distance and pass time (correlation coefficient ρ ≈ .74) Finally,

we considered 2 populations drawn from normal distributions. The first was a population for which

each cost in a profile was generated independently according to the normal distribution N(0.5, 0.1).

In the second, 3 elements were independently distributed according to the normal N(0.5, 0.1), but

costs for distance and pass time were correlated (correlation coefficient ρ = 0.8). Distance and pass

time costs are drawn from a bivariate normal with mean 0.5 as above, and covariance matrix

Σ =

[

σ2

1
σ12

σ21 σ2

2

]

=

[

(.1)2 .008

.008 (.1)2

]

This covariance matrix by construction yields a distribution with correlation coefficient ρ = σ21

σ1σ2
=

0.8.

2.5 Candidate Solution Set Generation

Our algorithms rely on a relatively large candidate set of solutions from which to choose the “result

set.” In order to generate a candidate solution set for a routing task, we first computed the extremal

solutions to the routing task, namely the optimal routes for each profile in the basis population. We

then added the top m routes computed by the naive approach (described below) to this set. Finally,

we added additional routes generated by repeated calls to a modified A∗-search algorithm, which

we call multi-A∗ (also described below), with randomly generated user profiles as input. We used

multi-A∗, with an inadmissible heuristic, rather than Dijkstra’s algorithm, which is optimal, in the

interest of time.
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Task µ σ avg. time
10 mile 1084.81 594.1 42.12s
15 mile 1388.67 619.2 69.73s
20 mile 1534.51 567.8 75.25s

Table 2.2: Number of unique routes obtained, r = 50, n = 50

Task µ σ avg. time
10 mile 798.96 490.4 24.90s
15 mile 1039.69 552.2 70.79s
20 mile 1110.90 568.4 117.99s

Table 2.3: Number of unique routes obtained, r = 100, n = 25

The size of the candidate solution set is controlled by two parameters: the number r of random

vectors with which multi-A∗ is called, and the number n of solutions requested from each run of

multi-A∗.

Data from preliminary tests of 100 trials with r = 50, n = 50 are shown in Table 2.2, and data

from 100 trials with r = 100, n = 25 are shown in Table 2.3.

Intuitively, a solution set generated with a larger value of r represents a greater variety of routes.

For this reason, and since that we were easily generating sets of an adequate size for our purposes,

we chose to generate solution sets for our experiments with parameters r = 100, n = 25.

We chose to invoke the multi-A∗algorithm with 100 user profiles, uniformly generated at random,

as input, requesting 25 results each time. These parameters struck an appropriate balance of pro-

cessing time, candidate solution set size, and variety for our purposes. Typical set sizes generated

using this method were between 800 and 1500, with the 10 mile tasks tending to smaller set sizes

and 15 and 20 mile tasks tending towards larger.

2.6 Task “Difficulty”

One characteristic of our search space made apparent by our experiments is a large disparity in the

inherent “difficulty” of generating multiple solutions to a routing task. We observed a large variance

in the processing time necessary to generate our sets. In the following table, we present the mean,

median, and standard deviation of set generation times over roughly 520 trials :

Task µ median σ
10 mile 149.41s 16.98s 478.7s
15 mile 235.74s 30.90s 971.9s
20 mile 317.82s 40.53s 1146.4s

Table 2.4: Mean versus Median set generation times
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It is evident from the large standard deviation of generation times, as well as from the clear dis-

parity between median and mean generation times, that a few tasks proved to be quite hard and took

quite a long time, while the majority of our tasks were much less difficult. This is most likely due to

high variation of the depth within the search space of paths necessary before the multi-A∗algorithm

found viable solutions.

2.7 Multi-A∗

Our multi-A∗ algorithm is a straightforward extension of A∗-search, designed to return multiple

solutions. Whereas a typical A∗-search would terminate once a goal was reached, we append the

completed path to our list of solutions, clear the list of closed nodes to allow backtracking, and

continue to remove elements from the queue of unexplored nodes as if the goal had not yet been

found. The multi-A∗ algorithm terminates in one of two cases: either the queue has been exhausted,

and thus no more solutions can be found, or the solution set is of the desired size. Our heuristic

in multi-A∗ estimates a ratio of the cost to the user per unit length of the route. We calculate the

ratio of the total user cost incurred thus far to the total Euclidean distance covered thus far. This

ratio multiplied by the Euclidean distance remaining to the destination is a rough estimate of the

remaining cost to the user. Here, we assumed that roads available from the current point onward

will match the profiles of roads traveled thus far. This is a reasonable assumption given that our

routing tasks do not cover excessively large distances. Nevertheless, this heuristic is inadmissible.

It is important to discuss the process of choosing a heuristic measure for our multi-A∗. We

do not present an admissible heuristic. Because we use multi-A∗with a set of randomly generated

preference vectors to generate a diverse set of routing options, returning the optimal solution for

any one of these vectors is not necessary. We would, nevertheless, like the multi-A∗solution to be

close to optimal.

First, there are two points to consider. Multi-A∗with a zero heuristic is equivalent to what we

refer to as “multi-Dijkstra”, i.e. a modification of Dijkstra’s algorithm to return multiple solutions.

The second point to consider is that for the problem of shortest path alone, crow flies distance is an

admissible heuristic and multi-A∗is optimal. In our specific problem formulation, however, the cost

of a street arc is not its length alone, but a linear combination of 5 street characteristics. The crow

flies distance is thus an inadmissible heuristic for our problem.

We present two other inadmissible heuristics which intuitively and experimentally outperform

the crow flies distance.

The first heuristic utilizes local cost information, specifically the ratio of the cost of the previous

street arc to its length. The resultant value is a measure of user cost per unit distance, which,

when multiplied by the crow flies distance remaining to the destination, constitutes our heuristic

value. When a particular user profile expresses preference for shortest path alone, user cost per unit

distance is equal to one, and thus this heuristic maintains optimality for users whose only desire is
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add(MinPriorityQ fringe, HashTable fringed, SearchElement i)
1 if fringed(i.intersection) = ∅
2 then //insert element with priority f
3 fringe.add(i.f, i);
4 fringed.add(i);
5
6 else

7 if fringed.get(i.intersection).f > i.f
8 then fringed.remove(i.intersection);
9 fringe.add(i.f, i);

10 fringed.add(i);
11
12

Figure 2.1: Min-Priority Queue helper function for Multi-A∗

shortest path. In general, however, this heuristic is inadmissible.

The second heuristic, much like the first, attempts to formulate a ratio of cost to the user per

unit length, but has a more global outlook in its calculation. This heuristic uses the ratio of the

total user cost thus far to the total crow flies distance traveled thus far. This ratio multiplied by the

crow flies distance remaining to the destination is a heuristic which does not, as the first, preserve

optimality for user desiring only shortest paths. This heuristic, however, with uniform random

profiles, outperforms both previous heuristics, and was that which was eventually chosen.

2.8 Implementation of the Naive Algorithm

The naive approach chooses routes based on costs to the typical user. In particular, the set of l

routes chosen by the naive algorithm includes the l shortest paths, with costs given by the expected

user profile. The resulting set of routes can be obtained from a call to “multi-Dijkstra,” (multi-A∗

with a 0 heuristic), with the expected user profile and the desired result set size as input.

2.9 Implementation of the Greedy Heuristic Algorithm

The greedy heuristic adds routes to the result set in non-decreasing order of average marginal cost.

Our implementation iteratively calculates the average marginal cost of each candidate element in the

following manner: the cost of each route r is calculated across the entire population, for each user

taking the minimum of the user’s cost for r and the user’s cost for his preferred route in the result

set thus far. In the first iteration, this set is empty, and thus the first route chosen is identical to the

first route found by the naive approach. (Proof, Figure 2.3) Beyond this first iteration, however,

the greedy heuristic ignores segments of the population satisfied by routes in previous iterations,

and thus selects a wider variety of routes than the naive approach.
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multi-A*(Graph G, Isec S, Isec T, WeightVector V, int n)
1 fringe :min-priority queue
2 routes :empty list
3 visited :hashtable of visited intersections
4 fringed :hashtable of intersections currently on the fringe
5 curr = {S, 0, ‖S − T ‖, ∅}
6 while !stop
7 do

8 while curr.intersection 6= T
9 do

10 if visited(curr.intersection) = ∅
11 then

12 visited.add(curr.intersection);
13 for intersections i reachable from curr.intersection
14 do

15 if visited(i) = ∅
16 then

17 g ← curr.cost + costOfStreet(V, curr.intersection, i);
18 distanceSoFar← ‖S − i‖;
19 h← g

distanceSoFar
· ‖i− T ‖;

20 f ←MAX(g + h, curr.f);
21 newElement← {i, g, f, curr.isecList ◦ i};
22 add(fringe, fringed, newElement);
23
24
25 if fringe.size = 0
26 then stop← true;
27 break;
28
29 curr ← fringe.first();
30 fringed.remove(curr.intersection);
31
32 if !stop
33 then

34 routes.add(current.isecList);
35 visited.clear();
36 if routes.size() = n
37 then return routes;
38
39
40 if fringe.size = 0
41 then

42 stop← true;
43 break;
44
45 else curr ← fringe.first();
46 fringed.remove(curr.intersection);
47
48 return routes
49

Figure 2.2: Multi-A∗ Pseudocode
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Claim Assume an additive utility function. The average utility a population attributes to an
option x is equal to the utility of the option x evaluated with respect to the average individual.
Proof

U(x) =
∑

i

piUi(x) (2.1)

=
∑

i

pi (wi · x) (2.2)

=
∑

i

pi





∑

j

wijxj



 (2.3)

=
∑

j

xj

(

∑

i

piwij

)

(2.4)

=
∑

j

xjwij (2.5)

= x · wi (2.6)

Corollary The solution to best-1 selection for l = 1 is the best option (i.e., that which yields
highest utility) evaluated with respect to an average individual.
Proof

arg max
T⊂S

∑

i

pi

(

max
x∈T

Ui(x)

)

= argmax
x∈S

∑

i

piUi(x)

= argmax
x∈S

U i(x) (2.8)

= argmax
x∈S

x · wi (2.9)

Claim The first element chosen by the greedy heuristic is identical to the best-1 selection for l = 1
(and thus equivalent to the first element chosen by the naive algorithm)
Proof For the purpose of this proof, assume the following submodular utility function:

C(T, i) =

{

0 if T = ∅,

maxx∈T Ui(x) otherwise
(2.10)

In the first iteration of the submodular greedy algorithm, the solution set is equal to ∅ (T1 = ∅) The
solution chosen is thus:

argmax
x∈S

∑

i

pi max(C(T1, i), Ui(x)) = argmax
x∈S

∑

i

pi max(C(∅, i), Ui(x)

= argmax
x∈S

∑

i

pi max(0, Ui(x))

= argmax
x∈S

∑

i

piUi(x)

= argmax
x∈S

U i(x)

= argmax
x∈S

x · wi

Figure 2.3: Proof of equivalence between first choices of naive and greedy algorithms
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minimumCost(RouteSet S, PreferenceVector p)
1 if |S| = 0
2 then

3 return ∞;
4
5 minCost← −1;
6 for each route r ∈ S
7 do

8 if getCost(p, r) < minCost || minCost = −1
9 then minCost← getCost(p, r);

10
11
12 return minCost;
13

scoreSet(RouteSet S, Population P)
1 totalCost← 0;
2 for each preference vector p ∈ P
3 do

4 totalCost← totalCost + minimumCost(S, p);
5
6 return totalCost;
7

Figure 2.4: Helper functions for Greedy and Hill climbing algorithms
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GreedyBestNRoutes(RouteList R, Population P, int n)
1 subModularSet← ∅
2 while |subModularSet| < n
3 do

4 minRouteCost← −1;
5 minRoute← NIL;
6 for each route r ∈ R
7 do

8 routeCost← 0;
9 for each preference vector p ∈ P

10 do

11 minCost← minimumCost(subModularSet, p);
12 routeCost← routeCost + MIN(minCost, getCost(p, r));
13
14 if routeCost < minRouteCost || minRouteCost = −1
15 then minRouteCost← routeCost;
16 minRoute← r;
17
18
19 subModularSet← subModularSet

⋃

minRoute;
20
21 return subModularSet;
22

Figure 2.5: Greedy Selection Pseudocode
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2.10 Implementation of the Hill-Climbing Algorithm

Our implementation of hill-climbing works as follows: An initial result set is chosen at random from

our set of candidate solutions. The least beneficial route in this set is determined by computing

average marginal costs. The element with the least average marginal cost is replaced by the first

improvement found in the set of candidate solutions. We iterate this process until no further im-

provements are found (within some time limit). This procedure is augmented with random restarts.

After some maximum number of iterations, the algorithm terminates and returns the best solution

found.
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HillClimbingBestNRoutes(RouteList R, Population P, int n, int MaxIterations,int patienceFactor)
1 totalIterations← 0;
2 iterationCount← 0;
3 currentSet←n routes chosen randomly from R
4 bestSet← currentSet
5 repeat

6 initialCost← scoreSet(currentSet, P );
7 minimumDifference← −1;
8 worstRoute← NIL;
9 for each route r ∈ R

10 do

11 subset← currentSet \ {r};
12 // subModularity guarantees this difference to be ≥ 0
13 diff ← scoreSet(subset, P )− initialCost;
14 if diff < minimumDifference || minimumDifference = −1
15 then minimumDifference← diff ;
16 worstRoute← r;
17
18
19 if Random(0, 1) < e

−patienceF actor

iterationCount+1

20 then currentSet←n routes chosen randomly from R
21 iterationCount← 0;
22
23 else for each route r ∈ R in order, starting at a random point
24 do

25 newset← currentSet
⋃

{r} \ {worstRoute};
26 if scoreSet(newset, P ) < initialCost
27 then

28 improvementRoute← r;
29 break;
30
31 currentSet← currentSet

⋃

{improvementRoute} \ {worstRoute};
32
33 if scoreSet(currentSet, P ) < scoreSet(bestSet, P )
34 then

35 bestSet← currentSet;
36 iterationCount← 0;
37
38 iterationCount← iterationCount + 1;
39 totalIterations← totalIterations + 1;
40
41 until totalIterations > MaxIterations
42 return bestSet;
43

Figure 2.6: Hill Climbing Pseudocode
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Results

3.1 Preliminary Results

Data for 10, 15, and 20-mile tasks are included in Tables 3.1, 3.2, and 3.3, respectively. Data for

the “planar” populations are omitted, as results for these populations are very similar, all showing

strong dominance of the greedy and hill-climbing algorithms.

Algorithm
Population Greedy HillClimbing Naive
basis µ = 5.38 µ = 5.39 µ = 9.82

σ = 23.3 σ = 23.3 σ = 49.1
uniform independent µ = 24.57 µ = 25.05 µ = 24.79

σ = 121.3 σ = 122.8 σ = 123
uniform correlated µ = 24.15 µ = 24.25 µ = 25.24

σ = 116.7 σ = 116.8 σ = 125.4
normal independent µ = 25.02 µ = 25.02 µ = 25.03

σ = 124.1 σ = 124.1 σ = 124.2
normal correlated µ = 24.8 µ = 24.82 µ = 25.1

σ = 122.5 σ = 122.5 σ = 124.9

Table 3.1: Mean & standard deviation of cost, 552 10-mile tasks.

Our data show that the algorithms which optimize for diversity outperform the naive algorithm

when there is diversity within the population. This is made very clear by the mean performance of

the greedy algorithm relative to the naive for the basis population.

The greedy and hill-climbing algorithms express their superiority over the naive approach when

the population has some underlying segmented structure of which the algorithms can take advantage.

This is made very clear by the scores obtained with the basis population.

Uniform random populations are essentially populations with no structure, i.e., no distinguish-

able population segmentation. Thus, it is understandable that optimizing for the typical case, the

approach taken by the naive algorithm, performs almost as well as the greedy and hill-climbing

19
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Algorithm
Population Greedy HillClimbing Naive
basis µ = 4.53 µ = 4.54 µ = 9.72

σ = 22 σ = 22 σ = 59.5
uniform independent µ = 23.24 µ = 23.25 µ = 24.13

σ = 138.8 σ = 138.8 σ = 147.1
uniform correlated µ = 23 µ = 23.15 µ = 24.58

σ = 136.4 σ = 136.8 σ = 150.1
normal independent µ = 24.21 µ = 24.22 µ = 24.33

σ = 147.4 σ = 147.4 σ = 148.4
normal correlated µ = 23.42 µ = 23.44 µ = 24.45

σ = 139.9 σ = 140.1 σ = 149.4

Table 3.2: Mean & standard deviation of cost, 512 15-mile tasks.

Algorithm
Population Greedy HillClimbing Naive
basis µ = 2.78 µ = 2.79 µ = 4.02

σ = 12.5 σ = 12.5 σ = 18.7
uniform independent µ = 9.98 µ = 10 µ = 10.03

σ = 45.9 σ = 45.9 σ = 46.1
uniform correlated µ = 9.91 µ = 10 µ = 10.19

σ = 45.9 σ = 45.9 σ = 47
normal independent µ = 10.09 µ = 10.1 µ = 10.1

σ = 46.5 σ = 46.5 σ = 46.5
normal correlated µ = 10.07 µ = 10.08 µ = 10.13

σ = 46.4 σ = 46.4 σ = 46.7

Table 3.3: Mean & standard deviation of cost, 526 20-mile tasks.
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methods. It is important to mention that, while mean scores for the randomized populations are

very close, we did not observe a single trial where the naive algorithm outperformed the greedy

algorithm.

Profiles with costs normally distributed form a population that contains “structure,” due to the

concentration of probability density about the mean. These populations correspond precisely to the

case in which the naive approach is reasonable. This observation is supported by our data: the

differences between scores of the greedy and hill-climbing techniques and the naive approach for the

normal populations are smaller than for their uniform counterparts.

From this argument it ought to follow that adding correlation between cost elements would

improve the relative performance of our algorithms by introducing, in a rough approximation, a

segmentation of the population determined by the values of these correlated costs. This observation,

too, is borne out by our data, where the performance gaps between our methods and the naive

approach for the correlated populations are larger than for corresponding independent populations.

While we did not observe the hill-climbing algorithm outperforming the greedy algorithm in our

experiments, there are certainly situations where this outcome could arise: Consider, for example,

choosing a subset of size 2 from a set of 3 options with attribute vectors r1 = (0, 1), r2 = (1, 0), and

r3 = (0.4, 0.4) to satisfy users with cost vectors A = (0, 1), B = (1, 0). In its first iteration, the greedy

algorithm makes the following association betwen route alternatives and cost: r1 = 1, r2 = 1, r3 =

0.8, and chooses r3. In the second iteration, it scores the remaining alternatives r1 = 0.4, r2 = 0.4.

Suppose we break ties arbitrarily, and the result set is {r2, r3}. This set has a total cost of 1.4, while

the optimal result set is clearly {r1, r2} with cost 0.

3.1.1 Technical Details

Our experiments were coded in Java. We tested the performance of the algorithms for each of our

15 test populations, over roughly 500 trials of each task length. Our “basis population” was of

size 5 and our “planar populations” were of size 2. (In these special cases, larger population sizes

with identical proportions would not impact the results). For all other populations, we drew 1000

samples.

3.2 Further Results

In order to obtain a better understanding of the relative performance of the Naive, Greedy, and

Hill-Climbing algorithms, we conducted further experiments, holding a set of tasks constant, and

testing each algorithm against 500 populations of each distribution type. Each population, again,

was 1000 samples from the particular population distribution.

The difficulty of satisfying a user population may vary from task to task; this approach prevents

such variance from affecting our analysis of relative algorithm performance.

In addition, our implementation of hill-climbing described above was a first approximation to

an algorithm we believe should, in certain cases, outperform the greedy heuristic. In an attempt to
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Figure 3.1: Algorithm performance with basis population on a 10-mile task

revise the hill-climbing algorithm, we modified the neighborhood exploration strategy to investigate

truly random moves. In our revised hill-climbing, we do not necessarily eliminate the route with least

marginal cost, but eliminate a random route. We do not always replace the eliminated route with a

strictly improving route, but rather with a random route. We also allow, with some probability which

decays as the search progresses, swaps which do not improve our objective value. This technique is

commonly known as simulated annealing.

This second set of experiments showed that, while our proposed methods always significantly out-

performed the naive approach with the basis population, their relative performance on randomized

populations was highly dependent upon the particular task at hand.

An example of typical algorithm performance on the basis population is included in Figure 3.1.

The relative algorithm performance against the basis population demonstrated by this figure is

consistent across all tasks, and all lengths of task, which we tested.

This particular task shows one of three interesting patterns of algorithm performance observed

with randomized populations. The pattern shown by this task is such that no real advantage is

demonstrated by the heuristic or hill climbing methods over the naive approach (Figures 3.2, 3.3,

3.4, 3.5) We believe that such situations occur when there is insufficient variety within the space of



23

Figure 3.2: 95% confidence intervals over algorithm performance with normally distributed, corre-
lated population on a 10-mile task

routing task solutions. This could easily happen if all paths between endpoints of a given task have

very little choice, or possibly no choice, of alternative roads to use. When the set of solutions from

which to choose shows excessive self-similarity, and users express varied preferences, there is little

that can be done to satisfy them. Note that across figures 3.2, 3.3, 3.4, and 3.5 the confidence

intervals span less than 0.01 units of cost. These confidence intervals represent 500 samples from

each population distribution, indicating that for this task, with randomized preferences, all of the

algorithms are essentially returning the same subset, with the same cost to population.

One might then ask: if the set of solutions was so self-similar that it prevented any one algorithm

from outperforming another, why the large gap in scores for the basis population? The basis pop-

ulation differs from any of the randomized populations in that it is such an extreme example, with

segments of the population expressing strong, mutually disjoint preferences. Even though many

routes in the set may be similar, the extremes always exist. For tasks such as these, with self-similar

solution sets, the performance gap on the basis population is not so much due to the greedy heuris-

tic being able to select from a wide variety of routes, but instead due to the naive approach losing

population segmentation information in its averaging.
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Figure 3.3: 95% confidence intervals over algorithm performance with normally distributed, inde-
pendent population on a 10-mile task



25

Figure 3.4: 95% confidence intervals over algorithm performance with uniformly distributed, corre-
lated population on a 10-mile task



26

Figure 3.5: 95% confidence intervals over algorithm performance with uniformly distributed, inde-
pendent population on a 10-mile task
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Figure 3.6: 95% confidence intervals over algorithm performance with normally distributed, corre-
lated population on a 15-mile task

The second interesting pattern observed in our data was a pattern of tasks where no clear benefit

was given by the greedy and hill-climbing algorithms over the naive approach when considering

normally distributed populations, yet a benefit was given when considering uniformly distributed

populations.

The naive algorithm’s acceptable performance with normally distributed population preferences

is not surprising, as explained above in the preliminary results. Normally distributed populations

will tend to cluster strongly about the mean, thus exhibiting fewer distinct segments and diluting

the effect of diversity in reducing cost to the population. With uniformly distributed population

preferences, however, it is more likely that there will be segments within the population with suf-

ficiently distinct preferences, resulting in a greater probability that some of the variety within the

solution set can be matched to the variety within population preferences.

Algorithm performance for one such 15-mile task is shown in figures 3.6, 3.7, 3.8, and 3.9.

The third and final pattern observed in our data is that in which the greedy and hill-climbing

algorithms show a definite advantage over the naive algorithm in all cases. In contrast to the second

pattern described above, where normally distributed populations (i.e. a population of very similar
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Figure 3.7: 95% confidence intervals over algorithm performance with normally distributed, inde-
pendent population on a 15-mile task
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Figure 3.8: 95% confidence intervals over algorithm performance with uniformly distributed, corre-
lated population on a 15-mile task
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Figure 3.9: 95% confidence intervals over algorithm performance with uniformly distributed, inde-
pendent population on a 15-mile task
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Figure 3.10: 95% confidence intervals over algorithm performance with normally distributed, corre-
lated population on a 20-mile task

preferences) are no better satisfied by the greedy and hill-climbing algorithms than by the naive,

solution sets for tasks fitting this pattern express so much variety that routes satisfying even highly

self-similar population segments can be chosen, providing a solution closely matching population

preferences.

Intuitively, the difference is as follows: tasks matching the second pattern show sufficient variety

to match larger scale separations among population segments, such as those in the uniformly dis-

tributed populations, but insufficient variety to match highly similar segments, such as those that

would be seen in normally distributed populations. Tasks matching the third pattern show enough

variety among solutions that even the highly similar segments in a normally distributed population

can be satisfied.

Algorithm performances on one such 20-mile task are shown in figures 3.10, 3.11, 3.12, and

3.13.
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Figure 3.11: 95% confidence intervals over algorithm performance with normally distributed, inde-
pendent population on a 20-mile task
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Figure 3.12: 95% confidence intervals over algorithm performance with uniformly distributed, cor-
related population on a 20-mile task
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Figure 3.13: 95% confidence intervals over algorithm performance with uniformly distributed, inde-
pendent population on a 20-mile task



Chapter 4

Related Work

An in-depth investigation of the space of driving directions solutions was carried out in [7]. Previous

work on context-dependent driving directions, such as [5, 12, 8] concern adaptive learning and case-

based reasoning techniques for providing better routing solutions to a single user. Recommendation

systems proposed by [9] require intervention after result presentation to build an understanding of

the particular user performing the search. Systems such as those proposed in [3, 4] rely on similarity

metrics to eliminate redundancy and introduce diversity in result sets, but set forth explicit goals of

deviating little from an original user query. The most significant difference between our approach to

the meta-choice problem and others is that diversity in the choice set, when it arises, is not a result

of optimizing with respect to an ad-hoc combination of similarity and diversity metrics, but rather it

is a direct function (i.e., reflection) of the diversity in user preferences.
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Chapter 5

Future Work

One of our goals is to build a transportation system (like orbitz.com but unlike maps.yahoo.com)

that provides users with a variety of travel options, rather than a single option. Ideally, in response

to a query about how to get from Providence, RI to Cambridge, MA, the system would respond with

driving directions, bus routes, train routes, etc. In order to do so, there are a number of research

directions yet to be explored.

Hill-Climbing

Our revised hill-climbing algorithm is an improvement over our first hill-climbing formulation, but

still fails to outperform the greedy heuristic algorithm. We believe that a weakness of the hill-

climbing algorithm is its use of what is essentially the greedy heuristic objective in its scoring

function. This causes the hill climbing algorithm to perform in a manner very similar to the greedy

heuristic and then stagnate at what is essentially a plateau. A different objective function could

very well lead to hill-climbing outperforming the greedy heuristic, perhaps replacing elements in

proportion to their individual scores.

Clustering

One further technique we plan to explore is clustering. To solve the selection problem, clustering

can be performed on inputs, on outputs, or on both. Given an input of m contexts, we can cluster

to arrive at l representative contexts and then solve the context-dependent selection problem l

times with respect to these representatives. Alternatively, we can cluster the outputs: solve the

deterministic selection problem that arises in each context, and then cluster solutions to arrive at a

selection of size l. The complexity of the latter procedure exceeds that of the former as it requires

m > l optimization problems to be solved. Intermediate solutions are also possible, e.g., one might

first cluster the input data into l′ > l clusters, then optimize deterministically for each representative,

and finally cluster the set of l′ outputs into a selection of size l.
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Efficiency

Although we reported that the heuristic methods outperformed the naive approach in terms of raw

scores in our experiments, we did not report runtimes. In fact, the runtimes for the heuristic methods

far exceeded those of the naive approach. One bottleneck for these methods is the generation of

the candidate solution set. We used multi-A∗search with an inadmissible heuristic to expedite

this process, but depending on the routing task, our implementation exhibited great variability in

runtimes.

With certain IR systems, the candidate solution set could prove prohibitively large for direct

application of our techniques. We plan to investigate how techniques such as those described in [1]

could be employed to reduce to a representative sample the number of candidates considered.

Preference Representation

While our experimental setup was sufficient to demonstrate the superiority of our heuristic methods

over the naive approach to the selection problem, there are (at least) two shortcomings that must

be overcome before a navigation system could be built based on our contextual preference repre-

sentation. First, our underlying model of context-dependent preferences was based on a weighted

additive utility function, a representation that is well-known to be inadequate for representing hu-

man preferences. Second, our choice of population distributions was arbitrary. We experimented

with 15 different populations, and we established the superiority of the heuristic methods over the

naive approach in all 15 cases; but it remains to conduct user studies to determine realistic context

distributions in various domains (e.g., travel or shopping), either for an individual user or for a

population of users.

User representation

An important metric for our suggested methods will be their performance given real-world distri-

butions obtained from user studies. We believe that real-world user populations will demonstrate

a segmented underlying structure better handled by our proposed methods than by the naive ap-

proach. Further, we would like to investigate more complex cost functions, as linear combinations

could very well be inadequate to characterize a user’s desires. For example, it is logical to assume

some users assign no cost to a certain attribute up to a certain threshold, after which point their

annoyance might grow exponentially.

We conjecture that these populations with significant correlation between costs attributed to

distance and time match a segments of the population of real world users, where those users who

assess a high cost to the length of a route would also be relatively averse to routes that take a longer

amount of time. It is entirely possible, however, that there are segments for which these costs are

negatively correlated. Take as one example a user on vacation with a mileage limit on their rental

car; this user might assess a high cost to distance and yet not mind routes that are not time-efficient.

On the other end of the spectrum, an ambulance driver might be willing to take a longer route (say,
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on a highway) provided the higher speed limit along the route would reduce the time to destination.



Chapter 6

Conclusion

Since the user is operating in one of many possible contexts, the IR system’s objective is to present

a set of options, which are useful in various contexts, particularly those contexts which are most

likely to be realized. An optimal solution to meta-choice/selection should contain a diverse set of

options, with the various options presented reflective of the user’s various utility functions, which

can arise in the various contexts.

Ultimately, solutions to the meta-choice problem should increase social welfare by enabling people

to find whatever they are seeking, be it information, product, route, flight, graduate student, advisor,

or spouse.
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