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Abstract

Traffic engineering (TE) is used to control the distribu-
tion of network load across the links and routers of a net-
work. TE techniques usually focus on multiplexing traffic
across competing paths connecting a source and destina-
tion. There are two significant barriers to traffic engineering
on the Internet. First, it is difficult to employ interdomain
traffic engineering (across multiple autonomous systems)
because BGP forces a router to select a single best route
per prefix. Second, intradomain TE is complicated because
the paths of individual flows can not be changed arbitrarily
without negatively affecting high-layer protocols, particu-
larly TCP.

These disparate difficulties can both be addressed by ex-
posing a portion of the TE decision process to end-hosts.
We propose atag mechanism that allows end-hosts to in-
fluence, but not control, the paths chosen by the network
for its packets. End-hosts will provide explicit opportuni-
ties for TE by tagging packets with opaque identifiers. Only
packets with the same tag must be delivered along the same
path. The tag mechanism will also allow multiple ASs to
coordinate to provide interdomain traffic engineering.

Our analysis of Internet provider/peering topologies
shows that there are multiple paths available between the
majority of ASes that do not violate AS transit policies,
and that tags would expose these paths to end-host traffic
engineering.

1 Introduction

Internet routing occurs at two scales. Within a single do-
main, a routing protocols such as OSPF selects paths from
any source to any destination. These paths consist of routers
and the links that connect them. At a larger scale, BGP se-
lects paths that consist of entire networks and the link be-
tween them. At both scales, sources and destinations may
be connected by several potential paths but existing routing
techniques favor the use of a single path. This preference
complicates any attempt to balance network load across
available resources.

Intradomain protocols such as OSPF are capable of find-
ing multiple routes with identical costs, but best practices
require that IP packets from the same flow be forwarded
along a single path. Multiplexing packets from a single flow
across multiple paths would lead to out-of-order arrivals
and unpredictable latencies, which complicates congestion
control, particularly for TCP.

BGP, the standard interdomain routing protocol, is a
path-vector protocol that determines viable, rather than op-
timal, paths. An individual domain or autonomous system
(AS) obtains advertisements from its neighbors describing
the path from that neighbor to a given destination. Using a
combination of local policies and heuristics such as mini-
mizing the length of the AS path to the destination, one of
the advertised paths is selected. Packets for that destination
will be forwarded to the first AS of the chosen path. In ad-
dition, the AS may (again, depending on policies) advertise
that path, after appending itself, to its neighbors.

BGP finds a single path from an AS to any given des-
tination. Although an AS is presented with many possible
advertisements, it must select exactly one such path in order
to avoid cycles. An AS prevents cycles by refusing any ad-
vertisement that contains itself in the advertised path. The
implicit assumption is that the advertising AS will forward
along the path it advertises. If it might select from several
possibilities, one of those possibilities might cycle backto
the AS receiving the advertisement.

Intradomain TE Despite these difficulties, traffic engi-
neering has emerged in an effort to exploit path diversity
within an AS to balance network load. Balanced load min-
imizes queueing delay at a given utilization. The AS’straf-
fic matrix, which describes how the flow of traffic coming
in from each neighbor AS is divided among each outgo-
ing neighbor, is analyzed to determine the optimal usage of
(multiple) paths from each ingress to each egress. However,
routing must depart from this optimal solution, in order to
avoid poor interactions with end-host flow-control. Traffic
must be migrated entire flows at a time so that any given
flow follows a single path.

Current TE work includes OSPF-TE [6], MATE [4], and
TeXCP [9]. In each case, the goal is to obtain multiple
paths betwen points and determine traffic weightings for
the use of each path to best balance load. An open issue is
the difficulty of migrating traffic according to the changing
weights, without shifting existing flows. Flowlets [15] are
an attempt to migrate flows when their migration will not
cause confusion in TCP end-points.

Interdomain TE At the interdomain level, TE is very
primitive. A simple interdomain TE example is the attempt
to balance load across a multihomed AS’s multiple up-
stream links. Unfortunately, network operators must resort
to crude techniques involving manipulating BGP path at-
tributes [13, 5] in an effort to express their priorities across



these links. These intentions are often not easily achiev-
able given the coarseness of these methods (i.e. prefixes,
AS path lengths).

An alternative approach to interdomain TE is to open
“virtual peering” tunneled connections between specific
multi-homed peering points[12]. These connections, once
agreed upon by the source and destination AS, can help to
smooth out traffic imbalances for multi-homed stubs.

End-host TE An alternative approach is to place more
control in the hands of end-hosts. By allowing end-hosts
to select from multiple paths, the end-hosts will make self-
interested choices that optimize the network behavior as a
whole. For example, a flow may have four viable paths, of
which two are congested. The end-host will naturally prefer
to send traffic over the uncongested paths, balancing load.

IP Source Routing [1] allows end-hosts to specify the
paths of their packets. However, source routing requires
that end-hosts possess network topology information, and
is rarely turned on in commercial network as it is perceived
to represent a security threat and to offer end-hosts a mech-
anism to violate AS transit policies.

BANANAS [11] describes a framework for intra- and
inter-domain multipath routing on the Internet by adding
“PathIDs” to packets. These PathIDs specify source routes,
either by fixed-length hash or variable-length link identi-
fiers. Using this scheme, upon receiving a packet a router
matches the PathID to a table of available routes, selects
that route, and replaces the PathID with the route selec-
tor for the next router. This kind of explicit source rout-
ing requires the sender to have global knowledge of avail-
able paths in order to compute a PathID, which is similar to
MPLS for intra-AS routing, but impractical across ASs for
the same security reasons as IP source routing.

Overlays such as RON [2] and Akamai’s content distri-
bution network [17] represent another way that traffic may
be redirected from the default path chosen by BGP. In these
systems, the end-hosts participate in a routing mesh that al-
lows them to determine the best path through some set of
overlay routers. These systems do not take advantage of
multiple routes simultaneously.

Contributions This paper introduces the concept oftags,
which allow end systems to influence routing decisions
without violating routing policy or obtaining topology in-
formation. Routers select from multiple forwarding paths
based on a packet’s tag and flow identifier. A host achieves
path diversity, with its associated reliability/performance
benefits, without resorting to specifying complete source
routes. Yet tags do not force routers into any particular rout-
ing decision. Routers select from a set of paths that they
have determined to be acceptable, according to local poli-
cies and routing algorithms.

Section 2 explains the tag mechanism. Section 3 de-
scribes how the tag mechanism can be used on the Internet,
either natively or through overlays. Section 4 shows simu-
lation data backing our claim that multiple paths are avail-

able, and accessible using the tags mechanism. Section 5
discusses open issues and concludes.

2 End-host Tags
Previous attempts to take advantage of multiple paths have
fallen at two ends of a spectrum. At one end, source rout-
ing (whether IP or overlay) have required that end-hosts
make routing decisions, and supplied end-hosts with the
extra power required to enforce their decisions. At the
other end, intradomain TE and hash-based load balancing
schemes [3] have kept end-hosts completely oblivious to
multi-path routing by forcing packets of individual flows to
follow a single path from source to destination.

We propose a compromise interface based on opaque
tagswhich are supplied by end-hosts to provide extra flexi-
bility to the network during routing. Today, end hosts exert
an implied demand when they transfer packets in a single
flow. Networks have been designed to route a flow along
a single path in order to provide stability that is useful for
congestion control. Tags allow end-hosts to explicitly ex-
ert this control only when necessary. Within a flow, only
packets with the same tag must be forwarded on the same
path.

Tagged Forwarding A router, upon seeing a tag, hashes
the connection identifier and the tag together to select be-
tween several potential routes. In order to influence the
likelihood of certain paths, a larger set of hash values might
be assigned to certain preferred paths. The set of potential
paths is determined by the router according to local routing
protocols and policies. We describe how conventional rout-
ing protocols should be extended to return multiple paths
in Section 3.

We assume that intradomain routing protocols will be
configured to provide multiple routes with the same (op-
timal) cost, and that interdomain routing protocols will
be configured to provide either (1) all paths that survive
local filtering policies, weighted by additional attributes,
or (2) only those those paths that survive local filtering
and have equivalent additional attributes, such as BGP’s
local pref and AS hop-count length.

Figure 1 demonstrates the tagged forwarding algorithm.
A router,R receives a packet fromS, destined forD, and
taggedt. R computesH = hash(S,D, t), and looks up the
routes associated withD. R’s routing table favors that path
throughA. WhenH is 0, 1, 2, 5, or 7, the path throughA is
chosen, else the path throughB. Subsequent packets from
the same flow, with the same tag will be routed in the same
way. Packets with another tag may be forwarded along a
different path.

Preventing Cycles Depending on the routing protocol in
use, tagged forwarding risks the creation of cycles. In par-
ticular, when an AS forwards to a neighbor other than the
neighbor it has advertised as its next hop for a particular
destination, that AS (or a subsequent AS) might eventually
route the packet back to the AS that has forwarded “non-

2



S DR

B

A
S,D
t

A
B
D

0 1 2 3 4 5 6 7

B B B B B B B B
AAA B AB A

AAAAAAAA

B

Hash(S,D,t) = 3

Figure 1: RouterR considers forwarding a packet fromS to D, taggedt.
R considers the set of next-hops shown in the routing table entry for D.
Sincehash(S, D, t) = 3, the path throughD is chosen.

optimally”. Figure 2 demonstrates the problem in detail.
Although Figure 2 is a simple example in which it is easy to
prevent the cycle (don’t forward packets back from where
they came, for example), more complicated topologies pre-
serve the problem without a simple soultion.
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Figure 2: A potential routing cycle created by the confluence of BGP’s
policy mechanism and tagged forwarding.A andB have both advertised
their path toD to each other.A might decide, for local policy reasons, to
forward some tagged packets forD throughB, similarly B may forward
some tagged packets throughA. If they chose the same tags, the packets
will be forwarded back and forth.

To avoid the possibility of cyclic forwarding, and ensure
that packets make progress, we limit the number of times
that a packet may be forwarded to a next-hop other than the
default. Tagged packets include aflexcountwhich reresents
the number of times a packet may be routed flexibly—that
is, along a non-default path. In Figure 2, ifS’s packets have
a flexcount of one,A might forward a packet throughB,
but B will use default routing to forward the packet on to
D.

Existing routing protocols must already ensure that the
path determined by default next-hops is cycle free. Using
this rule, packets may iterate around cycles only a finite
number of times. In practice, we expect that a single non-
default forwarding step offers sufficient flexibility to ex-
ploit most available paths. Section 4.3 confirms this expec-
tation.

Tag selection In order to take advantage of multiple
paths, end-hosts must tag the packets in their flows. Of
course, if the packets of a TCP flow are arbitrarily tagged,

congestion detection would be falsely triggered, just as it
might be by TE that routes a single flow over several paths.

Several possibilities address this dilemma. First, there
has been recent work in multipath TCPs [20, 18]. These
are TCPs that explicitly take advantage of multiple paths
if they are available. Fortunately, the multipath model con-
sidered in these works is exactly that provided by tags. The
individual paths are not known to be distinct, but they are
consistent. In effect, these TCPs perform independent con-
gestion control along each path, with some additional fea-
tures to decrease unfairness to single-path TCP implemen-
tations. These multipath TCP implementations would sim-
ply tag packets intended for each path with a unique tag.

A second possibility is end-host supplied flowlet tag-
ging. Flowlets [15] are bursts of packets within a TCP
flow. It has been proposed that intradomain TE can take
advantage of the lulls between flowlets to switch a flow
to another path without causing reordering at the destina-
tion. Doing so requires detecting these lulls in the network.
However, the TCP sender is in the best position to detect
these lulls, and could switch tags after a lull to explicitly
allow a route change. Flowlet labeling does not exploit si-
multaneous paths for a single flow.

When tagging packets to allow the use of multiple paths,
the end-host must decide on the number of unique tags to
use. Each additional tag offers the possibility (but not guar-
entee) of another path, but each tag might require indepen-
dent congestion control which may slow the flow’s growth
or waste resources, particularly when the new tag does not
actually offer a new path.

Our analysis of an inferred AS topology [16] leads us to
conclude that a small constant number of tags, perhaps 4-
8, would allow sufficient flexibility to find most available
paths at the AS level. Section 4.2 describes our analysis.
A more careful end-host might traceroute to the destina-
tion and base the number of tags on the path length of the
default path to the destination, or try several tags and dis-
continue the use of tags that appear to follow the same path
(based on tagged traceroutes, or statistical analysis).

3 Routing

In order take advantage of the freedom offered by tagged
packets, routers must obtain multiple routes to potential
destinations. Most routing protocols can be easily adapted
to obtain extra routes. Link-state protocols like OSPF dis-
tribute global topology information that can be searched
for extra routes. Distance-vector (or path-vector) protocols
provide routers with multiple advertisements from neigh-
bors, each representing a different potential path. In both
cases, care must be taken to avoid cycles.

As described in Section 2, cycles can occur when a router
selects a non-default forwarding path, and that next-hop has
any potential path that may return the packet to the first
router.
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3.1 Intradomain Routing

The most common intradomain routing protocols are OSPF
and RIP. Though OSPF is a link-state protocol and RIP
is distance-vector, they share the property that paths are
selected by an optimality criterion (generally hop count),
rather than through arbitrary policy. This property allows
multipath forwarding to avoid cycles. If multipath routers
select only from routes that are equally optimal, each hop
decreases the distance (or cost) to the destination. Therfore
no cycles are possible.

Alternatively, if an AS would like to configure some tags
to follow suboptimal paths, MPLS can be used to label
the packet and prevent further processing within the AS by
other multipath routers. MPLS allows a single router to se-
lect an entirepathrather than a next-hop.

In our design, the tag is a 16-bit IP option added to each
packet. An IP option allows incremental deployment, since
unrecognized options can simply be ignored. The perfor-
mance impact of IP option processing on oblivious hosts
has studied and reported as minimal [14].

3.2 Interdomain Routing

BGP cannot use either trick to avoid cycles. There is no op-
timality criteria, and no mechanism to choose entire paths
at once. Figure 2 demonstrated how an AS that forwards
on a path other than the path it has advertised can cause
forwarding cycles.

To break these cycles, if a BGP router advertises a path
for a given destination, then it must follow the path it has
announced, or decrement a small integer, calledflexcount
that accompanies a packet’s tag. Once flexcount reaches
zero, the packet must be forwarded along the paths that
BGP has advertised. A router is only constrained if it has
advertised a route, so stubs need not decrement flexcount.

Flexcountis so named because it represents the number
of times a packet may be flexibility routed along a non-
default path. With a flexcount ofn, a packet may be routed
in a cycle at mostn times before it is forwarded along the
default path which is known to be cycle-free.

Flexcount may reduce the number of paths that may be
followed by a packet between two points. Our experiments,
described in Section 4.3, demonstrate that most paths can
be found with a flexcount of one. For example, when ASes
have 8 potential paths between them, a flexcount of one
suffices find and average of 85% of those paths. Using a
flexcount of two ensures that almost every path is available.

Although we envision tags as a mechanism that enables
end-hosts to implement traffic engineering, there is room
for network administrators to exert some pressure to fa-
vor certain paths. Recall that Figure 1 should how a router
might prefer certain paths by overweighting the number of
hash buckets containing the chosen path. We envision BGP
routers that weight buckets based on a flexible combina-
tion of of local pref, AS path length, and MED attributes
associated with path advertsiements. Then choices will lay

the groundwork for a reasonably distribution of traffic us-
ing random tags, and then end-hosts will overweight those
tags that perform well for them.

3.3 Overlay Routing

Although we have investigated the effectiveness of deploy-
ing multipath routing in all Internet routers, and shown
that multipath routing can be deployed incrementally, a
more realistic deployment scenario uses an overlay net-
work to provide multiple paths. Routing overlays such
as RON [2], One-Hop Source Routing [8], and Akamai’s
SureRoute [17] have proven the ability of overlay networks
to exploit path diversity for reliability purposes, and to re-
spond quicker to failures than BGP.

These past results leverage the fact that an overlay node
has access to more underlay characteristics than BGP, e.g.
delay, loss and bandwidth history, bottleneck link capac-
ity estimation [10], and AS/router path traceroute informa-
tion. However, past overlay routing designs have primarily
focused on finding a single failover route, rather than on
maintaining and ranking a set of well-performing multiple
paths to a destination.

We have begun work on an overlay router designed to
provide multiple paths for packet-tagging transport layers
such as [18]. Extending on previous monitoring and rout-
ing overlays, nodes also discover network topology infor-
mation through probing, and use it to optimize multi-path
routing, e.g. to prefer disjointedness in the underlay access
paths. The main challenge lies in maintaining an overlay
topology that is both network- and topology-aware.

4 Evaluation
The potential success of the tags interface can be evaluated
in two ways. First, how many paths exist between arbitrary
end-hosts on the Internet? This provides an upper bound on
the path diversity that can be taken advantage of by tags.
Next, what percentage of those paths can actually be found
by tagged packets using a conservative flexcount? In order
to avoid wasted network resources, we advocate a flexcount
of one, which allows at most one cycle.

4.1 Simulation environment

To answer these questions we simulate the Internet AS
graph with C-BGP [19], using a methodology similar
to [12]. As our focus is solely on interdomain paths, each
AS appears in our model as a single BGP router advertis-
ing a single prefix. Our AS topology, from [16], contains
roughly 14,400 stub and 2400 transit ASs, and was col-
lected from multiple views of BGP routing tables in Febru-
ary 2004.

The AS topology comprises more than 37,000 links,
each annotated with an inferred business relationship: ei-
ther customer-provideror peer-to-peer. These relation-
ships define the selective export rules [7] in place at each
AS, which control the direction of route advertisements
(and thus traffic flow). These relationships also define the
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local pref value each BGP router assigns to routes it
learns of: routes are weighted to prefer, in decreasing or-
der, paths to customers, peers, and providers.

4.2 Available path diversity

To provide an idea of the amount of “hidden” path diver-
sity that exists between ASs, we examine available paths
between 9954 randomly-chosen pairs of stub ASs, accept-
ing and counting only paths “just as good” as the BGP path.
These are the paths with at most the same AS hop length as
the BGP path. By “available”, we mean each AS along the
path has received a route advertisement from the next AS
for the destination prefix; these routes exist in the router’s
Adj-RIB-In tables, but were not selected by the BGP deci-
sion process. This implies that the route is acceptable, but
was beaten by another path, possibly by an arbitrary tie-
breaking decision.

Additionally, we require that links traversed between
ASs in a path must have the same (or better)local pref
value as the BGP path. This excludes unrealistic scenarios,
such as preferring sending to a paid provider rather than to
a peer or customer. Taken together, these constraints pro-
duce a conservative estimate of path diversity: relaxing the
hop length requirement would yield many more acceptable
paths. A more generous evaluation might weight longer AS
paths to receive some traffic.

Figure 3 shows the cumulative distribution of the num-
ber of available paths found per AS pair. It shows that about
60% of AS pairs have at least two acceptable paths between
them, while approximately 25% of pairs have at least four
possible paths. Figure 4 shows how multihoming adds path
diversity. Examining pairs of multihomed ASes, Figure 4
shows that among pairs of dual-homed ASes, about 65% of
pairs have at least two equally good paths between them.
The similarity of available paths among between single-
homed and dual-homed ASes demonstrates the conserva-
tive nature of our evaluation. Of course, between two dual-
homed ASes, theremust be at least four different paths
(each AS chooses one of its two homes). However, in our
evaluation we assume that routers will spread tagged pack-
ets only among equally good AS paths—those with the
same hop-length andlocal pref.

4.3 Captured path diversity

The flexcount mechanism may prevent certain paths from
being discovered by tagged packets. First, we consider how
many of the paths from the previous experiments could be
found using a flexcount of one. This means that packets are
forwarded to the non-default next hop at most one time by
a non-stub AS. Stub ASes may forward to a non-default
next-hop with decrementing flexcount because they have
not advertised their default choice to a neighboring AS. No
cycles are possible. We then compare this result to a flex-
count of two, where two non-default choices are possible.

Figure 5 shows, for each number of potential paths be-
tween two ASes, the number paths that a flexcount=1
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Figure 3: CDF of path diversity between 9954 random stub AS pairs. 60%
of pairs have at least two paths; 10% have more than eight paths.
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Figure 4: Available path diversity with multihoming. 65% of dual-homed
pairs have at least two good paths.

packet could be forwarded along. For those AS pairs with
five paths available between them, a flexcount of one was
sufficient to find an average of 92% of those paths. When
ten paths were available, 83% were accesible. The remain-
ing results show that even for large numbers of paths, a flex
count of one is enough to find between 70-90% of available
paths.

Using a flexcount of two shows considerable flexibility;
nearly all of the routes considered in our last experiment
are attainable. This is because, for our experiment, we are
limited to paths which are the same length of the BGP path.
Since most AS paths on the Internet are typically short (our
tests found average BGP path length to be about 5), two
non-default choices are plenty.

5 Conclusion
Tags are a compromise between source routing interfaces
that place complete control in the hands of end-hosts, and
the traditional IP interface which forces the network to
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Figure 5: Captured path diversity for flexcount one and two.

make assumptions about the end-host’s requirements. Us-
ing tags, end-hosts can obtain deterministic paths when
needed, or let the network take advantage of mulitple paths
when possible.

An analysis of an AS-level Internet topology shows that
there are ample opportunities for multipath forwarding,
even when BGP policies are taken into account. Further-
more, we have shown that tags are sufficient for exposing
those opportunities.
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