
Architecture and Implementation of a
Content-based Data Dissemination System

Austin Park

Brown University
austinp@cs.brown.edu

ABSTRACT

 SemCast is a content-based dissemination model for large-scale data delivery
applications. The model aims to segregate stream content over multiple channels, each of
which acts as an independent dissemination tree. The channel contents, rates and
destinations are monitored to determine if performance improvements are possible on the
system. For my masters project, I implement the basic system model of SemCast.

1. Introduction

Content-based dissemination is a routing model that forwards data based on their
content instead of having attached routing information. This model is inherently
necessary for large-scale distributed applications, because traditional IP-based routing
model would result in a hefty overhead. Routing the packets based on their content
allows the information to be sent and passed down the network based on the application
schema and independent of the underlying network structure. Examples of high-volume
streaming data applications that would benefit from content-based dissemination are
environment monitoring, networked games, and medical and military data distribution on
wireless devices.
 In this model, sources generate data streams with no routing or destination
specified. In other words, the destination and source are independent and these streams
are instead identified and routed by their profiles, which are declarative specifications
provided by the destination nodes. The goal of the system is to reduce overhead and
efficiently route data from the source to the relevant destination nodes, also known as
subscribers.
 In this paper, I provide a short overview of SemCast [1], an overlay-network
system that performs distributed content-based routing of highly-distributed and high-
volume data streams. I also describe my work implementing SemCast.
 SemCast creates a set of dissemination channels, each being an independent tree
of brokers, and each one containing different content. The content of each channel is
specified by the collection of profiles of all the clients attached to the specific channel.
Sources forward the incoming message to all the channels with matching content.
Subscribers listen to all the channels that disseminate the content they are interested in.
 SemCast requires content-based filtering only at the source and destination
brokers, instead of at each level of the distribution tree. As each incoming message is
mapped to specific channel(s), “routing” at each broker in the tree requires only reading
the channel identifier and forwarding the message to the relevant children. This
minimizes overhead by eliminating the need to do any complicated filtering at each

broker, as is common in more traditional publish subscribe systems. Creating
independent distribution trees also allows the model to periodically and easily
reconfigure the channel layout to optimize system performance.
 In this paper, I provide a background description of SemCast and the different
components that make up its cost-based channelization model. This is followed by the
section describing the core of my work: setting up the dissemination channels and
propagating information with a specific application. I will explain the different stages of
creating channels, and forwarding information to the subscribers. Lastly, I will identify
future work that will be needed in order to provide a full and complete implementation of
SemCast.

2. Background

 In this section, I will describe the basic design and architecture of SemCast and its
different components and the system data flow [1].

Fig. 1 Basic SemCast system model

2.1 System model

SemCast is based on a content-based publish-subscribe model where the
subscribers express their subscriptions using predicate-based expressions called profiles.
The system consists of a set of broker nodes (i.e. servers) organized in an application-
level overlay network as in Fig. 1. Publishers produce the content and the source brokers
(otherwise referred as sources) poll the publishers to introduce the content to the system.
Rendezvous points are in charge of one or more channels and serve as the root node of
those channels’ distribution trees. Subscribers connect to the system through the gateway
brokers, which are the final destinations for the data streams. Each subscriber can be
connected to more than one gateway broker, if it subscribes to multiple channels. Brokers
that are connected to neither a publisher nor a subscriber are called interior brokers. The

system also contains a coordinator node, which performs all the channelization and
manages the dissemination channels. It keeps track of the existing channels and their
content expressions, and the rendezvous nodes responsible for each channel. It
communicates with the sources and gateway brokers to inform them about the existing
channels or the need for new ones.
 The content of each channel is defined by a channel expression, which is a union
of the client profiles served by that channel. A profile is assigned to a channel if the
channel expression overlaps with the profile. For a given channel, the corresponding
dissemination tree includes all gateway brokers whose subscribers’ profile is included in
that channel expression.

 Basic data-flow:

In SemCast, the coordinator makes decisions on the content expression and
existence of channels and forwards this information to the bootstrap. The bootstrap is a
designated node that polls the source servers for the data that will be distributed through
the channels. The rendezvous points connect to the bootstrap, and when a message enters
the system, the bootstrap will match the relevant content expression to the assigned
rendezvous points and forward that data to them. The rendezvous points then forward the
contents to the relevant gateway brokers through the corresponding channel tree. Brokers
must update and reference a lookup table mapping the channel identifiers to the children
brokers because there may be multiple channels going through that broker. Upon
receiving a message, the broker must look up the channel identifier and forward it to the
returned list of children. Each gateway broker maintains a local filtering table mapping its
subscribers’ profiles to their IP addresses and also a mapping of channels to its
subscribers. Received messages from a channel are matched against the profiles of the
subscribers and forwarded to the relevant ones. This insures that the subscribers will not
receive irrelevant data.

Channelization algorithm:

The network topology in many applications will change over time in regards to
network and data conditions. The channels created initially may no longer be the most
efficient in terms of bandwidth consumption, resource usage, and load. Therefore,
SemCast periodically reevaluates its channelization decisions and may reorganize the
channels. This reorganization, also known as channelization, addresses the following
issues: how many channels to create, the contents of each channel, and which channels
each broker must listen to. SemCast uses a cost-model based on profile semantics and
stream statistics, and network characteristics to make its decision.
 SemCast uses the knowledge of “overlap” among profiles to determine channel
content. Two profiles overlap if the intersection of the set of messages from both profiles
is non empty. Assigning overlapping profiles to the same channel allows matching
messages to be forwarded only once through the same dissemination tree, eliminating
redundant transmissions. SemCast discovers containment hierarchies among profiles,
where each profile has as its ancestor a profile that covers it, and as its descendant
profiles that are covered by it.
 SemCast performs channelization in two phases. First, SemCast constructs the
profile containment hierarchy using syntactical similarities among profiles and stream

rate statistics and profile overlap. Each level of the hierarchy is a good candidate for
serving as the dissemination channel because of the overlap of constituent profiles.
However, creating channels solely based on this containment information may miss
optimization opportunities with partially overlapping profiles.
 The second phase identifies partially overlapping profiles and determines if
placing them in the same channel would further reduce the run-time costs. Merging
partially overlapping hierarchies does not guarantee a reduction in redundant
transmissions. This is because while common messages to both profiles will be
transmitted only once, uncommon messages will also be forwarded to the destinations not
interested in them, increasing unnecessary bandwidth consumption.

2.2 Previous approaches
There have been various approaches to implementing content-based dissemination

models (e.g., [2, 3, 4, 5]), most of them involving unicasting data to each subscriber, or to
do content filtering at each level of a single tree. Both methods are inefficient since the
former sends redundant data through the network and consumes more bandwidth, and the
latter consumes valuable server resources. SemCast is an improvement over these models
because its subscribers will join and listen on the relevant channels, so it is sufficient to
send the messages once through the network. Also, content filtering occurs only at two
points in the SemCast model, the bootstrap and gateway brokers, as described in section 3
below.

3. Implementation

 For my SemCast implementation, I used XPORT, a high-volume rss-server feed
propagation application. In XPORT, broker nodes form a single data distribution tree.
Subscribers connect to the brokers to access the rss feed content. The bootstrap node
polls the different rss-feeds and propagates the content its children. Nodes connect to the
tree through the physically closest neighbor node. Fig. 2 shows the basic XPORT system
model. The section inside the yellow cloud is where data routing occurs, and where
SemCast is implemented. Instead of a single distribution tree, multiple channels are
constructed.
 There are a few fundamental differences between XPORT and SemCast. XPORT
does not support the notion of a coordinator, rendezvous point, source and gateway
brokers. Instead of multiple channels acting as smaller dissemination trees as in SemCast,
XPORT uses one large single dissemination channel. Additionally, XPORT performs in-
network filtering as opposed to SemCast which does filtering only at the source and
gateway brokers.

My goal is to use SemCast as the data-distribution model to allow the application
to be more efficient in bandwidth and resource usage. For the rest of this section I will
describe how SemCast is constructed and its data flow. The system setup occurs in two
main steps: the rendezvous points establish a persistent connection with the bootstrap.
Then the gateway brokers join the routing tree by establishing a connection to the
channels. These steps are described below.

Bootstrap Rendezvous point

When the system first starts up, each rendezvous point will attempt to establish a
persistent TCP connection with the bootstrap node (Fig. 3a). Each rendezvous point
initiates a connection request to the bootstrap with its identification key which includes
its IP address and port numbers. The bootstrap (in current implementation, I assume the
bootstrap is also the coordinator) stores this key and sends back a confirmation of the
request. The bootstrap stores this rendezvous point’s key so that in the future, it knows
which rendezvous points are in existence. The rendezvous points assume from this
confirmation message that the bootstrap is ready to accept them and establishes the
persistent TCP connection.

 Publishers

Bootstrap

Fig. 2 Basic XPORT system model

subscribers

Coordinator Broker

Next, the brokers must connect to routing tree through the relevant channel(s).
This occurs in two steps: the broker will contact the coordinator with its profile with a
temporary TCP connection (Fig. 3b). The coordinator matches the profile to all the
existing channel contents. It sends back to the broker the channels it should connect to
and the rendezvous point(s) in charge of that channel(s).

Rendezvous point Broker

In the next step, the broker will attempt to establish a persistent connection to
each of the channels (Fig. 3c). The connection will be persistent because the broker wants
to receive the data flowing through that channel. The broker makes a temporary
connection to the rendezvous points for each channel on the table and sends a message to
each one of them asking for a list of potential parents. The rendezvous point will do a
lookup for the channel to get a list of the brokers on that channel as potential parents.
This list is essentially all the brokers in that channel, since any of them can be potential
parents. If a channel exists, then there must be an existing tree, so the rendezvous point
will send back to the requester a list of the nodes of that channel. Otherwise, the
coordinator must have decided this rendezvous point will be in charge of a new channel.
So it sends its own key, as the RPs is the only broker currently in this channel. The
rendezvous point updates its data structures to keep track of the channels it is responsible
for.

c) Broker requests a list of RPs
 by sending its profile
d) Coordinator sends back a table
 of channel responsible RP’s
 key (IP address, port).

Fig. 3b

Broker c

d

Persistent connection Coordinator

a
b

Fig. 3a

Bootstrap

Rendezvous point

a) Rendezvous point (RP) sends
bootstrap its key.

b) RP sends confirmation message and
persistent TCP connection is
formed.

Channel Broker

The broker attempts to connect to the closest node from the returned list, by
pinging each of them (Fig. 3d). It is possible for a parent to reject a request, so if a parent
is successfully selected (potential parent responds positively), the broker node checks its
local data structures to see if an existing TCP connection to this parent already exists
(that is, a previous connection was already established). Otherwise, a new persistent TCP
connection is made.

Message Name Sender Receiver Explanation
COMMAND_ASSERT_RP Rendezvous

points (RP)
Bootstrap Fig. 3a: a)

COMMAND_RESPONSE_ASSERT_RP Bootstrap RP Fig. 3a: b)
COMMAND_REQUEST_BS_RP Broker Coordinator Fig. 3b: c)
COMMAND_RESPONSE_BS_RP Coordinator Broker Fig. 3b: d)
COMMAND_REQUEST_PARENTS Broker RP Fig 3c: e)
COMMAND_RESPONSE_PARENT_LIST RP Broker Fig 3c: f)
COMMAND_PARENT_SELECTED Broker Selected

parent node
(another
broker or
RP)

Fig 3d: g)

 Fig. 4 System messages used to create channels

g) Broker establishes a persistent
 TCP connection to the physically
 closest node from the list that
 accepts its request.

g

Fig. 3d

e) Broker sends request for list of
nodes in the channel to each
RP of each channel from step
d).

f) If channel id is new (does not
exist in RP’s lookup table),
RP sends back its own key.
Otherwise, send back a list of
potential parents for the
channel.

Fig. 3c

e f

When the application is initiated, the bootstrap node polls the relevant rss-servers
based on the current system’s profiles . As the content stream is received by the
bootstrap, it checks that the content matches with the profiles in the tree below. If there is
an established channel, the message is sent to the rendezvous point that is managing that
channel. The destination node will receive the message from the parent, process it, and
the message is added to the queue to be sent out on the channel to next respective child.

4. Future Work

 While the current system allows rss-feed data to be distributed over the channels,
to fully implement SemCast, we must implement channelization [1]. Channelization is
performed by the coordinator and is determined using a cost-model based on the profile
sematics, stream statistics, and network characteristics gathered from the current system
setup. Also, when the channelization request is made by the coordinator, the coordinator
must allow for seamless data delivery even when brand new channels and network
topology are constructed. The system layout must be saved by the coordinator prior to
channelization, and once each broker is connected to the re-configured network, the old
TCP connections must be cut to reflect the new connections.
 In the current implementation, I assumed the coordinator to act also as the
bootstrap for simplicity. In future applications, the two roles may exist on separate
physical nodes. I also constructed one coordinator for the entire system, but multiple
coordinators may exist if the system becomes complex. Multiple coordinators should
appear as one to the rest of the system, so the coordinators will have to update each other
as system updates are received and sent.

5. Conclusion

 I implemented a novel semantic multicast model which allows for efficient data-
stream dissemination. The main idea is to segregate the data-streams into channels,
determined by the content, rates, and destinations, which are regarded as independent
dissemination trees. This model has a number of advantages over other models because it
does not require filtering at the interior brokers of the tree, and allows for fine-tuned
control of the channels. My goal was to implement this with a practical application,
allowing for further testing and data aggregation to supplement the current results of
SemCast.

6. References

[1] O. Papaemmanouil, U. Cetintemel. SemCast: Semantic Multicast for Content-based
 Data Dissemination. In ICDE, 2005.
[2] G. Banavar, et al. An Efficient Multicast Protocol for Content-Based Publish-
 Subscribe Systems. In ICDCS, 1999.
[3] A. Carzaniga, et al. Design and Evaluation of a Wide-Area Event Notification
 Service. ACM Transactions on Computer Systems, 19(3): 332-383, 2001.
[4] C.-Y. Chan and P. Feber. A Scalable Protocol for Content-Based Routing in Overlay
 Networks. In NCA, 2003.
[5] Y. Diao, et al. Towards an Internet-Scale XML Dissemination Service. In VLDB,
 2004.

