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Chapter 1

Introduction

Genomic sequences contain regions which are recurrences of some shorter sequences

called patterns. These regions can be classified as either interspersed or tandem

repeats according to the locations of the recurrences. Interspersed repeats consist

of recurrences of some pattern which are not necessarily adjacent, whereas tandem

repeats consist of consecutive recurrences of a pattern.

Another criterion for classifying the recurrences is the form in which the patterns

are repeated. If the pattern is repeated without any variations, then the repeat is

called a perfect or exact repeat. However this is not usually the case because of the

mutations throughout the evolution history. In the case where the recurrences are

slightly varied by the mutations (insertions, deletions and substitutions) the repeat

is called an approximate repeat.

The functions and origins of approximate tandem repeats are not well understood

even though they occur frequently in genomes, approximately 10% in mammalian

genomes and and up to 50% in some arthropods [30]. However it’s known that they

play regulatory roles in genes and they may cause some diseases.

Tandem repeats may participate in protein binding [36] and alter the structure

of chromatin [28]. They also play a role in the immunization system by affecting the
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recombination intensity in humans [33].

Several diseases including fragile-X mental retardation [44], myotonic dystro-

phy [18], Huntington’s disease [20], Parkinson’s disease in the Korean population [46],

spinal and bulbar muscular atrophy [26] and Friedreich’s ataxia [10] are known to be

caused by some tandem repeat polymorphisms (variation within a population), usually

abnormal increase in the number of copies. Some correlations between the structure

of certain tandem repeats and some other genetic diseases (multiple sclerosis [19],

Alzheimer’s [31], Autism [11], and androgen insensitivity syndrome [17]) are being

investigated as well.

Since the copy numbers of some specific tandem repeats often exhibit polymor-

phism due to replication slippage, unequal crossing-over and evolution history [8] [14]

[41], tandem repeat polymorphism is useful in DNA fingerprinting [23] [22] [35], pedi-

gree analysis, investigating the phylogenic relationships between species, evolution

studies [4] and forensic DNA analysis. [21] [9].

The functional and structural roles of approximate tandem repeats which are

mentioned above attracted researchers to developing powerful algorithms and tools

to detect tandem repeats (briefly mentioned in Section 2.2.3), and maintaining the

collected information about tandem repeats in databases. The Tandem Repeats

Database (TRDB) 1 is a public repository of information on tandem repeats in

genomes and contains a variety of tools for their analysis. The main tool is the Tan-

dem Repeats Finder [6] which can query and filter for particular repeats of interest.

The Minisatellite Database 2 and Short Tandem Repeat DNA Internet DataBase 3

are two databases that are focused on short repeats. TRbase, A Database Of Tandem

Repeats In The Human Genome 4, is another database which is focused on human

1http://tandem.bu.edu/cgi-bin/trdb/trdb.exe

2http://minisatellites.u-psud.fr/

3http://www.cstl.nist.gov/biotech/strbase/

4http://trbase.ex.ac.uk/
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genome. Some other tandem repeats databases include PlantSat 5, MICAS - Mi-

crosatellite Analysis Server 6, Repetitive Sequence DataBases (RSDB) 7 and MRD -

A Microsatellite Repeats Database for genomes 8.

This thesis presents a new algorithm for detecting Approximate Tandem Repeats

in genomic sequences without the need of any prior knowledge about the pattern (the

repeated subsequence) or period (the length of the pattern). An implementation of

the algorithm is compared with two state-of-the-art tandem repeats detection tools,

Tandem Repeats Finder [6] and ATRHunter [45]. More formal definitions of tan-

dem repeats and some background including the related work are presented in the

next chapter. Chapter 3 describes this work in detail. Preliminary results of the

comparisons are presented in Chapter 4.

5http://w3lamc.umbr.cas.cz/PlantSat/

6http://210.212.212.7/MIC/index.html

7http://binfo.ym.edu.tw/rsdb/

8http://www.ccmb.res.in/mrd/
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Chapter 2

Background

A genomic sequence can be represented computationally as a string S of characters

in the alphabet Σ = {A,C,G,T}. A substring of S denoted by Si,j or S[i : j] is

the sequence of the characters starting at position i and ending at position j where

a ≤ i ≤ j ≤ n and n is the length of S. If Si,i+l is equal to a string Y where l is the

length of Y , then we say that S contains Y at position i, or Y occurs in S at position

i.

A Tandem repeat in a genomic sequence S is a substring Y = Si,i+l of S where

l is the length of the repeat (length of the string Y ) and Y is composed of multiple

adjacent concatenations of some pattern repeated either perfectly or with slight vari-

ations. Firstly perfect tandem repeats will be defined and some related work will be

mentioned.

2.1 Perfect Tandem Repeats

The notation Y = X1X2 . . . Xn will be used throughout this thesis to denote that

Y is the concatenation of the strings X1, X2, . . . and Xn. Similarly Y = Xc is the

notation for the concatenation of c copies of a string X.
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Definition A perfect or exact single tandem repeat with period t is a string Y = XX

which is a concatenation of two copies of a string X of length t where t ≥ 1. The

string X is called the repeating pattern of Y .

Definition A perfect or exact multiple tandem repeat with period t and copy number

c+f is a string Y = XcX ′ which is a concatenation of c copies of a string X of length

t and, if f 6= 0, a prefix X ′ of X where t ≥ 1 and c ≥ 2 and f =
length(X ′)

t
. The

string X is called the repeating pattern of Y .

For instance the sequence

S = ATCGTAGCGAGCGTATCCGCTCCGCTCCGATC

contains a perfect single tandem repeat with period 4 at position 6 and a perfect

multiple tandem repeat with period 5 and copy number 2.8 at position 16.

The problem of detecting perfect tandem repeats which consists of only two re-

peating units (perfect single tandem repeats) is also called as “detecting squares in

strings” in computer science literature and several O(n log n) algorithms have been

proposed (Apostolico and Preparata [3], Main and Lorentz [32], Crochemore [12],

Stoye and Gusfield [43]). Apostolico [2] presents an optimal speed-up parallel al-

gorithm. The algorithm by Stoye and Gusfield [43] also detects the perfect multi-

ple repeats in O(n log n) time and O(n) space using suffix trees. Crochemore [12]

showed that the maximum number of occurrences of perfect single tandem repeats is

Ω(n log n) thus that the O(n log n) time bound is asymptotically optimal.

2.2 Approximate Tandem Repeats

Tandem repeats in genomes usually don’t consist of perfectly repeated patterns. Each

repeating unit may be different from each other. Since there is more than one way
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to measure the difference between repeated units, several definitions of approximate

tandem repeats exist.

2.2.1 Compression Based Definitions

There are some approximate tandem repeat detection algorithms which use data

compression techniques (Milosavljevic and Jurka [34], Delgrange and Rivals [13]).

They define a tandem repeat as a region which may be represented as a repeat of

some pattern plus a set of mutations such that this representation can be coded using

less space than coding the same region directly. Unfortunately these algorithms have

some usage limitations: for instance the algorithm by Delgrange and Rivals [13] only

finds tandem repeats consisting of repetitions of a given pattern.

2.2.2 Distance Based Definitions

An approximate tandem repeat is simply a concatenation of several repeating units

which are slight variations of some pattern. Each of these repeating units is a substring

of the actual repeat. In other words an approximate tandem repeat Y = X1X2 . . . Xc

is a concatenation of c strings X1, X2,. . . and Xc where each Xi is called a repeating

unit and where the repeating units are similar according to some distance metric.

There are three main distance metrics used in tandem repeats detection algo-

rithms: Hamming distance, Levenshtein or Edit distance, and Alignment score. An-

other item which causes the diversity when defining approximate tandem repeats

besides the variety of distance metrics is the existence of different ways to choose the

repeating units whose distances will be calculated. The most common ones are:

Pairwise repeats A string Y = X1X2 . . . Xc is a pairwise approximate tandem

repeat according to some distance criterion D if and only if every possible pair

of repeating units passes the given distance criterion. In other words criterion

6



D(Xi, Xj) must be true for all 1 ≤ i ≤ c and 1 ≤ j ≤ c.

Consensus repeats A string Y = X1X2 . . . Xc is a consensus approximate tandem

repeat according to some distance criterion D if and only if each repeating unit

passes the given distance criterion with some consensus pattern C. In other

words criterion D(Xi, C) must be true for all 1 ≤ i ≤ c and for some C.

Neighboring repeats A string Y = X1X2 . . . Xc is a neighboring approximate tan-

dem repeat according to some distance criterion D if and only if each repeating

unit passes the given distance criterion with the adjacent repeating unit. In

other words criterion D(Xi, Xi+1) must be true for all 1 ≤ i < c.

One or more of the above constraints can be combined with any of the distance

metrics which will be described soon to define approximate tandem repeats.

Hamming Distance

Hamming Distance between two strings is only defined when the lengths of the two

strings are identical. The Hamming distance is the number of mismatches when the

two strings are aligned character by character.

Kolpakov and Kucherov [25]; and Landau et al. [27] proposed some algorithms

to find tandem repeats where each unit differs by k-mismatches. The algorithm by

Landau et al. has a time complexity of O(nka log(n/k)) where a is the maximum

copy number in any reported repeats. Unfortunately it’s not possible to express other

mutations like insertions and deletions using Hamming distance measure so that other

kinds of similarity metrics, like edit distance or alignment scores, are needed.

Edit Distance and Alignment Score

Levenshtein or edit distance [29] between two strings is simply the minimum number

of operations to transform the first string into the second one. The operations allowed
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are substitution, insertion or a deletion of a single character. The edit distance can

be computed in O(nm) time using dynamic programming where n and m are the

lengths of the strings. If the number of insertions and deletions is bounded by d, then

the computation can be done in O(nd) time by dynamic programming.

Landau et al. [27] proposed an algorithm to detect approximate single repeats

where each repeating unit differs by at most k edit operations (substitutions, inser-

tions or deletions). The algorithm has a time complexity of O(nk log k log(n/k)).

Alignments are more general cases of edit distance because the weights of the

operations can be specified with alignment scores.

Definition A global alignment of two strings S1 and S2 from alphabet Σ is a pair of

strings (S ′
1, S

′
2) such that:

• S ′
1 and S ′

2 only contain characters from the alphabet Σ′ = Σ ∪ { }.

• length(S ′
1) = length(S ′

2).

• removing all occurrences of the character ′ ′ from S ′
1 yields S1.

• removing all occurrences of the character ′ ′ from S ′
2 yields S2.

Then the alignment score of an alignment (S ′
1, S

′
2) is F (S ′

1, S
′
2) where only addi-

tive score functions will be considered throughout this thesis, namely F (S ′
1, S

′
2) =∑l

i=1 f(S ′
1[i], S

′
2[i]), where l is the common length of S1 and S2, and S ′

1[i] and S ′
2[i]

denote the ith character of the strings S ′
1 and S ′

2 respectively (1 ≤ i ≤ l). The function

f(S ′
1[i], S

′
2[i]) is called the score function.

When the alignment strings S ′
1 and S ′

2 are aligned character by character, namely

when the two characters (S ′
1[i], S

′
2[i]) are compared:

• a pair (x, x) where x ∈ Σ is called a match.

• a pair (x, y) where x 6= y and x, y ∈ Σ is called a mismatch or substitution.

8



• a pair (x,′ ′) where x ∈ Σ is conventionally 1 called a deletion.

• a pair (′ ′, y) where y ∈ Σ is conventionally 1 called an insertion.

The number of errors E(S ′
1, S

′
2) of an alignment (S ′

1, S
′
2) is the sum of substitutions,

insertions and deletions in the alignment.

Definition An optimal global alignment of two strings S1 and S2 with respect to a

score function f is the global alignment (S ′
1, S

′
2) of S1 and S2 such that the score

F (S ′
1, S

′
2) =

∑length(S′
1)

i=1 f(S ′
1[i], S

′
2[i]) is maximal.

Definition A local alignment of two strings S1 and S2 from alphabet Σ is a pair of

strings (S ′
1, S

′
2) such that:

• S ′
1 and S ′

2 only contain characters from the alphabet Σ′ = Σ ∪ { }.

• length(S ′
1) = length(S ′

2).

• removing all occurrences of the character ′ ′ from S ′
1 yields a substring of S1.

• removing all occurrences of the character ′ ′ from S ′
2 yields a substring of S2.

In other words a local alignment of two strings is a global alignment of two respective

substrings.

Definition An optimal local alignment of two strings S1 and S2 with respect to a

score function f is the local alignment (S ′
1, S

′
2) of S1 and S2 such that the score

F (S ′
1, S

′
2) =

∑length(S′
1)

i=1 f(S ′
1[i], S

′
2[i]) is maximal.

In this thesis and in all the tandem repeats detection algorithms which will be

mentioned later it’s assumed that the the score function f(x, y) where x, y ∈ Σ∪{′ ′}

obeys the following:

1During the replication of DNA, mutations like substitution, deletion or insertion of bases may
take place.
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• f(x, x) = mf for all x ∈ Σ where mf ≥ 0. mf is called the match score of the

score function f .

• f(x, y) = −sf for all x 6= y and x, y ∈ Σ where −sf ≤ 0. sf is called the

mismatch penalty of the score function f .

• f(x,′ ′) = f(′ ′, x) = −if for all x ∈ Σ where −if ≤ 0. if is called the indel

penalty of the score function f .

• f(′ ′,′ ′) = −∞ so that the pair (′−′,′−′) never appears in any optimal align-

ment.

Then any alignment score function can be identified by the triple (mf , sf , if ),

namely by its match score, mismatch penalty and indel penalty.

Another way to express the edit distance between two strings is to negate the score

of the optimum global alignment between those two strings with the score function of

the type (0, 1, 1). Analogous to the computation of edit distance, the optimum global

and local alignments between two strings X and Y can be computed using dynamic

programming in O(mn) time where m is the length of the first string and n is the

length of the second. The computation is done by filling a m×n matrix such that each

entry at ith row and jth column is the optimum global (or local) alignment score of

the two strings X1,i and Y1,j. The solution is then found by backtracing on the matrix

in linear time. If only solutions which contain at most d insertions and deletions are

in interest then the optimum global alignment can be computed in O(nd) time. Only

the diagonal band with width 2d of the matrix needs to be computed.

2.2.3 Related Work

The edit distance and/or alignment based algorithms may be classified into two

groups. The algorithms in the first group try to compute the full alignment ma-

trices exhaustively (Kannan and Myers [24], Benson [5], Schmidt [40]) to detect the
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tandem repeats. However even the most efficient one (by Schmidt [40]) is not appli-

cable to sequences with over a thousand bases because of its O(n2 polylog(n)) time

complexity.

Algorithms of the second group (Sagot and Myers [39], Benson [6], Stolovitzky

et al. [42], Wexler et al. [45]) have two phases: the first phase filters some regions

as candidate tandem repeat regions using statistical heuristics and the second phase

verifies these candidates by computing alignments. The algorithm by Sagot and

Myers [39] has a limitation of only accurately detecting the repeats with period size

in the range between 30 and 40.

Benson’s algorithm Tandem Repeats Finder [6] looks for short substrings (length

between 3 and 7 depending on the period of the repeat) which are repeated in a

neighborhood. Sufficiently high number of short substrings which are exactly repli-

cated at some distances around d is an indication of an approximate tandem repeat

with period d in that region. Then the actual alignment for verification of the region

starts. This heuristic of identifying similarities of short windows (the seeds) and then

extending the seeds for detecting the similarity of larger portions is called filtration

and is used in many well-known homology search algorithms like BLAST [1].

The algorithm by Stolovitzky et al. [42] tries to incorporate the idea of using

patterns with don’t care characters (gaps) instead of using exact matches of short

substrings. The pattern discovery algorithm TEIRESIAS [37] [38] is used to find a

sufficiently high number of patterns occurring at positions shifted by distance d to

detect candidate tandem repeat regions.

ATRHunter [45] by Wexler et al. uses the matches of longer seeds in its filtering

based verification approach. However these matches are within some k-Hamming

distance instead of exact matches or pattern matches with gaps (k is determined

statistically).
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2.2.4 Tandem Repeats Finder

Tandem Repeats Finder [6] is designed to overcome many of the limitations of the

previous algorithms which make them not practically usable for detecting repeats with

a wide range of period in long sequences. It looks for repetitions of short substrings

to identify candidate regions and thus avoids the need for full scale alignment matrix

computations. Also it does not require a priori knowledge of the pattern, pattern size

or number of copies.

A probabilistic model of tandem repeats is assumed in the algorithm based on

Bernoulli trials. The alignment of two tandem copies of a pattern of length n is mod-

eled by a sequence of n-independent Bernoulli trials (coin tosses). The probability of

success pM , which is also called the matching probability, represents the average per-

cent identity between two copies. Each head in the Bernoulli sequence is interpreted

as a match between aligned nucleotides. Each tail is a mismatch, insertion or dele-

tion. A second probability pI , or indel probability, specifies the average percentage of

insertions and deletions between adjacent copies. These parameters are considered

as the conservation parameters and the pair (pM , pI) is a quantitative description of

the most divergent copies that the algorithm detects.

The algorithm consists of two phases, detection and analysis. The detection phase

uses a set of statistically based criteria to find candidate tandem repeats. These

statistical criteria are derived according to the parameters mentioned above. The

analysis phase attempts to produce an alignment for each candidate and in case of

success it reports the repeat with some information like the percentage of identity,

percentage of indels and alignment of copies with consensus pattern.

Detection Phase

The algorithm assumes that adjacent copies of any pattern should contain some

matching characters in corresponding positions but the number of matches and how
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the distances between those matches vary is unknown. Let’s first describe how these

corresponding matches are detected.

The algorithm looks for matching nucleotides separated by a common distance d,

which is not specified in advance. For reasons of efficiency it looks for runs of k-tuple

matches. A k-tuple is described as a window of k consecutive characters from the

nucleotide sequence and matching k-tuples are two windows with identical contents.

A list (called the history list) for all possible 4k k-tuples (they are called probes)

are constructed and these lists are processed by sliding a k-length window across the

entire sequence. For each probe p, the history list Hp maintains the positions where

p occurs.

When a position i is added to Hp, the algorithm scans for all earlier occurrences of

p, and for each earlier occurrence j, the distance d = i− j is considered as a possible

pattern size for a tandem repeat. Before reporting this occurrence as a candidate

tandem repeat, more evidence of occurrences of more k-tuples with the same (or

closer) distance d starting at position between j and i is needed. A list called the

distance list Dd stores this information.

The list Dd is updated every time a match at distance d is detected. The position i

of the match is stored on the list. The right end of the window is set to i and matches

that occurred before j = i − d are dropped from the list. The lists for other nearby

distances to d are also updated as follows: their right ends are set to i and the matches

which occurred before j = i− d are removed. The information stored in these lists is

used to test the distance d and position i according to the statistical criteria and if

the tests are successful this occurrence is reported as a candidate tandem repeat and

the analysis phase takes place.
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Statistical Criteria

Four probability distributions are defined depending on the pattern length d, the

matching probability pM , the indel probability pI , and the tuple size k. These distri-

butions are either calculated by some formulae or computed by simulation and some

cut-off value is determined for each distribution. They are:

Sum of heads distribution This distribution indicates how many matches are re-

quired. Let’s define the random variable Rd,k,pM
as the total number of heads

in head runs of length k or longer in an independent and identically distributed

Bernoulli sequence of length d with success probability pM . This distribution

is well approximated by the normal distribution and Benson and Su [7] showed

that its exact mean and variance can be calculated in constant time. The largest

number x such that 95% of the time Rd,k,pM
≥ x is determined and this number

is used as the sum of heads criterion for the test. For example if pM = 0.75,

k = 5 and d = 100, then the criterion is 26. In other words for a pattern with

length 100 where aligned copies are expected to match with probability at least

75%, we expect to count at least 26 5-tuple matches 95% of the time.

Random walk distribution This distribution is used to analyze how distances be-

tween matches vary due to insertions and deletions. Remember that the algo-

rithm looks at the distance lists Dd±1, Dd±2, ...,Dd±∆dmax as well as Dd. To

determine this ∆dmax it’s assumed that the insertions and deletions are equally

likely. Let’s define the random variable Wd,pI
as the maximum displacement

from the origin of a one-dimensional random walk with expected number of

steps equal to pI · d. Feller [15] showed that 95% of the time, Wd,pI
ranges

within ±2.3
√

pI · d. Therefore ∆dmax is set to b2.3
√

pI · dc. For instance if

pI = 0.1 and d = 100, then ∆dmax = 7. An analogous criterion is used in the

algorithm in this thesis.
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Figure 2.1: Apparent size distribution criterion is used in Tandem Repeats Finder to
distinguish between (a) tandem repeats (matching k-tuples are distributed through-
out the interval from j to i) and (b) non-tandem repeats (matching k-tuples are
concentrated on the right side of the interval).

Apparent size distribution This distribution and criterion is used to distinguish

between tandem repeats from interspersed repeats. The matching k-tuples are

distributed throughout the interval from j to i for tandem repeats, whereas

they should be concentrated on the right side of the interval for non-tandem

repeats (illustrated in Figure 2.1). The criterion is determined by simulation.

If the distance between the first and the last tuple on list Dd is smaller than

the criterion than the repeat is considered as non-tandem repeat.

Waiting time distribution This distribution is used to determine the tuple size k.

As the tuple size increases the running time of the algorithm decreases because

the probability of a long tuple to be appearing is lower than a shorter one, thus

the history lists become shorter. On the other hand the probability of missing

some approximate tandem repeats increases as k increases because approximate

repeats may not contain so long exact matches. The tuple sizes for some period

15



Table 2.1: Calculated tuple sizes in Tandem Repeats Finder for some range of periods.

ranges which are determined according to this criterion are shown in Table 2.1.

Analysis Component

The analysis component of the algorithm verifies whether the candidate tandem re-

peats (those passing the statistical criteria) are actual tandem repeats. A candidate

pattern consisting of positions j + 1, j + 2, . . . , i is selected and it’s aligned with

the surrounding sequence using a specialized version of wraparound dynamic pro-

gramming [16]. If at least two copies of the candidate pattern is aligned then it’s

considered as a tandem repeat. But this candidate pattern is usually not the best

consensus pattern. A new consensus pattern is determined using the majority rule

from the alignments of the original candidate pattern and then this new consensus

pattern is realigned to find the final alignment. The tandem repeats in Tandem Re-

peats Finder are defined as a sequence which has an optimal alignment score larger

than a given threshold when aligned with a periodic repetition of a consensus pattern.

The most time consuming process in the algorithm is this wraparound dynamic

programming alignment. To decrease the running time the diagonal band is narrowed

to a radius of ∆dmax in the alignment matrix for patterns larger than 20 characters.

Also the same repeat may be reported several times with different pattern sizes.

For instance a repeat with pattern size 25 can be reported multiple times with pattern

sizes 25, 50, 75 and so on (smallest period size isn’t always the best alignment).
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Complexity Analysis

In the detection phase, for each occurrence of a k-tuple, up to 2 · ∆dmax distance

lists are updated. Assuming that it takes constant time to update a distance list,

the time required for each occurrence of a k-tuple is O(∆dmax). Let tmax be the

maximum period length that is of interest. Then only the occurrences of k-tuples

up to tmax positions are needed to be observed. Since each k-tuple is expected to

occur tmax
1

4k
times in tmax positions, the overall complexity of the detection phase is

O(n ·∆dmax · tmax ·4−k) where n is the sequence length. Since ∆dmax is O(
√

tmax), the

overall complexity is O(n · (tmax)
1.5 · 4−k) where tmax is the maximum period length

and k is the minimum tuple size used.

The analysis phase takes O(l · ∆dmax) time for a repeat with length l. Under

the assumption that the ratio of failed alignments (false alarms) to the successful

alignments (reported repeats) is constant, the overall detection phase takes O(L ·

∆dmax) = O(L ·
√

tmax) time where L is the total length of the reported repeats and

tmax is the maximum period.

2.2.5 ATRHunter

ATRHunter [45] consists of two phases analogously to the Tandem Repeats Finder, a

screening phase which generates a list of candidate tandem repeat regions based on a

statistical model, and a verification phase which verifies the candidate tandem repeat

regions.

Screening Phase

The regions which have a high probability of being a tandem repeat are detected in

this phase based on some similarity criteria. For a substring of length t to qualify as

a pattern of a tandem repeat, there should be some similarity with the subsequent
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(adjacent) substring of length t. To test the similarity between two consecutive sub-

strings of length t, segments of length l of these two substrings are compared where

l < t. However instead of exact matches, approximate matches are considered under

the Hamming distance. Every segment of length l (called an l-window) of the first

substring is compared with an appropriate l-window of the second substring. The

outcome of a comparison of two l-windows is called a q-quality vector (0 ≤ q ≤ 1) if

there are at least q · l matching characters when these two l-windows are compared

character by character (if the Hamming distance of these two windows is at most

(1− q)l). Given l and q, let’s define two quantities: score and gap, for every position

i in the sequence. The score St(i) is the number of q-quality vectors produced by the

comparison of the l-windows in the substring of length t starting at position i. Since

there are t− l+1 l-windows for a substring of length t, the maximum value that St(i)

can take is t− l + 1. The gap ∆t(i) is the maximal number of consecutive l-windows

in the substrings of length t starting at position i that produce vectors which are not

q-quality.

There are three similarity criteria in the screening phase which qualifies a region

as a candidate region. These are:

Score criterion St(i) should be greater than or equal to the threshold σt

Continuity criterion ∆t(i) should be less than or equal to the threshold δt

Distance criterion For every comparison which resulted in a q-quality vector, the

position difference of the two l-windows that are compared should be in the

range [t− dt
max, t + dt

max].

The thresholds σt, δt and dt
max in these criteria depend on the pattern length t and

the distribution of gap and score values. The process of determining the threshold

dt
max for distance criterion is identical to the Random Walk Distribution of Tandem
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Repeats Finder. The other thresholds are determined based on random walks on

some specially defined graphs [45] which will not be explained here.

The screening phase of the algorithm consists of a loop of tmax iterations where

candidate tandem repeats with pattern length t are detected in each iteration t.

For each t, the parameters l and q are determined and two l-windows are placed at

positions 1 and t + 1 initially. These two l-windows are slided towards the end of the

sequence and they are compared at each step to produce q-quality vectors. The first

l-window is slided 1 position at each step whereas the the second l-window is slided

by 0, 1 or 2 positions greedily to maximize the number of q-quality vectors produced.

The default choice is to advance the second l-window by 1 position if it produces a

q-quality vector. If it doesn’t produce a q-quality vector then the other choices are

tried as soon as the distance criterion described above is met and a q-quality vector

is produced. If none of the tree choices produces a q-quality vector, then the default

choice, which is advancing it by 1 position, is selected. At the end of the each ith step

where i > t−1 the algorithm counts the number of q-quality vectors and the maximum

number of consecutive non q-quality vectors within the last t− l + 1 vectors and sets

these quantities as St(i − t + l) and ∆t(i − t + l) respectively. These computations

can be done in O(1) time by maintaining a doubly linked list. The position i’s

that pass the above three criteria are reported as candidate tandem repeats and the

verification phase takes place for these regions. When both windows are slided by

one position, it takes O(1) time to check whether they produce a q-quality vector or

not, because only the first and last character pairs are changed in the alignment of

the windows. However if the second window is slided by 0 or 2 positions then the

alignment of windows completely change and it takes O(l) time to check whether

they produce a q-quality vector. The parameters l and q are determined so that the

probability of sliding the second window 0 or 2 positions is 1/l. Then the amortized

time for comparing two l-windows become O(1) for each position. Since all the pairs
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at distance up to tmax starting at every position of the sequence are compared, the

screening phase takes O(n · tmax) time, where n is the length of the input sequence.

Verification Phase

Candidates are verified using dynamic programming alignment. For the alignments

of pattern length greater than 20, only the diagonal with radius dt
max is computed in

the alignment matrix to save some computation time analogously to Tandem Repeats

Finder.

Instead of using wraparound dynamic programming, ATRHunter combines single

repeats to produce multiple repeats. The second repeating unit of a single repeat

is aligned with the first unit of some following alignment, and they are combined if

the alignments are similar. Thus the computation takes O(l · dt
max) = O(l ·

√
tmax).

Again under the assumption that the ratio of number of false alarms to the number

of detected repeats is constant, the verification phase takes O(L ·
√

tmax) time, where

L is the total length of the reported repeats.
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Chapter 3

Algorithm

This chapter will discuss the algorithm that is developed to detect the tandem re-

peats. The algorithm can be conceived as two phases even if these phases are not

sequentially executed during the run of the algorithm. Before explaining the algo-

rithm, the definition of Approximate Tandem Repeats in this work and the goal of

the algorithm will be explained Section 3.1. Then the first phase which detects the

candidate tandem repeat regions is presented in the Section 3.2. Section 3.3 discusses

the second phase of the algorithm which verifies the candidate repeat regions. Finally

various criteria that are used in the algorithm are explained in Section 3.4.

3.1 Definition of Approximate Tandem Repeats

3.1.1 Model of Formation of Tandem Repeats

The probabilistic assumption in the stochastic process of the formation of approximate

tandem repeats in this work is very similar to the assumption of Tandem Repeats

Finder [6]. It’s assumed that there’s a substitution probability of pS and an insertion

or deletion probability of pI (insertions and deletion are assumed equally likely) at

each position when a unit is repeated; and it’s also assumed that these errors are
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independent from each other. Since the total error probability is pS + pI , the proba-

bility of a character being copied without errors is called pM or probability of match

where pM = 1 − (pS + pI). Therefore roughly pM × t matches, pS × t substitutions

and pI × t indels are expected when aligning two units of a repeat with period t.

3.1.2 Terminology

Since insertions and deletions are allowed in the approximate repeats, the best way

to define an approximate repeat is with a distance based approach (explained in

Chapter 2.2.2) with an edit distance or alignment score metric. First approximate

single tandem repeats will be defined.

Definition A string Y = XX ′ is an approximate single tandem repeat if and only if

the number of errors (substitutions plus indels) in the optimum global alignment of

its two repeating units X and X ′ with respect to a score function f is less than or

equal to some similarity criteria θmax(t) where t (called the period) is the length of

the first repeating unit X.

The alignment score function f is an input of the algorithm and is universal for

all tandem repeats. The threshold θmax(t) is a function of the parameter pM of the

probabilistic assumption described above and the period of the repeat t. It serves as a

threshold of similarity between the repeating units. The calculation of this threshold

is explained in section 3.4.

Since the algorithm presented in this thesis is capable of detecting both single

and multiple repeats, a new definition of tandem repeats will be introduced later to

express both single and multiple repeats. However because of the similarity between

the processes of detecting single and multiple repeats, all the examples and explana-

tions in the algorithm will be about single repeats in order to be clearer. The only

difference between the detection of single and multiple repeats is in the last step of
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the verification phase and necessary remarks will be made there (Section 3.3.2).

To extend the definition of single tandem repeats to multiple repeats, a combi-

nation of the consensus and the neighboring approximate tandem repeat definitions

according to an alignment score criteria is used because of its similarity to the defi-

nitions of tandem repeats in Tandem Repeats Finder [6] and ATRHunter [45] which

allows a comparison of this work with them. Here is a formal definition of an approx-

imate tandem repeat 1 2:

Definition A string Y = X1X2 . . . XcXc+1 is defined as a Tandem Repeat if and

only if the following conditions hold for some string C (which is called the consensus

pattern) with length tC :

• For all i such that 1 ≤ i ≤ c; ei = E(X ′
i, C

′) should be less than or equal to

θmax(tC) where E(X ′
i, C

′) is the number of errors in the optimal global alignment

(X ′
i, C

′) (with respect to some score function f) of the repeating unit Xi and

consensus pattern C.

• For all i such that 1 ≤ i < c; E(X ′
i, X

′
i+1) should be less than or equal to θmax(t)

where E(X ′
i, X

′
i+1) is the number of errors in the optimal global alignment

(X ′
i, X

′
i+1) (with respect to score function f) of the two adjacent repeating

units Xi and Xi+1 and t is the total number of matches, mismatches, insertions

and deletions in that alignment.

• if Xc+1 is a full string then ec+1 = E(X ′
c+1, C

′
p) should be less than or equal

to θmax(length(Cp)) where E(Xc+1, C
′
p) is the number of errors in the optimal

global alignment (X ′
c+1, C

′
p) (with respect to score function f) of the partial

1For both single and multiple repeats

2The term tandem repeat will refer to both perfect and approximate tandem repeats from now
on
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repeating unit Xc+1 with some nonempty prefix Cp of the consensus C such

that Cp 6= C.

Again the alignment score function f is an input the algorithm and is universal for

all tandem repeats. The threshold θmax(t) is the same threshold used in the above

definition of single repeats, however here it is also used to express the lower bound of

similarity between the repeating units and the consensus pattern.

Now let’s extend the above definition of the Tandem Repeat Y = X1X2 . . . XcXc+1

with some additional properties:

Consensus pattern The string C is called the consensus pattern of the tandem

repeat Y .

Consensus period The length tC of the consensus pattern is called the consensus

period of the tandem repeat Y .

Period The period ti of a repeating unit Xi is defined as the length of the string Xi

for 1 ≤ i ≤ c. Then the period of the tandem repeat Y is the most common

period among the periods of the repeating units. If there is more than one

candidate then the one closest to the consensus period is chosen.

Copy number The sum c +
length(Cp)

tC
is called the copy number of the tandem

repeat Y . In other words it is the sum of the number of full repeating units

plus the fraction of the partial repeating unit.

Score of a repeating unit si = F (X ′
i, C

′), which is the score of the optimal global

alignment (with respect to some score function f) of the repeating unit Xi with

consensus pattern C, is called the score of the repeating unit Xi.

Score of the partial repeating unit sc+1 = F (X ′
c+1, C

′
p), which is the score of the

optimal global alignment (with respect to some score function f) of the partial
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repeating unit Xc+1 with some nonempty prefix Cp of the consensus C such

that Cp 6= C, is called the score of the partial repeating unit. It’s 0 if Xc+1 is

empty string.

Total score The sum S(Y ) =
∑c+1

i=1 si is called the total score of the tandem repeat

Y where si’s are the scores of each repeating unit defined above.

It can be seen that all the above properties depend on the consensus pattern C.

Since there may be more than one consensus pattern that satisfies the conditions in

the definition, none of the properties is unique. Note that even if there’s a unique

consensus pattern, the repeating units can be decomposed in different ways.

3.1.3 Goal

The goal of the algorithm is to report the tandem repeats in a given sequence that

satisfies the given criteria. The inputs to the algorithm are as follows:

Sequence A sequence S over the alphabet Σ = {A,C,G,T} in which the tandem

repeats will be searched for.

Error probabilities The pair (pM , pI) which defines the error probabilities in the as-

sumption of the stochastic repeat replication process described in Section 3.1.1.

Minimum period The minimum period tmin of the repeats which will be reported.

Maximum period The maximum period tmax of the repeats which will be reported.

Total score threshold θscore such that only the tandem repeats with total score

equal to or greater than this threshold will be reported.

Alignment score function The parameters (mf , sf , if ) of the alignment score func-

tion f which will be used in alignments for determining the scores of repeats.
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These parameters are the score for a match, penalty for a mismatch, and penalty

for an indel, respectively.

The sequence S is searched for tandem repeats with period t in the range tmin ≤

t ≤ tmax and with total score equal to or greater than the θscore according to the score

function f . The following properties of the found repeats are reported in the output:

Start - End positions The integers i and j where Si,j is the repeat.

Consensus The consensus pattern of the repeat.

Period The period of the repeat. Note that it may be different than the consensus

period.

Total score The total score of the repeat with respect to score function f (Sec-

tion 3.1.2).

Alignments The details of the alignments of each repeating unit with the consensus.

The details of output are discussed in Section 4.1.3.

3.2 Detection Phase

The algorithm uses the filtration technique and it’s similar to the other algorithms

mentioned before (in Chapter 2.2.3) in the sense that it consists of two phases. The

first phase, which finds the regions exhibiting evidence of being a tandem repeat, is

explained in this section.

3.2.1 Observing the Recurrences of Short Substrings

Remember that the Tandem Repeats Finder [6] looks for exact matches of short

substrings to gather clues about repeat regions. For each substring (of the whole

sequence S) of length w it looks for all the previous occurrences of that substring.
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The algorithm in this thesis looks only for the immediately preceding occurrence of

substrings (windows) of length w starting at every position. We claim that observing

only the immediately preceding occurrences of short substrings is as powerful as (also

more efficient than) observing all the previous occurrences when the window size w is

properly chosen for different ranges of repeat periods. Presence of significant number

of substrings occurring t positions before in a region is a strong evidence of the

argument that the corresponding region is repeated t positions before. To illustrate

the idea let’s consider a perfect single tandem repeat of period t = 20 (the underlined

substring is the second repeating unit, which is equal to the non-underlined part):

Y = CGCAAGTTCATGAAAGAACCCGCAAGTTCATGAAAGAACC

Since it’s a perfect tandem repeat, it’s obvious that Yi,i+w = Yi+t,i+t+w for all

1 ≤ w ≤ t and 1 ≤ i ≤ t − w + 1. In other words if we look for all occurrences of

substrings of Y with length w starting at positions between t + 1 and 2t−w + 1, we

observe that those substrings also occur t positions before. However if we look for

only the immediately preceding occurrence of those substrings we may observe that

not all of the are observable at distance 20. For instance when w = 1 none of the 20

substrings are observable at distance 20, for w = 2 only 8 of the 19 substrings are

observable, for w = 3 we observe 14 of the 18 substrings and for w = 4 all of them are

observable. Therefore the window size of 3 or above is a good choice for detecting the

repeats of period 20 since most of the windows are observable. The substrings which

are observable are the ones which occur exactly once in a single repeating unit.

Definition Let u(S, w) be a function of some string S and an integer w such that it

is the number of substrings of length w which occurs exactly once in S.

Since there are at most n = L−w + 1 substrings of length w in S, it’s clear that

0 ≤ u(S, w) ≤ n = L− w + 1 where L is the length of the string S.
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Figure 3.1: State diagram of automaton A.

In the previous example u(X, 1) = 0, u(X, 2) = 8, u(X, 3) = 14 and u(X, 4) = 17

where X = CGCAAGTTCATGAAAGAACC.

Let’s now analyze the number of substrings of length w which occurs exactly once

in a random string of length L.

Definition Let UL,w be a random variable which is the number of unique substrings

of length w in a random string S of length L where each character of S is uniformly and

independently chosen from a 4 symbol alphabet. Then it’s clear that UL,w = u(S, w).

From the previous definition we know that 0 ≤ UL,w ≤ n = L− w + 1.

Before studying the random variable UL,w, we’ll first analyze the probability that

a fixed string v of length w does not occur in S. The detection of v in S may be

modeled as follows. Consider an automaton A with with w states as illustrated in

Figure 3.1. A has a reset state s0 and a sequence of w− 1 states associated with the

recognition of v; the last state sw−1 has only “return” arcs. Here we have made the

simplifying assumption that return arcs exist only to s0 and s1. (This simplifying

assumption negligibly overestimates the probabilities.)

Denoting Pj the probability that a sequence of length j ≥ w does not contain v,

by standard analysis (signal flow-graphs) we obtain the recurrence relation

Pj = Pj−1 −
1

4w
Pj−w
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whose characteristic polynomial is p(x) = xw − xw−1 + 1/4w. The largest real root

of p(x) determines the behavior of Pn for large n. We note first that p(1) = 4−w;

moreover, p′(1) = 1, so that, approximating p(x) around x = 1 with its tangent line

at x = 1, we obtain

P (1− 4−w) ≈ 0

i.e., 1 − 4−w is the sought root. It follows that Pj ≈ (1− 4−w)
(j+H)

, where H is a

constant we now determine. We can directly determine that Pj = 1 for j = 1, . . . , w−1

and Pw = 1 − 4−w, so that we obtain (1− 4−w)
w+H

= 1 − 4−w, i.e., H = −w + 1.

Ignoring the approximation, we conclude:

Pj =
(
1− 4−w

)j−w+1

Let n = L− w + 1, so that Pn+w−1 = PL = (1− 1/4w)n. Now consider the following

analogy: We have 4w bins (numbered 1, 2, . . . , 4w) and n balls and each ball has

probability 1/4w to fall into any bin. Let θj be a binary variable which is 1 if and

only if bin j remains empty after all the n balls have been thrown:

Pr(θj = 1) = (1− 1/4w)n

The last equation can be interpreted as stating that the probability PL that a sequence

of length L does not contain a specific string of length w is the same as the probability

Pr(θj = 1) that none of the n thrown balls will fall into a specific bin in a collection

of equally likely 4w bins.

Now the number ν0 of empty bins is

ν0 = θ1 + θ2 + . . . θ4w

Since these variables are identically distributed

E[ν0] =
4w∑
i=1

(1− 1/4w)n = 4w (1− 1/4w)n
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This illustrates a significant analogy between the expected number of never oc-

curring strings of length w in a sequence of length n and the number of empty bins

after throwing n balls into 4w bins. Due to its inherent simplicity, we shall analyze

the latter model to shed light on our original problem.

Again consider the process of throwing n = L − w + 1 balls into 4w bins, where

the balls can be thought as the n substrings of length w in a random string of length

L and the bins can be seen as all the possible 4w strings of length w. Let the binary

random variable φi be 1 if and only if the number of balls in the bin i is 1 (1 ≤ i ≤ 4w).

Then

Pr(φi = 1) =
n

4w

(
1− 1

4w

)n−1

since φi is 1 if and only if only one ball is thrown into bin i and the other n− 1 balls

are thrown into other 4w − 1 bins.

Now let’s define the random variable ν1 =
∑4w

i=1 φi as the number of bins with

only one ball after throwing n balls to 4w bins. Then the expectation of ν1 is:

E[ν1] = E

[
4w∑
i=1

φi

]
=

4w∑
i=1

E[φi] = 4w E[φi] = 4w n

4w

(
1− 1

4w

)n−1

= n(1− 4−w)n−1

since the φi’s are identically distributed random variables.
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The variance of ν1 is:

Var[ν1] = E
[
(ν1 − E[ν1])

2
]

= E[ν2
1 ]− 2 E[ν1] E[ν1] + E[ν1]

2

= E[ν2
1 ]− E[ν1]

2

= E

( 4w∑
i=1

φi

)2
− E[ν1]

2

= E

[
4w∑
i=1

φ2
i +

∑
i6=j

φiφj

]
− E[ν1]

2

= E

[
4w∑
i=1

φ2
i

]
+ E

[∑
i6=j

φiφj

]
− E[ν1]

2

= E

[
4w∑
i=1

φi

]
+ E

[∑
i6=j

φiφj

]
− E[ν1]

2 (since φ2
i = φi)

= E[ν1]− E[ν1]
2 + E

[∑
i6=j

φiφj

]

Next let’s analyze the last term E
[∑

i6=j φiφj

]
. Note that φiφj = 1 if and only if

φi = 1 and φj = 1. In other words, it’s the event that only one ball is in bin i and

one in bin j (i 6= j). So the probability of this event is:

Pr(φiφj = 1) =
n

4w

n− 1

4w − 1

(
1− 2

4w

)n−2

since one ball will be thrown into bin i and one ball will be thrown into bin j and the

remaining n− 2 balls will be thrown into the remaining 4w − 2 bins. Now returning

to the term that is being analyzed, since there are 4w(4w − 1) events (i 6= j):

E

[∑
i6=j

φiφj

]
=
∑
i6=j

(
n

4w

n− 1

4w − 1

(
1− 2

4w

)n−2
)

= 4w(4w − 1)
n

4w

n− 1

4w − 1

(
1− 2

4w

)n−2

= n(n− 1)

(
1− 2

4w

)n−2
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since φiφj’s are identically distributed random variables where i 6= j. Now the vari-

ance becomes:

Var[ν1] = E[ν1]− E[ν1]
2 + E

[∑
i6=j

φiφj

]

= E[ν1]− E[ν1]
2 + n(n− 1)

(
1− 2

4w

)n−2

Several simulation results suggest that the expectation of random variable ν1 is

an almost perfect approximation to the expectation of UL,w where n = L − w + 1

(Figure 3.2(a), 3.3(a) and 3.4(a)). Similarly, the variance of ν1 approximates the

variance of UL,w well enough (Figure 3.2(b), 3.3(b) and 3.4(b)).

E[UL,w] ≈ E[ν1]

Var[UL,w] ≈ Var[ν1]

Under the assumption that a genomic sequence is a random sequence, the random

variables UL,w and ν1 hint that a properly chosen substring length w allows the

algorithm to detect repeating regions without having the need of observing all the

occurrences of the substrings. Only observing the last occurrence of a substring of

length w (called an w-window scan) is powerful enough to detect repeating regions

and is much more efficient than observing all occurrences.

For instance, for repeats with period around 30 − 40, almost all of the substring

of length 4 are observable according to the Figure 3.4(a). Therefore the window size

4 is a good choice for such repeats.

For perfect tandem repeats, these distributions may be used to adjust the thresh-

old on the number of substrings which are needed to be observed for considering the

region as a tandem repeat. However substitutions, insertions and deletions block out

some of these substrings. This situation will be discussed in Section 3.4.3.
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Figure 3.2: Comparison of ν1 and simulation of UL,w for w = 2.
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3.2.2 Distance Arrays

Since we are interested in observing only the immediately preceding occurrences of

short substrings, the only information that will be needed is the distances between

the occurrences of these substrings at each position. The array of these distances for

each position is called the distance array. More formally:

Definition For a string S of length L, the distance array δS,w is an (L − w + 1)-

component vector. δS,w[i] denotes the ith element of this vector. Let Wi (called the

w-string at position i) denote the substring Si,i+w−1. Then:

δS,w[i] =


0 if string Wi never occurs before position i

h if h = i− j where j is the largest j < i such that Wj = Wi

In other words δS,w[i] is the distance between the current occurrence and the last

occurrence of Wi.

Definition Let δS,w[i : j] denote the vector 〈δS,w[i] δS,w[i + 1] · · · δS,w[j]〉.

Let’s return to example in Section 3.2.1 where Y = XX is a perfect single tandem

repeat with period 20:

X = CGCAAGTTCATGAAAGAACC

Y = CGCAAGTTCATGAAAGAACCCGCAAGTTCATGAAAGAACC
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Then:

δY,1 = 〈0 0 2 0 1 4 0 1 6 5 3 6 3 1 1 4 2 1 10 1

1 6 2 6 1 4 16 1 6 5 3 6 3 1 1 4 2 1 10 1〉

δY,2 = 〈0 0 0 0 0 0 0 0 6 0 0 0 9 1 10 4 3 0 0 1

20 20 14 7 10 20 20 20 6 20 20 16 9 1 10 4 3 20 19〉

δY,3 = 〈0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 4 0 0 0 0

20 20 20 10 20 20 20 20 20 20 20 16 20 10 20 4 20 20〉

δY,4 = 〈0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20〉

And,

δY,1[21 : 40] = 〈1 6 2 6 1 4 16 1 6 5 3 6 3 1 1 4 2 1 10 1〉

δY,2[21 : 39] = 〈20 20 14 7 10 20 20 20 6 20 20 16 9 1 10 4 3 20 19〉

δY,3[21 : 38] = 〈20 20 20 10 20 20 20 20 20 20 20 16 20 10 20 4 20 20〉

δY,4[21 : 37] = 〈20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20〉

This simple example on perfect repeats illustrates the use of w-window scanning

and the use of distance arrays when detecting the tandem repeat regions. The distance

arrays of w = 2, 3 and 4 have a significant number of 20’s after position 21 therefore

the portion of the string after position 21 provides strong evidence of being a repeating

unit of a tandem repeat.

Now consider the following example of approximate tandem repeat Y = XX ′

with period 20 where the first repeating unit X is the same as the one in the previous

example but the second repeating unit X ′ has an insertion, two deletions and a

substitution.

Y = CGCAAGTTCATGAAAGAACCCGTCAAGTCCATGAGAACC
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Here’s an alignment of the two repeating units: CG_CAAGTTCATGAAAGAACC
CGTCAAGTCCATG_A_GAACC

Only the distance array with w = 3 will be shown in this case:

δY,3 = 〈0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 4 0 0 0 0

0 0 15 21 11 21 5 0 0 21 21 21 0 19 19 19 19〉

And,

δY,3[21 : 37] = 〈0 0 15 21 11 21 5 0 0 21 21 21 0 19 19 19 19〉

Here the distance array is not as simple as the previous perfect repeat case. The

mutations cause the w-strings around them to be hidden (blocked out) in the distance

array; and the insertions (deletions) cause the values in the distance array to be

increased (decreased) by 1.

The insertion at the 3rd position in the second repeating unit blocks out the first

three 3-strings of δY,3[21 : 37] and increases all the other values by 1. Similarly the

two deletions near the end decreases the 21’s by 2. Also the substitution near the

center of the second repeating unit blocks out three strings.

Even if this distance list is not as perfect as the previous example, it still provides

a significant clue of a tandem repeat because it contains five 21’s and four 19’s which

are in the neighborhood of 20.

As these two examples clarifies, the presence of some subsequence (of the distance

array) of length close to t containing a significant number of values which are in the

neighborhood of t is evidence of a candidate tandem repeat with period t. The goal

of the detection phase of the algorithm is to find these subsequences (or t-chains)

in the distance array. Some criteria relating to the minimum number of values, the

length of the chain and the allowed neighborhood will be explained in Section 3.4.
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3.2.3 Chains

A chain, to be formally defined below, can be thought as a subsequence of a distance

array with some restrictions. The algorithm constructs the chains according to the

distance array of the sequence. The chains which pass the acceptance criteria are

then considered as candidate tandem repeat regions and corresponding portions of

sequence S are passed in to the verification phase. The process of constructing the

chains will be explained in Section 3.2.4.

Definition A t-chain or chain Γt,s associated with a distance array δS,w is an l-

component vector of non-negative integers where:

• s is called the start position of the chain.

• Γt,s[i] denotes the (i− s + 1)th element of the vector where s ≤ i ≤ s + l − 1.

• Γt,s[i : j] denotes the vector 〈Γt,s[i] Γt,s[i + 1] · · · Γt,s[j]〉

• hlast(i) in a chain Γt,s denotes the last non-zero value in the vector Γt,s[s : i− 1]

• ∆d(i) in a chain Γt,s denotes the difference i − j such that j is the position of

the occurrence of the last non-zero value (hlast(i)) in the vector Γt,s[s : i− 1]

and where the following two conditions hold:

1. Γt,s[s] = δS,w[s] = t. In other words the first element of the chain is always t

(and also the sth element of the distance array is t). Therefore Γt,s is called the

t-chain starting at position s in the distance array δS,w.

2. Γt,s[i] =



h

if h = δS,w[i] 6= 0 and

t−∆tmax(t) ≤ h ≤ t + ∆tmax(t) and

delmax(∆d(i)) ≤ h− hlast(i) ≤ insmax(∆d(i))

0 otherwise

for 1 < i < l
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Figure 3.5: ∆tmax(t) for pI = 0.1.

3. Γt,s[s+ l− 1] = δS,w[s+ l− 1] 6= 0. The chains always end with a non-zero value

which is also the value of the distance array at position s + l − 1.

The conditions in the definition above says that that each t-chain Γt,s is an array

of 0’s or positive integers within the ∆tmax(t) neighborhood of t. The value ∆tmax(t)

basically depends on the probability of indels pI which is mentioned in Section 3.1.1.

It allows the insertions and deletions to be sensed by the detection phase. The

calculation of this threshold is explained in the Section 3.4. Figure 3.5 shows the

values of ∆tmax(t) for pI = 0.1.

Also each t-chain starts with t and each value Γt,s[i] is either 0 or δS,w[i]. In other

words a chain is a subarray of the distance array where some values are changed to

0. Remember the distance array from the previous example:

δY,3 = 〈0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 4 0 0 0 0

0 0 15 21 11 21 5 0 0 21 21 21 0 19 19 19 19〉

Then Γ21,24 = 〈21 0 21 0 0 0 21 21 21 0 19 19 19 19〉 is a 21-

chain and it starts at position 24 of the distance array δY,3 (if we assume that

∆tmax(21) ≥ 2 and we relax the conditions about delmax(d) and insmax(d)).

Now let’s define some properties of chains:
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Hit Any non-zero element in the chain is called a hit and it’s considered as a contri-

bution to the significance of the chain in increasing the evidence of the region

being a tandem repeat.

Gap The 0’s in the chain are called a gaps. They are the indication of missed w-

strings if the region associated with the chain is really a tandem repeat. A

w-string may be missed either because of mutations or because of the fact that

all w-strings are not observable when only the last occurrences of them are of

interest (Section 3.2.1).

Score The score of a chain is simply the number of hits and it is represented by

score(Γt,s). This score is compared with a threshold scoremin(t) to decide

whether the region as a candidate or not.

Size or Length The number of elements in the chain is called the size or length and

it is represented by size(Γt,s). The chains are not permitted to be longer than

some threshold sizemax(t).

Average Hit This is simply the average of the all hit values in the chain and it is

represented by µt(Γt,s).

Now consider another example where a string X = AATAGCTTCGATCGG

is tandem-repeated with two insertions, forming the following approximate repeat:

AATAGCTTCGATCGGAATTAGGCTTCGATCGG

Here is an alignment of these two repeating units: AA_TAG_CTTCGATCGG
AATTAGGCTTCGATCGG

The associated distance array of the sequence Y with window size w = 3 is (the

first 15 values are omitted):

δY,3[16, 30] = 〈15 0 0 16 0 0 17 17 17 13 17 17 17 4 17〉
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Now assume that the threshold ∆tmax(15) ≥ 2 (we allow 2 indels) and the conditions

about delmax(h) and insmax(h) are ignored. Then the following is a valid 15 chain

starting at position 16:

Γ15,16 = 〈15 0 0 16 0 0 17 17 17 13 17 17 17 0 17〉

Since this chain is associated with a tandem repeat of period 15, the first hit in the

chain is expected. The first insertion in the second repeating unit renders the hit 16

reasonable. 17’s are also accepted because of the second insertion. But the value 13

which is between 17’s cannot be justified as a hit and it is more likely a noise or peak

instead of a hit. These noise terms should not contribute to the score of the chain so

they should be filtered out.

The thresholds delmax(h) and insmax(h) are basically the criteria which prevent

those noise terms from being accepted into the chains. They are the maximum allowed

differences of any pairs of hits which satisfy the condition that the elements (if there

are any) between those hits are only gaps (0’s).

The second condition of the definition of chains says that if a value h is to be

accepted to a chain at position i, then it must be in the range

[hlast(i) + delmax(d), hlast(i) + insmax(d)]

where d is the distance of position i and the position where hlast(i) occurs. Remember

that hlast(i) was the last hit which occurs before position i.

delmax(d) is a negative valued nonincreasing function whereas insmax(d) is a pos-

itive valued nondecreasing function. Their calculations are shown in Section 3.4.

Figure 3.6 shows the graph of delmax(d) and insmax(d) used for w = 4 and pI = 0.1.

Returning to the previous example, there is a value 13 in the distance array right

after a 17 which may be interpreted erroneously as a representation of 4 deletions in

a small space. The threshold delmax(d) prevents this 13 from being accepted in the

chain. In this case d = 1 because there is a non-zero value (which is 17) just before
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Figure 3.6: delmax(d) and insmax(d) for w = 4 and pI = 0.1.

the place where the acceptance of 13 is being considered. But 13−17 = −4 is smaller

than delmax(1), so 13 is not accepted to the chain. Here the delmax(d) in Figure 3.6

is used.

Briefly a t-chain Γt,s with length l may be thought of as a copy of the δS,w[s :

s + l− 1] (subsequence of the distance array) where the values which are believed to

be noise (determined by the criteria delmax(d) and insmax(d)) and the values which

are not close to t (determined by the criteria ∆tmax(t)) are filtered out (set to 0’s).

Subsequently the chains having a score above a threshold are interpreted as candidate

tandem repeats and verified by the verification phase of the algorithm.

Representing the Chains

As it will be clearer later, the chains are created with size 1 (containing only one

hit) and then expanded by appending some values to the end or shrunk by trimming

from the beginning. Chains are represented as doubly linked lists of runs of hits or

gaps to make the implementation of these operations easy. For instance, the chain

Γ15,70 = 〈15 15 0 0 16 16 16 15 15〉 is represented as the linked list in

Figure 3.7.

The two basic operations on the chains are appending a value from the distance

array and trimming the head of the chain. In more detail these operations are:
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2 x 0

Starting at 74
3 x 16

Starting at 77
2 x 15

Figure 3.7: Representation of the chain Γ15,70.

Append δS,w[i]: When an element meets the criteria to be accepted into the chain,

it needs to be appended to the linked list which represents the chain. Suppose

that the element to be appended is δS,w[i] and the chain Γt,s ends at position

e = s + l − 1 where l is the length or size of the chain. There are two cases

where:

1. e = i−1: In this case the element is to be appended right after the last hit

in the chain. If the element δS,w[i] is equal to the last hit hlast(e + 1) then

the last node in the linked list is updated such that it includes the position

i as well. Otherwise (if δS,w[i] 6= hlast(e + 1)) a new node with value δS,w[i]

and position i is created and linked after the last node in the list.

2. e < i − 1: In this case the element is to be appended to the chain after

some space. First the space between the last element in the chain and

the new element should be filled with gaps. In order to do it a new node

representing i − e − 1 gaps starting at position e + 1 is inserted to the

linked list and then the node representing the new element δS,w[i] starting

at position i is inserted to the list.

Trim to s′: During the process of constructing the chains, the start position of a

chain needs to be advanced so that it shouldn’t be less than some given position

s′. This operation trims the head of a chain Γt,s so that the new start position

snew is the minimum over all snew’s such that Γt,s[snew] = t and s′ ≤ snew ≤ e

where e = s + l− 1 is the end position of the chain. If no such snew exists then

the chain is destroyed.

The nodes in the linked list are scanned from the head to the tail until a node
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representing a run of hits with value t including a position which is not less than

s′ is found. All the previous nodes are deleted and the found node is adjusted

so that it starts at position snew.

For example our previous chain Γ15,70 = 〈15 15 0 0 16 16 16 15 15〉

becomes a new chain Γ15,77 = 〈15 15 0 0 16〉 after the operations Trim to 73

and Append δS,w[81] = 16. Note that the operation Trim to 73 shifts the start

position from 70 to 77 because 77 is the first position after 73 where the hit value is

equal to t = 15.

3.2.4 Constructing the Chains

After the introduction of chains and their functions in the previous section, the process

of constructing and using them are described in this section.

As described earlier, chains are constructed from distance arrays. The distance

array of a specific window size can be constructed in O(n) time by a single pass over

the sequence, where n is the sequence length. The chains are constructed on-the-fly as

the distance array is constructed and each element of the distance array is processed

only once. One or both of the following happens for each element of the distance

array:

1. That element may be added to one or more of the existing chains

2. A new chain is created starting with that element. This case always happens if

the first one didn’t happen (It may also happen with the first case together).

After that element is processed, it’s not needed anymore so only the current

element is stored in memory instead of the whole distance array. It was mentioned

that the distance array can be computed in O(n) time. The space complexity is O(4w)

because there are 4w possible w-strings. When a w-string is detected at position i,

the position (call j) of its previous occurrence is fetched from a list of size 4w and i
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is stored in the list. Then the ith value of the distance array is simply the difference

i− j.

Chain Lists

Assume that tandem repeats with period in a range [tmin, tmax] are searched for. This

implies that we’re interested in all t-chains where, tmin ≤ t ≤ tmax. When processing

(only once) the element at position i of a distance array at step i, there may be more

than one chain at that step (practically almost always more than one). There may

even exist several t-chains having the same t at that step. This requires that chains be

stored in a way that inserting a new chain, deleting an existing chain, and searching

chains for specific t’s, can be performed efficiently. Therefore the t-chains with same

t are stored in a chain set of t, and these chain sets (at most tsize = tmax− tmin +1 of

them exist) are indexed by a red-black tree. This data structure is called a chain list.

In addition to being accessible in O(log tsize) time by searching in the red-black tree,

the chain sets are also accessible in O(1) time directly by their index. The search

with red-black tree method will be used when a range of chains will be processed.

The chain sets are simple linked lists which hold only the chains with same t

values. Whenever a chain set becomes empty (when all the chains with a specific

t are destroyed) that set is deleted from memory and removed from the red-black

tree. Therefore no empty chain sets exist in the chain list data structure. Each chain

set also maintains a link to the next chain set. Figure 3.8 illustrates a chain list

data structure where the interested t range is [tmin = 10, tmax = 20] and there are 2

14-chains, 3 19-chains, a 12-chain, an 11-chain and a 17-chain.

There are some operations on the chain lists which are used during the algorithm.

These are:

Inserting a t-chain to the chain list: If there’s already a chain in the chain list

with same t, then the chain set of t exists and it can be directly accessed in
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Figure 3.8: The chain list data structure.

constant time. Since inserting an element to a chain set (which is a linked list)

takes O(1) time, the insertion is a constant time operation when there’s already

a chain with same t.

If no chain with same t exists then a new chain set of t has to be created. This

operation takes O(log tsize) time since inserting an element and updating the

pointers to the previous and next elements in a red-black tree takes logarithmic

time (tsize = tmax − tmin + 1 is the maximum number of chain sets in a chain

list). After creating the set it takes constant time to add the chain to the set.

Therefore the overall time needed is O(log tsize) in this case.

Accessing a chain set of minimum t where t >= tlow: This operation is used

when the chains having a start value within a range [tlow, thigh] are needed to

be processed. This operation corresponds to a binary search in the red-black

tree which has a time complexity of O(log tsize) since there may be at most tsize

sets.

Deleting a chain set of t: When a chain set becomes empty it’s removed from the
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memory and from the red-black tree. Since deleting an element from the red-

black tree takes logarithmic time, this operation takes O(log tsize) time.

The Construction Process

After introducing the chain list data structure and the operations on it, it’s now time

to explain the process of constructing chains.

As mentioned earlier a window with size w is placed to the first position and slided

one position at each step during the process of computing the elements of the distance

array. Briefly, at each step i of this process, all chains which may potentially include

the position i are kept in a chain list and the promising ones (passing acceptance

criteria) are verified by the verification phase which will be explained later. If the

verification phase succeeds for some chain, then that chain and all the related chains

are removed from the list. In more detail, at each step i (where 1 ≤ i ≤ L and L is

the length of the input sequence S):

1. The element δS,w[i] is computed in constant time (explained previously). If

δS,w[i] = 0 then the following steps are skipped and step 5 is executed.

2. The range [tlow, thigh] of t-chains which may be interested in accepting the ele-

ment δS,w[i] is computed. In other words the values tlow and thigh are determined

such that the minimum tlow satisfying the inequality tlow +∆tmax(tlow) ≥ δS,w[i];

and the maximum thigh satisfying the inequality thigh − ∆tmax(thigh) ≤ δS,w[i]

are found. These pairs for each possible value are calculated and stored in a

table beforehand when preparing the criteria (Section 3.4), thus this step takes

constant time.

3. For each t-chain Γt,s such that tlow ≤ t ≤ thigh:

(a) If i− s > sizemax(t) where sizemax(t) is a threshold (Section 3.4) limiting

the maximum size of chains, then the start position of the chain is advanced
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from s to snew such that snew is the minimum value satisfying s ≤ snew <

s + sizemax(t) and Γt,s[snew] = t (remember the trimming operation on

the chains). If no such snew exists then the chain is deleted and all the

following steps (3b and 3c) are omitted.

(b) The value δS,w[i] is proposed to the chain. In other words the criteria of

delmax(d) and insmax(d) (Section 3.2.3) are checked where d is the distance

between the current position and the position where the last non-zero

element occurs in the chain. If h + delmax(d) ≤ δS,w[i] ≤ h + insmax(d),

then the value δS,w[i] is accepted and appended to the chain (where h was

the last non-zero element in the chain before the current position).

(c) The chain is checked for two criteria. These are:

i. score(Γt,s) ≥ scoremin(t): The score of the chain should be greater

than or equal to the threshold scoremin(t).

ii. |t− µt(Γt,s)| ≤ 2: The difference between t and the average hit values

should be less than or equal to 2.

If these conditions are met then this chain is considered as a candidate

tandem repeat region and the verification phase (Section 3.3) takes place.

If it’s the case that the verification phase returns with a successful tandem

repeat then this chain and all the chains

{Γt′,s′ | tr −∆tmax(tr) ≤ t′ ≤ tr + ∆tmax(tr) ∧ sr ≤ s′ ≤ er}

are destroyed where tr is the period, sr is the start position and er is the end

position of the detected tandem repeat in the verification phase. In other

words all the t-chains where t is close to the period of the detected tandem

repeat and where the start of the chain is inside the tandem repeat are

destroyed in the assumption that they were related to the already detected

tandem repeat.
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If the verification phase fails, then the chain is kept in the list with the ex-

pectation that appending some additional terms to the right and trimming

the head may result in a successful chain later.

4. If δS,w[i] is not accepted to any t-chain where t = δS,w[i], then a new chain Γt,s

is created and added to the chain list with t = δS,w[i] and s = i.

5. The window which was at position i is slided one position to the right so i is

increased by 1. If i > L−w +1 then the process is complete because the whole

sequence is scanned, else execution returns to the first step.

In the steps 3 and 3c, the logarithmic-time tree search operation, which was

explained before, is used in order to access the chains in a specific range of t’s.

To summarize the above algorithm, at each step i of the process of scanning the

sequence, all chains which may potentially include the position i are kept in the chain

list and the ones which pass the criteria are verified by the verification phase which

will be explained next. If the verification phase succeeds for some chain, then that

chain and all the related chains are removed from the list.

Usually the sequence may be scanned for more than one window sizes. Since each

distance array will be entirely different for each w, the chains which result from these

distance arrays will be different. The algorithm which was defined above is only for

one window size, however it’s not practically different when several window sizes are

in consideration. The same steps take place for each w simultaneously. The only trick

is that each execution (each process for different w’s) keeps its own separate chain

list, but whenever a tandem repeat is verified then the related chains in all the chain

lists (for all w’s) are destroyed in step 3c.
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3.3 Verification Phase

Whenever a chain passes the criteria for being a candidate tandem repeat region,

then the surrounding portion is verified for being an actual tandem repeat via two

types of alignments. The first type of alignment is computed (only once) to detect

several potential start positions for the repeat (described in Section 3.3.1) and the

second type is computed to verify these start positions (once for each pair of start

positions until a verification succeeds; described in Section 3.3.2).

3.3.1 Detecting the Start Positions

Let’s assume that a chain Γt,s related to a window size w passes the criteria and

qualifies to be verified for a tandem repeat. According to the definition of chains the

first element of Γt,s is t and the last element is hlast(s + l) where l is the length of the

chain. Then being qualified is an indication of the similarity between the substrings

Sc,d (which we call the span of the chain) and Sa,b (which we call the matching span

of the chain) where:

c = s is the start position of the chain (start of the span).

d = s + l + w − 2 is the position where the last w-string of the chain ends (end of

the span).

a = c − t = s − t is the start of the span minus the first hit value (start of the

matching span).

b = d − hlast(s + l) = s + l + w − 2 − hlast(s + l) is the end of the span minus the

last hit value (end of the matching span).

To illustrate these definitions, consider the following sequence S where there is

an approximate repeat Y = XX ′ of period 12 starting at position 6 and the two
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GGGTGAATCGGATGCTCATTCGGTGCTTGGTAC
spanmatching span

a b c d

Figure 3.9: The matching span and span of the chain Γ12,21.

repeating units X and X ′ differ by two substitutions and a deletion:

S = GGGTGAATCGGATGCTCATTCGGTGCTTGGTAC

The first repeating unit X = AATCGGATGCTC is underlined and the second

repeating unit X ′ = ATTCGGTGCTT is overlined above. The alignment of these

two units is: AATCGGATGCTC
ATTCGG_TGCTT

The distance array δS,2 of this sequence with 2-windows is:

δS,2 = 〈0 1 0 0 0 0 0 0 0 8 6 5 9 0 0 8

0 6 0 4 12 12 20 11 11 11 8 4 7 7 0 0〉

Now assume that the following 12-chain starting at position 21 passed the criteria

(which is really a strong chain):

Γ12,21 = 〈12 12 0 11 11 11〉

Then the span of this chain is S21,27 = CGGTGCT and the matching span is S9,16 =

CGGATGCT. Notice how the chain reflects the similarity of these two substrings.

Figure 3.9 shows the span and the matching span in green and the repeating units in

blue.

The chain Γ12,21 shows us that the green portions in the figure are sufficiently

similar that it may be assumed these portions (matching span and span) will be

included in the repeat in separate units.

Now the problem to be solved is to find what portion of the first red region will

be included in the first repeating unit and what portion of the second red region will

be included in the second unit. In other words it is to find the pair (s1, s2) such that
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a proposed tandem repeat with the first repeating unit starting at position s1 and

the second unit starting at position s2 yields a successful repeat where s1 ≤ a and

b < s2 ≤ c.

The first obvious pair worth trying is (s − t, s) (start of the matching span and

start of the span). However several empirical results teach us that the first repeating

unit may start before the matching span and the second unit may start before the

span because of some mutations in the beginning of the repeat (which is also the case

in the above example). Therefore two more candidate start pairs will be proposed by

an alignment which is called the suffix alignment.

Definition A suffix alignment of two strings X and Y from alphabet Σ is a pair of

strings (X ′, Y ′) such that:

• X ′ and Y ′ only contain characters from the alphabet Σ′ = Σ ∪ { }.

• length(X ′) = length(Y ′).

• removing all occurrences of the character ′ ′ from X ′ yields a suffix of X.

• removing all occurrences of the character ′ ′ from Y ′ yields a suffix of Y .

In other words a suffix alignment of two strings is a global alignment of two respective

suffixes.

Analogous to the computation of other alignments, the computation of suffix

alignment is done by filling a n×m matrix. However in this case each entry at row

i and column j represents the optimum score of the global alignment of suffixes Xi,n

and Yj,m where n is the length of X and m is the length of Y . Obviously the matrix

is filled from bottom to top and right to left. Again if the number of insertions and

deletions is bounded by d then the computation takes O(nd) time by only computing

the elements in the diagonal band of width 2d.
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For the problem of finding candidate start pairs, the suffix alignment is computed

for the two red substrings (let’s call R1 and R2). As it can be seen in Figure 3.9

the second red substring R2 is simply Sb+1,c−1 but the start position of the first red

substring is unknown. It’s adjusted so that R1 is a bit longer than R2 in order to

allow space for insertions and deletions. More specifically the start of R1 is set to

the position which makes length(R1) equal to length(R2) + ∆tmax(length(R2)). And

the width of the diagonal band in the alignment computation is set to the value

2∆tmax(length(R2)). Then among all the pairs (s1, s2) where the number of errors in

the optimum global alignment of Ss1,a−1 (which is a suffix of R1) and Ss2,c−1 (which is

a suffix of R2) is less than or equal to the threshold θmax(a− s1) (a− s1 is the length

of the first suffix Ss1,a−1):

• The pair (l1, l2) is chosen so that l1 and l2 is minimum. This pair represents

the start positions of the longest pair of suffixes of R1 and R2 respectively such

that these suffixes are similar enough according to the criteria θmax(a− l1).

• The pair (m1, m2) is chosen so that the score of the alignment of Sm1,a−1 and

Sm2,c−1 is maximum. This pair represents the start positions of suffixes of R1

and R2 respectively such that the alignment score of these suffixes are maximal,

and they are similar enough according to the criteria θmax(a−m1).

For instance (l1, l2) = (5, 17) and (m1, m2) = (6, 18) for a score function (2, 1, 2)

according to the above example of Figure 3.9.

To put together, whenever a chain Γt,s is qualified, the pairs (l1, l2) and (m1, m2)

are computed as explained above.

• If the pair (l1, l2) hasn’t been tried for verification alignment before, then a veri-

fication alignment (Section 3.3.2) starts from (l1, l2). If the alignment succeeds,

the resulting repeat is reported.
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• Otherwise (when verification fails) the pair (m1, m2) is tried (if hasn’t been tried

before) and the repeat is reported if found.

• Otherwise the pair (s − t, s) is tried lastly for verification and the repeat is

reported if found.

As seen above, a chain may cause up to three verification alignments to take place, but

only one successful repeat is reported. The next section will describe how a start pair

(s1, s2) is verified by the alignment called verification alignment. A pair (s1, s2) may

be taken into consideration more than once because two different chains may have

the same output for suffix alignments. Even the suffix alignment for a specific chain

may end up with the pairs (l1, l2) = (m1, m2). To prevent the redundant computation

every start pair is stored in a list, and a second attempt for verification is not allowed

for same pair.

3.3.2 Verifying the Tandem Repeats

After obtaining a possible pair of candidate start points (s1, s2) where s1 is the start

of the first unit and s2 is the start of the second unit, the repeat has to be verified

before reporting it as a tandem repeat.

When only single repeats are of interest, it’s easy to verify a pair of start points

(s1, s2). Let’s denote the first candidate repeating unit as X1 which is simply the

substring Ss1,s2−1, and the second repeating unit as X2, where X2 is a substring

of S starting at position s2. To accurately detect the end of the second repeating

unit, the string X1 is aligned with a string X ′
2 starting from s2 in S and having the

length length(X ′
2) = length(X1) + ∆tmax(length(X1)) to allow space for insertions.

Then the second repeating unit X2 is the prefix with the maximum score of global

alignment with X1 among all the prefixes of X ′
2. If the number of errors in the optimal

global alignment of X1 and X2 is less than or equal to the threshold θmax(t) where
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t = length(X1) is the period then the repeat then Y = X1X2 is reorted as a repeat.

The alignment can be computed in O(td) time where t is the period and d = ∆tmax(t)

is the bound on insertions and deletions.

For example, consider the sequence

S = AACTGTTAACTGTAACTTTAAGGGGGGG

and a pair of start positions (1, 8) where it’s assumed that ∆tmax(7) = 1 and a score

function of (2, 1, 2) is used. Then X1 = S1,7 = AACTGTT and X ′
2 = S8,15 =

AACTGTAA. And the the best scoring prefix of X ′
2 is X2 = S8,14 = AACTGTA

with a score of 11. Therefore the repeat is detected as starting at position 1 and

ending at position 14 with a period of 7. The repeat is shown below with the first

unit underlined and the second overlined:

S = AACTGTTAACTGTAACTTTAAGGGGGGG

Now let’s consider the problem of detecting multiple repeats. The easiest method

that can be considered is to extend the previous process for single repeats. That is,

when a repeat with c units ending at position e is found then a substring starting at

position e + 1 is aligned with one or more of the previous c units and is added to the

repeat as the (c + 1)th unit if the alignments are successful.

For the previous example with the sequence:

S = AACTGTTAACTGTAACTTTAAGGGGGGG

a repeat with two units (underlined and overlined) was found before. The repeat

ends at position 14 so a third unit will start at position 15 according to the current

method. The best substring starting at position 15 which can be considered as the

third unit is X3 = S15,20 = ACTTTA because it’s the most similar substring to

both X1 and X2 among the other substrings starting at position 15. According to

the best alignment between X1 and X3
AACTGTT
A_CTTTA the score is 4, there’s one deletion
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and two substitutions. The best alignment between X2 and X3
AACTGTA
A_CTTTA has score 7

and there’s one deletion and one substitution. The repeat is shown below with the

first unit underlined, the second one overlined and the third one underlined again:

S = AACTGTTAACTGTAACTTTAAGGGGGGG

As an alternative to these three units, consider the following three units over the

same sequence:

S = AACTGTTAACTGTAACTTTAAGGGGGGG

where X ′
1 = AACTGTT, X ′

2 = AACTGT and X ′
3 = AACTTT. Here the second

repeating unit is ended at position 13 instead of 14, and therefore the third repeating

unit starts at position 14 instead of 15. Now the best alignment between X ′
1 and X ′

3

AACTGTT
AACT_TT has score 10 and there is only one deletion. The best alignment between

X ′
2 and X ′

3
AACTGT
AACTTT has score 9 and there is only one substitution. As the alignments

show, the second set of units is a better choice than the first set. Therefore the

method of extending the number of units at each step without changing the previous

units is not powerful enough for detecting multiple repeats.

One approach that is usually successful in decomposing a repeat Y into units is

simply to compute the optimum global alignment of Y with (X1)
c where c is the copy

number and (X1)
c is the repetition of the first unit c times (remember that we know

the first repeating unit from the initial pair of start positions). Again for the previous

example, let’s assume that we know the copy number c is 4. Then the best alignment

between a prefix of S and (X1)
4 is:

AACTGTTAACTGTTAACTGTTAACTGTT
AACTGTTAACTGT_AACT_TTAAGGGGG

If we decompose this alignment from the positions where the repetitions of X1 starts,

we obtain

AACTGTT AACTGTT AACTGTT AACTGTT
AACTGTT AACTGT_ AACT_TT AAGGGGG
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the following set of units:

{X1 = AACTGTT, X2 = AACTGT, X3 = AACTTT, X4 = AAGGGGG}

Notice that the first three units are the same as in the above example of the alternative

and better decomposition.

Unfortunately the copy number c is one of the unknowns that’s being searched for,

therefore this method is not applicable directly. However another variation of local

alignment called wraparound dynamic programming [16] is introduced to compute the

optimum local alignment of a string S of size n and a periodic repeat P n of a pattern

P of size m in O(nm) time. This algorithm can be used with a slight modification

which restricts that only prefixes will be considered instead of all substrings during

the local alignment. The computation is done by filling a O(nm) matrix as in the

other alignments, however the bound d on the number of insertions and deletions

doesn’t reduce the computation time to O(nd) in this case because the whole row

must be computed in order to allow the connections between the end and start of

each row which allows the recognition of repetitions of the pattern.

Instead, a modified version of wraparound alignment is used which combines the

idea of repeating pattern alignment like the wraparound dynamic programming and

the idea of only computing a diagonal band of the alignment matrix to reduce the

computation time. First a substring of the sequence with length p+ d is aligned with

the pattern P where the pattern has length p and the diagonal band width is 2d. The

pattern P is the first repeating unit inititally. The cell with the minimum number of

errors in the last column is marked after the computation of the alignment matrix.

If there are several such cells then the one with the highest score is chosen. Then a

second alignment starts with a substring of length p + 2d with the pattern P where

the diagonal band is recentered at the marked cell where the minimum number of

errors is observed in the last column of the previous alignment matrix. However the

last column of the previous alignment matrix is copied to the first column of this new
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alignment matrix before the computation starts. This process goes on and on until

the difference between the lowest number of errors in the last column and the lowest

number of errors in the first column in any alignment matrix happens to be above

the threshold θmax(p).

Now let’s illustrate this alignment on the example that was used before where the

sequence is

S = AACTGTTAACTGTAACTTTAAGGGGGGG

and the pair of start positions is (1, 8). The first repeating unit is set as X1 = S1,7

according to the start positions and we’re interested in finding the remaining repeating

units where we don’t know the copy number. Therefore we’ll start the alignment from

position 8 of the sequence S and the pattern P will be X1 = AACTGTT. Let’s

assume that the diagonal width 2d is 2.

Then the first alignment matrix is shown at Table 3.1. In each cell the first entry

is the score and the second entry (in parenthesis) is the number of errors in the

corresponding alignment. The cell with the minimum number of errors in the last

column is at 14th row with 1 error and score of 11 (the cell at 13th row has also 1 error

but its score is less than 11) and the minimum number of errors in the first column

is 0. Since 1− 0 ≤ θmax(7) the alignment process continues.

Now the last column will be copied to the first column of a new alignment matrix

where the diagonal will be recentered at row 14 (the same diagonal with the previous

alignment) and the alignment is computed. Table 3.2 shows this alignment matrix.

The cell with the minimum number of errors in the last column is at 19th row with

2 errors and score of 20 and the minimum number of errors in the first column is 1.

Since 2− 1 ≤ θmax(7) the alignment process continues.

Again the last column will be copied to the first column of a new alignment matrix

where the diagonal will be recentered at row 19 (two rows above the previous diagonal)

and the alignment is computed. Table 3.3 shows this alignment matrix. The cell with
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A A C T G T T
0

(0)
−2
(1)

−4
(2)

8 A
−2
(1)

2
(0)

0
(1)

−2
(2)

9 A
−4
(2)

0
(1)

4
(0)

2
(1)

0
(2)

10 C
−2
(2)

2
(1)

6
(0)

4
(1)

2
(2)

11 T
0

(2)
4

(1)
8

(0)
6

(1)
4

(2)

12 G
2

(2)
6

(1)
10
(0)

8
(1)

6
(2)

13 T
4

(2)
8

(1)
12
(0)

10
(1)

14 A
6

(2)
10
(1)

11
(1)

15 A
8

(2)
9

(2)

16 C
7

(3)

Table 3.1: Alignment of S8,16 and X1.
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A A C T G T T

12 G
6

(2)

13 T
10
(1)

8
(2)

14 A
11
(1)

12
(1)

10
(2)

15 A
9

(2)
13
(1)

14
(1)

12
(2)

16 C
7

(3)
11
(2)

12
(2)

16
(1)

14
(2)

17 T
9

(3)
10
(3)

14
(2)

18
(1)

16
(2)

18 T
8

(4)
12
(3)

16
(2)

17
(2)

18
(2)

19 T
10
(4)

14
(3)

15
(3)

19
(2)

20
(2)

20 A
12
(4)

13
(4)

17
(3)

18
(3)

21 A
11
(5)

15
(4)

16
(4)

22 G
13
(5)

14
(5)

23 G
12
(6)

Table 3.2: Alignment of S12,23 and X1.
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A A C T G T T

19 T
20
(2)

18
(3)

16
(4)

20 A
18
(3)

22
(2)

20
(3)

18
(4)

21 A
16
(4)

20
(3)

24
(2)

22
(3)

20
(4)

22 G
18
(4)

22
(3)

23
(3)

21
(4)

22
(4)

23 G
20
(4)

21
(4)

22
(4)

23
(4)

21
(5)

24 G
19
(5)

20
(5)

24
(4)

22
(5)

20
(6)

25 G
18
(6)

22
(5)

23
(5)

21
(6)

26 G
20
(6)

21
(6)

22
(6)

27 G
19
(7)

20
(7)

28 G
18
(8)

Table 3.3: Alignment of S19,28 and X1.

the minimum number of errors in the last column is at 26th row with 6 errors and the

minimum number of errors in the first column is 2. Since 6 − 2 > θmax(7) no more

alignments take place.

The end point of the repeat is the cell at row i and column j such that the number

of errors in that cell minus the minimum number of errors in the first column is not

greater than θmax(j) and the score of the cell is maximal. The cell with score 24

and errors 2 in the 21th row is the one satisfying this condition so the alignment is

considered to be ended at this cell.

After finding the position where the alignment ended, now it’s the time to back-

trace from that position and find the whole alignment. If we combine all the three

alignment matrices virtually into a bigger alignment matrix, we obtain the align-

ment of the sequence with the periodic repeat of the pattern where the diagonal is

recentered at each start position of the pattern in the repeat accordingly (Table 3.4).
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A A C T G T T A A C T G T T A A C T G T T
0

(0)
−2
(1)

−4
(2)

8 A
−2
(1)

2
(0)

0
(1)

−2
(2)

9 A
−4
(2)

0
(1)

4
(0)

2
(1)

0
(2)

10 C
−2
(2)

2
(1)

6
(0)

4
(1)

2
(2)

11 T
0

(2)
4

(1)
8

(0)
6

(1)
4

(2)

12 G
2

(2)
6

(1)
10
(0)

8
(1)

6
(2)

13 T
4

(2)
8

(1)
12
(0)

10
(1)

8
(2)

14 A
6

(2)
10
(1)

11
(1)

12
(1)

10
(2)

15 A
8

(2)
9

(2)
13
(1)

14
(1)

12
(2)

16 C
7

(3)
11
(2)

12
(2)

16
(1)

14
(2)

17 T
9

(3)
10
(3)

14
(2)

18
(1)

16
(2)

18 T
8

(4)
12
(3)

16
(2)

17
(2)

18
(2)

19 T
10
(4)

14
(3)

15
(3)

19
(2)

20
(2)

18
(3)

16
(4)

20 A
12
(4)

13
(4)

17
(3)

18
(3)

22
(2)

20
(3)

18
(4)

21 A
11
(5)

15
(4)

16
(4)

20
(3)

24
(2)

22
(3)

20
(4)

22 G
13
(5)

14
(5)

18
(4)

22
(3)

23
(3)

21
(4)

22
(4)

23 G
12
(6)

20
(4)

21
(4)

22
(4)

23
(4)

21
(5)

24 G
19
(5)

20
(5)

24
(4)

22
(5)

20
(6)

25 G
18
(6)

22
(5)

23
(5)

21
(6)

26 G
20
(6)

21
(6)

22
(6)

27 G
19
(7)

20
(7)

28 G
18
(8)

Table 3.4: Alignment of S8,28 and (X1)
3.

63



Backtracing from the position where we ended the alignment (second character of

the third repeat of the pattern which is the cell with the score 24 in the 21th row) we

obtain the following alignment:

AACTGTTAACTGTTAA
AACTGT_AACT_TTAA

Now if we append the alignment of the pattern with itself to the beginning of this

alignment and decompose it from the positions where the pattern repeats start:

AACTGTT AACTGTT AACTGTT AA
AACTGTT AACTGT_ AACT_TT AA

We obtain the set of repeating units {X1 = AACTGTT, X2 = AACTGT, X3 =

AACTTT, X4 = AA}. A final test is performed for each repeating unit to check

whether the number of errors in that unit is less than or equal to θmax(tC) where tC

is the length of the consensus which is 7 in this case. If a unit fails this test then the

part of the alignment after the position where the test fails is discarded. A similar

test is also performed to check the similarity of adjacent repeating units according

to the same threshold θmax(t). Since each repeating unit passes these tests in this

case, we have a repeat with copy number 3 + 2
7
. The last step is to determine the

consensus pattern by the majority rule among the alignments of repeating units with

the pattern. If we align only the bottom lines of the alignments of the repeating units

we obtain the consensus:

AACTGTT
AACTGT_
AACT_TT
AA

by the majority rule−−−−−−−−−−−−−−−→ AACTGTT

Since the resulting consensus pattern is identical to the first repeating unit there’s

no need to do any extra work and the repeat is reported as is. However if the

consensus pattern happens to be different than the first repeating the unit, then all

the alignment that were mentioned before are computed again but this time between

the sequence (including the first repeating unit) and the consensus pattern.
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The length of the first repeating unit is 7 whereas the lengths of the second and

the third are 6. Since the most common unit length is 6 in this example the period of

the repeat is determined as 6. Notice that it is not identical to the consensus period

which is 7.

3.4 Criteria

Various criteria are used during both the detection and verification phase of the

algorithm. The thresholds based on these criteria were briefly introduced during the

explanation of the algorithm but the calculations of these thresholds are left to this

section. Here is a review of the uses of these thresholds:

∆tmax(t): This threshold is mainly used to determine the range of values that can

be accepted to a t-chain. The range is [t − ∆tmax(t), t + ∆tmax(t)]. The other

use of this threshold is to set the width of the diagonal band when computing

the alignments. If two strings of length t are to be computed, then only the

diagonal of width 2∆tmax(t) is computed.

delmax(d) and insmax(d): These thresholds are used to prevent some noise from being

accepted to chains (Section 3.2.3).

scoremin(t): This is the threshold which qualifies a t-chain as candidate and thus

triggers the verification phase (Section 3.2.4).

sizemax(t): This threshold is used to limit the size of a chain.

θmax(t): This is the threshold which determines whether two strings of length t are

similar enough to be considered as repeating units of a tandem repeat.
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Figure 3.10: ∆tmax(t) for pI = 0.1 and pI = 0.05.

3.4.1 ∆tmax(t)

When observing the occurrences of short substrings in a perfect tandem repeat with

period t, it’s expected to see these occurrences at distance t. However if insertions

and deletions are allowed, these distances increase after each insertion and decrease

after each deletion. Therefore the distances in some neighborhood of t are acceptable

to the chains.

In the model of formation of the tandem repeats (Section 3.1.1) it is assumed

that the probability of having an indel (insertions and deletions are equally likely) at

each position is pI . Let’s consider a one-dimensional random walk of t steps where

the probability of staying at the same node is 1 − pI , the probability of going left

is pI/2 and the probability of going right is pI/2 at each step. Then it’s known [15]

that 95% of the time the maximum displacement from the start node is not greater

than 2.3
√

pI · t. Therefore the threshold ∆tmax(t) is set to b2.3
√

pI · tc and only the

differences in the range [t − ∆tmax(t), t + ∆tmax(t)] are accepted to a t-chain. Since

only the differences in this range are allowed in a chain, it’s reasonable to only fill the

diagonal band of width 2∆tmax(t) when computing alignments of strings of length t.

This idea of accepting only the distance range according to the same criterion and

limiting the width of the alignment matrix is also used in Tandem Repeats Finder [6]

and ATRHunter [45]. Figure 3.10 shows the ∆tmax(t) for pI = 0.1 and pI = 0.05.
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3.4.2 delmax(d) and insmax(d)

The role of these two thresholds were explained in Section 3.2.3. Briefly they prevent

the acceptance of distance values into the chains which can be considered noises (the

values which cause high increase or decrease between two hits within an unexpectedly

small distance).

To describe the calculation of these two thresholds let’s first introduce the random

variable Xt which is the number of insertions minus the number of deletions in a

random sequence of length t. Again remember the assumption of formation of the

tandem repeats which says that there’s an insertion with probability pI/2 and a

deletion with probability pI/2 at each position of the sequence (and no insertions or

deletions with probability 1− pI). Then it’s obvious that

fXt(k) = Pr(Xt = k) = (1− pI) Pr(Xt−1 = k) no indel at position t

+
pI

2
Pr(Xt−1 = k − 1) insertion at position t

+
pI

2
Pr(Xt−1 = k + 1) deletion at position t

and

fX0(k) = Pr(X0 = k) =


1 if k = 0

0 otherwise

Then the probability distribution of all Xt’s for t ≤ n can be computed in O(n2) time

using dynamic programming. Figure 3.11 and Figure 3.12 shows the distribution of

the random variables X20 and X100 respectively. The random variables Xt’s will be

used to determine the thresholds delmax(d) and insmax(d).

Let’s first study the case where the number of deletions is larger than the number

of insertions. Consider a chain where a hit value of h2 occurs g position after a hit

value h1 such that h2 < h1 and all the values between these two are gaps:

Γt,s = 〈 · · · h1 0 0 · · · 0︸ ︷︷ ︸
g − 1 gaps

h2 · · · 〉
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Figure 3.11: Probability mass function of X20 for pI = 0.1 and pI = 0.05.
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Figure 3.12: Probability mass function of X100 for pI = 0.1 and pI = 0.05.
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This chain indicates that there are d = h1−h2 deletions (or d+i deletions and i inser-

tions) in approximately d + g positions. For instance, consider a repeating unit X1 =

. . . ACTGGCAT . . . with length t and a second unit X2 = . . . ACGAAT . . .

such that their alignment is ...ACTGGCAT...
...AC_GA_AT...

. Then the chain of window size 2 corre-

sponding to the unit X2 would be:

Γt,s = 〈. . . t 0 0 0 t− 2 . . .〉

The hit value t indicates that the substring AC has also occurred t positions before

and the following hit value t − 2 indicates that the substring AT has also occurred

t − 2 positions before. Note that t − 2 appears g = 4 positions after t in the chain.

The gaps between these two hits hide the information about the alignment of the

substring of length g − w = 4 − 2 = 2 which is between AC and AT in the second

repeating unit X2. The best we can say is that when we align this substring of

length 2 with the corresponding substring of length 2 + d in the first repeating unit

we expect a difference d between the number of deletions and number of insertions

(d = t− (t− 2) = 2).

Based on this observation, the upper limit of the difference between two hits is

the smallest d where the probability of the difference between the number of deletions

minus the number of insertions being more than d in approximately g + d characters

is less than ε = 0.001. The probability of this difference being more than d in p

characters is simply: ∑
x<−d

Pr(Xp = x)

where the random variable Xp, which was described before, is the number of insertions

minus the number of deletions in a random sequence of length p. The “approximate

length g + d” of the sequence where the deletions and insertions occur is set to

g + d− w + 2 empirically.

Thus the threshold delmax(g) is set to the largest negative θ (since the second hit
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is smaller than the first one) satisfying∑
x<θ

Pr(Xg−x−w+2 = x) < 0.001

The method followed in the case where the number of insertions is larger than

the number of deletions is similar. Consider a chain where a hit value of h2 occurs g

position after a hit value h1 such that h2 > h1 and all the values between these two

are gaps:

Γt,s = 〈 · · · h1 0 0 · · · 0︸ ︷︷ ︸
g − 1 gaps

h2 · · · 〉

This chain indicates that there are i = h2 − h1 insertions (or i + d insertions and d

deletions) in approximately g positions.

Then the upper limit of the difference between these two hits is the smallest i

where the probability of the difference between the number of insertions minus the

number of deletions being more than i in approximately g characters is less than

ε = 0.001. The probability of this difference being more than i in p characters is

simply: ∑
x>i

Pr(Xp = x)

The “approximate length g” of the sequence where the insertions and deletions occur

is set to g − w + 2 empirically.

Thus the threshold insmax(g) is set to the smallest positive θ satisfying∑
x>θ

Pr(Xg−w+2 = x) < 0.001

Figure 3.13 shows the thresholds delmax(g) and insmax(g) for pI = 0.1 and pI =

0.05.

3.4.3 scoremin(t)

During the detection phase, only the chains containing a significant number of hit

values are considered as the evidence of a tandem repeat. The threshold of the number
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Figure 3.13: delmax(g) and insmax(g) for w = 4.

of hits is scoremin(t) for a t-chain.

Determination of scoremin(t) is very crucial both for the sensitivity and runtime

of the algorithm. Low values for scoremin(t) will qualify many chains as candidates

whereas they cannot be classified as tandem repeats. These chains are called false

alarms and the verification phase fails for these false alarms. On the other hand,

setting high values for scoremin(t) may cause some valid candidate chains to be missed.

It was mentioned before (Section 3.2.1) that for a perfect tandem repeat Y =

XX with period t, only the substrings of X which occurs exactly once in X are

observable in a t-chain. We call these substrings matches because they match with

the corresponding substrings t positions before. However a substitution at a position

i causes the substrings starting at positions i − w + 1, i − w + 2 . . . i not to match

anymore with the substrings t positions before. These substrings (windows) are called

the blocked-out windows by the substitution. Similarly an insertion or a deletion may

also block out up to w windows. Insertions and deletions also shift the distance t

up or down. Since the values in a range [t − ∆tmax(t), t + ∆tmax(t)] are accepted

in a t-chain, the shift effect of insertions and deletions does not concern the score

of the chain. However since the block-out windows will not match the substrings at
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distances around t, they will not be detected in the chains. We will generalize all the

substitutions, deletions and insertions as edit events since only the block-out effect of

these mutations are here of interest.

The generation of block-out windows by edit events suppresses some of the matches

within their coverage. We wish to analyze this phenomenon. However a detailed

formal analysis has a complexity that does not completely justify the effort. More

important is the elucidation of the mechanism, since actual operational data can be

obtained through simulations.

Edit events take place at each character with probability pE = 1 − pM and they

are independent from each other. Each edit event blocks out w matches; however,

these block-outs may overlap. If an edit event occurs within the block-out of its

predecessor, e.g., at the ith position of it (i = 2, 3, . . . , w), then the block-out of

the latter is effectively shortened to length i − 1. However the shortening effect is

not independent of the actual number of edit events. The smaller is the number of

events, the larger is the average length of the block-out stretch of each event (since

two consecutive events are less likely to interfere). In any case the edit events can be

modeled as a binary Bernoulli sequence e where each element is 1 with probability

pE. Then the binary sequence stretch(e) is simply the representation of block-outs

corresponding to the edit events e. In other words ith element of stretch(e) is 1 if

and only if ith or (i + 1)th . . . or (i + w − 1)th element of e is 1. Let’s represent the

windows which occur only once in a sequence X as a binary sequence m where ith

element of m is 1 if and only if the substring Xi,i+w−1 occurs only once in X. Then

the observable matches after the edit events are:

obs(m) = m ∧ strech(e)

The number of observable matches is then O = weight(obs(m)). If we knew the

probability distribution of O we would set the threshold scoremin(t) to the largest θ
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Figure 3.15: θ for w = 4.

such that ∑
x<θ

Pr(O = x) < ε

where ε is a small constant (0.01).

Unfortunately, the analytical form of Pr(O = x) is unknown and presumably not

worth pursuing. Instead, a suitable approximation will be obtained by simulation.

For each sequence length t and window size w we generate a large sample of 4-valued

strings of length t. Then for each string in the sample we create a sequence e of edit

events and compute the value

O = weight
(
m ∧ strech(e)

)
and record them in a histogram. Then this histogram is finally used to evaluate θ for

ε = 0.01. The values of θ are plotted in Figures 3.14, 3.15, 3.16 and 3.17.
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Figure 3.16: θ for w = 5.
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Figure 3.17: θ’s for w = 4, 5, 6, 7 and t ≤ 500.
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Remember the random variable UL,w which was the number of unique substrings

of length w in a random string of length L (Section 3.2.1). As it can be anticipated

from the high ratio of variance over the expectation of the random variable UL,w (for

w = 1, 2, 3), the θ’s are all zero for window sizes 1 and 2 and they are very small for

window size 3 (Figure 3.14). Similarly θ’s begin to increase after t greater than 40s

and 50s for larger window sizes because of the high variance of UL,w for low L’s.

Let’s now consider the case where the error rate pE is 0.2. Assume that we’re

scanning the sequence with window sizes 4, 5 and 6 and we’re interested in repeats

with period range of [50, 200]. We claim that setting the thresholds scoremin(t)’s

according to the θ’s (Figure 3.17) will significantly reduce the false alarms. A null

hypothesis would be, on a random sequence the expected number of false alarms E[F1]

when all the scoremin(t)’s are identical to 1 is equal to the expected number of false

alarms E[Fθ] when we set the scoremin(t)’s as the θ’s. Then the alternative hypothesis

would be that E[F1] will be much bigger than E[Fθ]. To support the alternative

hypothesis we created several random sequences of length 100000 and observed the

number of false alarms for both cases. The observed results E[F1] ≈ 50000 and

E[Fθ] ≈ 700 shows that setting the thresholds according to θ’s significantly reduces

the false alarms.

In addition we also claim that we do not miss a significant ratio of tandem repeats

when we set the thresholds according to the θ’s. A null hypothesis would be that

the expected number of detected repeats would be significantly lower than the actual

number of repeats in a sequence. Again several random sequences are generated

including repeats with period in the range [55, 195] and 99% of the generated repeats

are detected by the chains where the thresholds scoremin(t)’s are set to θ’s. These

results show that the thresholds are very effective in the specified period range.

However as the Figure 3.14 shows, the values of θ for window size w = 3 are too

low to be considered as thresholds. Therefore the thresholds scoremin(t)’s for t < 50
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Window size 3 4
scoremin(t) 1 2 3 4 1 2 3 4
Detected repeats 844 784 714 545 833 759 685 529
False alarms 1835769 1161812 657794 383646 663072 291315 141741 87695
Ratio 0.00045 0.00067 0.00108 0.00142 0.00125 0.00260 0.00483 0.00603

Table 3.5: Detected repeats and false alarms for period up to 32 in E. coli O157:H7.

are set to 3 and only the window size 4 is used for periods that are smaller than 32

(determined empirically to optimize the ratio of detected repeats and running time).

To determine this threshold and window size, the combinations of window sizes 3 and

4, and the thresholds 1, 2, 3 and 4 are tried to detect tandem repeats with period up

to 32 in E. coli O157:H7 genome (5498450 base pairs). Table 3.5 shows the number

of tandem repeats detected and the false alarms for these combinations. The ratio

in the table is simply the number of detected repeats over false alarms. The window

size 4 with a threshold of 3 is chosen as the optimal pair for repeats with period up

to 32 according to the table since it catches most of the repeats without producing

many false alarms compared to the others.

For the period range between 33 and 50, we simply scanned the same sequence

with several combinations of window sizes and scoremin(t)’s (Table 3.6). The window

size 5 with a threshold of 3 is chosen as the optimal pair for the period range between

33 and 50.

For repeats with periods that are greater than 50 we mentioned before that setting

the scoremin(t)’s according to the θ’s catches almost all of the repeats with negligible

false alarms. We empirically observed that using the window size 5 for periods up to

250 and window size 7 for periods larger than 250 does a good job in detecting the

Window size 4 5
scoremin(t) 3 4 3 4
Detected repeats 56 52 50 42
False alarms 104560 48542 18317 6827
Ratio 0.00053 0.00107 0.00272 0.006152

Table 3.6: Detected repeats and false alarms for period between 33 and 50 in E. coli
O157:H7.
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repeats with a very small number of false alarms.

To summarize, for detecting the repeats with period up to 32, window size 4 is

used. For the period range between 33 and 250 we use the window size 5 and for

the periods that are greater than 250 we use the window size 7. The thresholds

(scoremin(t)) for each of them is set to the θ’s in the Figure 3.17. If θ is less than 3,

then the thresholds is set to 3.

3.4.4 sizemax(t)

Since the purpose of constructing a chain Γt,s is to provide evidence that the substring

of length t of S starting at position s is similar to the previous substring t positions

before it, we do not permit a chain to be longer than t. Therefore we set the threshold

sizemax(t) to t.

However, since we are interested in tandem repeats which has a score of at least

θscore when aligned with a consensus pattern, the repeats with small period have to

have a copy number greater than 2 in order satisfy this score criterion. For instance

if the the score of a match is 2 in the score function and we are interested in repeats

with a minimum score of 50, then a repeat with period 3 has to have a copy number

of at least
50

2 · 3
= 8.3. Then we allow the chains for t = 3 to grow to the size of at

most (8.3− 1) · 3 = 47.

3.4.5 θmax(t)

This threshold determines whether two strings of length (approximately) t are similar

enough to be considered as repeating units of a tandem repeat. For the multiple

tandem repeats, according to our definition each repeating unit should be similar to

the consensus and each pair of adjacent units should be similar to each other according

to this threshold.

Assume that two repeating units (or a unit and the consensus pattern) is aligned.
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Then the probability of observing a match is pM and the probability of observing a

substitution, a deletion or an insertion is 1 − pM for each position in the alignment

according to the assumed error model. Now let’s define the random variable Et as the

total number of substitutions and indels in an alignment of size t according to this

error model. Then Et is a binomial random variable with parameters t and 1 − pM .

We know that the expectation µEt = E[Et] is t(1 − pM) and the standard deviation

σEt is
√

t(1− pM)pM .

Then we allow a number of errors of at most bµEt + σEtc for an alignment of size

t. All the comparisons in the next chapter are performed according to this setting,

since most of the tandem repeats that are reported by Tandem Repeats Finder and

ATRHunter are observed to be within this similarity range. However there are some

exceptions like having 28 errors in an alignment of size 99 (reported by Tandem

Repeats Finder in the sequence of E. coli O157:H7 starting at position 923619) and

having 11 errors in alignment of size 36 (reported by ATRHunter in the same sequence

starting at position 923830) which exceeds this threshold that our algorithm uses,

but these are only a few exceptions that are observed in the outputs of these two

algorithms. The user can adjust this threshold if desired, for a more lenient definition

of tandem repeats.
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Chapter 4

Results

To test the quality of the algorithm, the results on both natural and synthetic data

are compared with the results of Tandem Repeats Finder [6] and ATRHunter [45].

The quality is measured both by the total number of repeats found and the running

time. The natural data include the yeast chromosome I (230203 base pairs) and the

complete genome of E. coli O157:H7 (5498450 base pairs).

4.1 Input and Output

All the sequences are scanned with the following input parameters for all the three

algorithms:

pM = 0.8 and pI = 0.1: An error model of 80% expected matches and 10% of ex-

pected indels is chosen since it is the default model that was used in the orig-

inal papers of Tandem Repeats Finder [6] and ATRHunter [45]. Also it’s not

possible to change this error model for ATRHunter.

Score function (2, 5, 7): Again these parameters for score function are the default

in the papers for comparison with each other.
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Score threshold 50: All the searches in the original papers are performed with re-

peats having at least a score of 50 when aligned with the periodic repetition of

the consensus pattern,

Maximum period 500: ATRHunter does not allow to search for repeats with period

larger than 500. Tandem Repeats Finder can search for periods up to 2000 and

our algorithm is virtually capable of searching for any period length. Again the

maximum period of 500 is the default in the papers mentioned above.

4.1.1 ATRHunter

The information about the detected repeats on the output on all the three programs

is similar. For each detected repeat, ATRHunter displays the following information:

Starting Position: This is simply the position where the repeat starts. Position 0

denotes the first nucleotide in the sequence.

Motif Length: The period of the repeat.

Number of units: This is simply the copy number. Repeats having a minimum

copy number of 1.9 are allowed instead of a minimum copy number of 2.

Score: This is the score of the optimal alignment between the repeat and a periodic

repetition of the consensus pattern.

For all the repeats that are detected, ATRHunter also prints the alignment of each

repeating unit with the consensus pattern.

4.1.2 Tandem Repeats Finder

Tandem Repeats Finder outputs more detailed information about the repeats:

Indices: These are the start and end positions of the repeats. The first nucleotide

in the sequence is the one at position 1.
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Period Size: This period size is the most common length among the length of the

repeating units and it may differ from the length of the consensus pattern. The

same definition of period size is used in our algorithm.

Copy number: Again repeats having a copy number of at least 1.9 are detected.

Consensus Size: The length of the consensus pattern.

Percent Matches: This is the percentage of the total matches in the alignments of

adjacent repeating units. If m is the total number of matches, s is the total

number of mismatches, and i is the total number of indels in all the c − 1

alignments of adjacent copies (c is the copy number), then percent matches is

simply
m

m + s + i
100.

Percent Indels: This is the percentage of the total indels in the alignments of ad-

jacent repeating units. It is simply
i

m + s + i
100.

Score: The score of the optimal alignment between the repeat and a periodic repe-

tition of the consensus pattern.

Besides the alignments of each repeating unit with the consensus pattern, Tandem

Repeats Finder also prints some statistics like the entropy of the repeat and count of

A’s, C’s, G’s and T’s.

4.1.3 Our Algorithm

The output of our algorithm is similar to the output of Tandem Repeats Finder:

Start Position: The position where the repeat starts. The first nucleotide in the

sequence is the one at position 1.

End Position: The position where the repeat ends.

Period Size: The same definition of period size of Tandem Repeats Finder is used.
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Copy number: Again repeats having a copy number of at least 1.9 are detected.

Consensus Size: The length of the consensus pattern.

Percent Matches: The percentage of the total matches in the alignments of adja-

cent repeating units (same information with Tandem Repeats Finder). If m is

the total number of matches, s is the total number of mismatches, and i is the

total number of indels in all the c − 1 alignments of adjacent copies (c is the

copy number), then percent matches is simply
m

m + s + i
100.

Percent Indels: The percentage of the total indels in the alignments of adjacent

repeating units. It is simply
i

m + s + i
100.

Score: The score of the optimal alignment between the repeat and a periodic repe-

tition of the consensus pattern.

Percent Consensus Errors: This is the percentage of the total number of errors in

the alignmet of the whole repeat with the periodic repetition of the consensus

pattern. Remember that this alignment is totally different than the alignments

of the adjacent copies. If mc is the total number of matches, sc is the total

number of mismatches, and ic is the total number of indels in the optimal global

alignment of the tandem repeat with the c times repeated consensus pattern (c

is the copy number), then percent consensus errors is simply
sc + ic

mc + sc + ic
100.

In addition to the alignments of the each repeating unit with the consensus pat-

tern, the alignments of adjacent units are also printed in the output.

4.1.4 Redundancy in the output

In the output of all the three programs, a particular tandem repeat may be reported

multiple times. For instance a repeat of a period 15 and copy number 6 can also be

reported as a repeat with period 30 and copy number 3 or as a repeat with period 45
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and copy number 2 starting at the same or close by positions. For instance the output

of Tandem Repeats Finder while scanning the sequence E. coli O157:H7 includes:

Indices
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

198–254 12 4.8 12 86 0 79
207–253 6 7.8 6 82 0 59
207–254 18 2.7 18 76 0 68

These three reported repeats are actually three different interpretations of the

same repeat. A similar example from the output of the ATRHunter for the same

sequence is:

Starting
position

Motif
Length

Number
of units Score

197 12 4.8 79
203 18 2.8 60

1066517 39 6.9 358
1066544 21 4.7 63
1786528 324 1.9 916
1786617 162 3.3 947

Notice that in the second and the third group of repeats, the start positions are

not very close but the repeats overlap. Our algorithm may also report a similar kind

of redundancies such as:

Start End
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

Percent
Consensus

Errors
198 254 12 4.75 12 86.7 0 79 8.8
208 255 6 8.17 6 81.4 2.3 54 12.2

411014 411759 94 8.02 95 92.3 1.7 1163 6.2
411071 411748 282 2.41 282 96.7 0.3 1265 1.9

Unlike to the cases above, Tandem Repeats Finder rarely includes another kind

of interesting redundancy in the output such as (for instance on the sequence E. coli

O157:H7):

Indices
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

1757508–1757542 11 3 11 84 15 52
1757508–1757542 13 2.9 12 88 12 54
1618166–1618202 12 3 12 84 7 58
1618165–1618201 13 2.9 13 88 4 60
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In this case a repeat is reported more than once with very similar consensus

patterns which are not multiples of each other.

These kind of multiple reports are eliminated by hand as much as possible and

are not included in the outputs that are presented in this thesis.

4.2 Natural Data

Chromosome I of yeast was analyzed by Tandem Repats Finder in the original paper

by Benson [6]. Also ATRHunter used the same sequence to compare itself with

Tandem Repeats Finder in the paper [45]. However since the length of the yeast

chromosome I is short (230203 base pairs), the complete genome of E. coli O157:H7

(5498450 base pairs) was also used to compare the two algorithms in the same paper.

It was reported [45] that ATRHunter outperformed Tandem Repeats Finder (Version

2.02) in the measures of both the number of detected repeats and the time spent

per repeat. The comparisons in this thesis are performed between the latest version

Tandem Repeats Finder (version 4.00 which is significantly improved over the older

version), the latest version of ATRHunter and our algorithm. We used the same

sequences, yeast chromosome I and E. coli O157:H7 and for both of these real world

sequences our algorithm significantly outperforms the others in the measure of both

the detected total number of repeats and the running time.

4.2.1 Yeast Chromosome I

Table 4.1 shows the reported number of repeats, the number of repeats after elimi-

nating the redundancies, and the running times for all the three algorithms on the

sequence of yeast chromosome I with the parameters mentioned above (repeats with

period up to 500 and having a consensus score of at least 50 according to the score

function of (2, 5, 7) under an error model of (pM = 0.8, pI = 0.1)).
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Tandem Repeats Finder ATRHunter Our Algorithm
# of repeats reported 56 62 108

# of repeats after elim. 48 54 92
Running time (seconds) 1.00 8.00 0.79

Table 4.1: Comparison of algorithms on yeast chromosome I.

The repeats that are reported by our algorithm after eliminating the redundan-

cies are listed in Table A.1. The repeats which are also detected by Tandem Re-

peats Finder are marked with “#”. Similarly the repeats which are also detected by

ATRHunter are marked with “+” in the table.

Comparison with Tandem Repeats Finder

While the running times of our algorithm and Tandem Repeats Finder is similar for

yeast chromosome I, our algorithm is approximately two times faster per reported

repeat. Among the 48 repeats that are detected by Tandem Repeats Finder, our

algorithm only misses 5. Those missed tandem repeats are listed in Table 4.2 (repeats

marked with “+” are also detected by ATRHunter).

Let’s inspect the first one of these repeats, the one between the indices 23709-

23759. This repeat has a consensus of AAATAAAAA. As only the unique sub-

strings are observable according to our algorithm, missing this repeat is predictable

since the consensus pattern is almost a repetition of a single character.

Another observation about the repeats missed by our algorithm is that all of them

have scores which are very close to the θscore which was set to 50. Although most of

Indices
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

+ 23709–23759 9 5.8 9 79 4 60
+ 31118–31147 2 15 2 92 0 53
+ 93834–93884 15 3.4 15 75 0 60

112740–112791 12 4.6 12 74 13 55
+ 116146–116196 21 2.4 21 73 0 53

Table 4.2: Unique tandem repeats found by Tandem Repeats Finder in yeast chro-
mosome I.
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Start End
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

Percent
Consensus

Errors
222559 222776 108 2.02 108 82 1.8 294 9.1
206990 207086 48 2.02 48 75.5 0 110 12.4
24919 25012 47 1.94 48 78.7 6.4 114 10.5
87687 87726 20 1.95 21 80 5 52 9.8
133378 133418 20 2 20 81 4.8 52 9.8
151499 151534 20 1.9 20 83.3 11.1 51 7.9
217349 217388 20 2 20 80 0 52 10
18042 18081 19 2.16 19 81.8 4.5 52 9.8
129282 129322 19 2.16 19 83.3 16.7 50 9.3
202638 202670 18 1.94 17 88.2 11.8 50 5.9

Table 4.3: Some repeats missed by Tandem Repeats Finder and ATRHunter in yeast
chromosome I.

these missed repeats are detected by the chains as candidates, the alignments could

not succeed with a score over the θscore since even one position shift in the start of

the repeat may introduce one or two substitutions or indels which may reduce the

score significantly.

On the other hand, among the 92 repeats detected by our algorithm, Tandem

Repeats Finder catches only 43 of those (marked with “#” in Table A.1). Table 4.3

lists just 10 of the missed repeats (these are also missed by ATRHunter) sorted

according to the periods.

Let’s inspect two of these repeats which are missed by Tandem Repeats Finder

(also missed by ATRHunter):

222559-222776 This repeat has a period of 108 and the alignments of the two re-

peating units has only 20 errors (18 substitutions, 1 insertion and 1 deletion)

which is less than 20%. Each repeating unit has 10 errors when aligned with

the consensus pattern.

24919-25012 The repeat between these indices has a consensus pattern of length 48

and the alignment of the two repeating units has 10 errors (7 substitutions

and 3 insertions) where it’s legitimate for a 20% error model on a repeat with

consensus period 48. Also the alignments of each of the two units with the

consensus pattern have only 5 errors.
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Starting
position

Motif
Length

Number
of units Score

# 23713 1 46 50
# 31117 2 15 53

48199 15 2.6 50
# 93828 29 2.3 60

110691 13 3.5 53
# 116145 21 1.9 52

169202 20 2.1 56

Table 4.4: Unique tandem repeats found by ATRHunter in yeast chromosome I.

If all the 49 repeats missed by Tandem Repeats Finder are inspected carefully, it

can be seen that all of them are valid repeats within the assumed error model. Also

our algorithm detected several unique repeats which score significantly higher than

θscore = 50.

Comparison with ATRHunter

Among the 54 repeats that are detected by ATRHunter, our algorithm only misses 7

while being much faster. Those missed tandem repeats are listed in Table 4.4 (repeats

marked with “#” are also detected by Tandem Repeats Finder).

Similar to the unique repeats found by Tandem Repeats Finder, these unique

repeats by ATRHunter have score very close to the θscore.

Again, let’s inspect one of these repeats missed by our algorithm. The one starting

at position 110691 has a consensus AAAAGAGAGAAAA with low entropy which

is not easily detectable by our algorithm.

We’ll look at one more missed repeat, the one starting at position 93828. The

alignment of the first repeating unit with the second one has 9 errors (5 substitu-

tions and 4 indels) in 32 positions which is out of the similarity thresholds that our

algorithm uses. The alignment of the consensus pattern and the first unit has also 9

errors for this repeat. Remember that we allowed at most bµEt + σEtc errors when

setting the threshold θmax(t). The threshold θmax(t) for t = 32 is 8, thus these two
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units are not similar enough to be considered as a tandem repeat according to our

algorithm.

If we employ a threshold of bµEt + 2σEtc for θmax(t), the running time increases

from 0.79 to 0.98 seconds where the number of reported repeats increase from 108 to

177. However all the results mentioned in these comparisons are for the case where

the θmax(t) is set to bµEt + σEtc as described in Section 3.4.5 (it can be adjusted

manually if desired).

ATRHunter reports only 47 repeats (marked with “+” in Table A.1), among the

92 repeats detected by our algorithm. Table 4.3 lists some of the missed repeats by

ATRHunter. All the 45 missed repeats are legitimate within the assumed error model

and some of them have scores significantly higher than θscore = 50.

4.2.2 Complete Genome of E. Coli O157:H7

Table 4.5 shows the reported number of repeats, the number of repeats after elimi-

nating the redundancies, and the running times for all the three algorithms on the

sequence of E. coli O157:H7 with the parameters mentioned above (repeats with pe-

riod up to 500 and having a consensus score of at least 50 according to the score

function of (2, 5, 7) under an error model of (pM = 0.8, pI = 0.1)).

The repeats that are reported by our algorithm after eliminating the redundan-

cies are listed in Table A.2. The repeats which are also detected by Tandem Re-

peats Finder are marked with “#”. Similarly the repeats which are also detected by

ATRHunter are marked with “+” in the table.

Tandem Repeats Finder ATRHunter Our Algorithm
# of repeats reported 222 236 791

# of repeats after elim. 190 227 751
Running time (seconds) 13.68 175.22 13.10

Table 4.5: Comparison of algorithms on E. coli O157:H7.
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Indices
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

+ 169132–169179 18 2.7 18 76 0 54
923619–923833 99 2.2 99 71 0 227

2143394–2143445 21 2.5 21 71 3 55
2412879–2412910 16 2.1 16 88 5 50
4360094–4360138 13 3.4 13 78 6 53

+ 4399204–4399246 18 2.4 18 80 0 51
4510580–4510630 22 2.4 22 66 3 53

+ 4600399–4600427 15 1.9 15 92 0 51
+ 4952191–4952240 25 2 25 80 7 63

Table 4.6: Unique tandem repeats found by Tandem Repeats Finder in E. coli
O157:H7.

Comparison with Tandem Repeats Finder

While the running times of our algorithm and Tandem Repeats Finder is similar

for E. coli O157:H7, our algorithm is almost four times faster per detected repeat.

Among the 190 repeats that are detected by Tandem Repeats Finder, our algorithm

only misses 9. Those missed tandem repeats are listed in Table 4.6 (repeats marked

with “+” are also detected by ATRHunter).

Let’s inspect the repeat between indices 923619-923833 with a period of 99. If

we align the two repeating units of this repeat, we observe 28 substitutions which is

over the limit of our assumption of number of errors. Remember that we allowed at

most bµEt + σEtc errors when setting the threshold θmax(t). The threshold θmax(t)

for t = 99 is 23, thus these two units are not similar enough to be considered as a

tandem repeat according to our algorithm.

If we employ a threshold of bµEt + 2σEtc for θmax(t), the running time increases

from 13.7 to 17.5 seconds where the number of reported repeats increase from 791 to

2129 (almost 10 times the number of repeats reported by the other two algorithms).

Then the repeat mentioned above is also detected by our algorithm. However all the

results mentioned in these comparisons are for the case where the θmax(t) is set to

bµEt + σEtc as described in Section 3.4.5 (it can be adjusted manually if desired).

Again all the other repeats missed by our algorithm have scores very close to the
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Start End
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

Percent
Consensus

Errors
3793916 3794702 393 2.01 394 81.7 5.2 1045 9.1

+ 1732109 1732677 297 1.92 298 81.4 4.3 766 9
+ 4520601 4521111 255 2 256 80.2 0.8 665 9.9
+ 865062 865476 208 2.01 208 90.5 2.4 688 4.8
+ 3541923 3542285 182 2.01 181 88.2 3.8 566 6

2971505 2971739 116 2.03 117 78.3 1.7 288 11
3244819 3245036 115 1.9 115 87.6 2.9 343 5.9
4009295 4009525 113 2.02 114 79.2 5.8 286 10.3
3823291 3823507 113 1.94 112 78.7 5.6 267 10.5

+ 3890931 3891162 111 2.07 112 83.1 6.5 309 8.9

Table 4.7: Some repeats missed by Tandem Repeats Finder in E. coli O157:H7.

θscore.

Among the 751 repeats detected by our algorithm, Tandem Repeats Finder only

detects 181 of those (marked with “#” in Table A.2). Table 4.7 lists just 10 of the

missed repeats by Tandem Repeats Finder sorted according to the periods.

Again all of the 570 repeats missed by Tandem Repeats Finder are legitimate

within the assumed 20% percent error model and a significant number of them have

very high scores.

Comparison with ATRHunter

Our algorithm misses 34 of the repeats among the 227 repeats that are detected by

ATRHunter. Those missed tandem repeats are listed in Table 4.8 (repeats marked

with “#” are also detected by Tandem Repeats Finder).

If we inspect the repeat starting at position 923830 with period 36, we see that

there are 11 substitutions both in the alignment of the second repeating unit with

the consensus and in the alignment of the first unit with the second which is over our

threshold.

A run of our algorithm with a threshold θmax(t) of bµEt +2σEtc, detects this repeat

as well as 7 more of the missed repeats that are listed in Table 4.8.

Again all the other repeats missed by our algorithm have scores very close to the

θscore.
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Starting
position

Motif
Length

Number
of units Score

# 169131 18 2.7 54
246640 25 1.9 50
296649 21 1.9 52
314050 27 1.9 55
379277 23 2.1 56
607646 24 1.9 60
923830 36 2.2 79
1026837 20 1.9 51
1168004 29 2 61
1428498 22 2 55
1500714 24 1.9 50
1546474 20 2.4 55
1562565 27 2 66
1781039 27 2 66
1948337 27 2 66
2101534 19 2.1 50
2419335 18 1.9 54
2425067 21 1.9 52
2639069 23 1.9 58
2647093 21 1.9 50
2795584 17 1.9 50
3372687 23 2 53
3781067 20 1.9 53
3801087 21 2 51
3953147 15 2.7 54
4299717 20 1.9 53

# 4399203 18 2.4 51
4521076 21 2 56

# 4600396 15 2.3 54
4762541 21 2 54

# 4952192 25 1.9 52
5027738 22 1.9 52
5030604 24 1.9 50
5209777 21 2.2 50

Table 4.8: Unique tandem repeats found by ATRHunter in E. coli O157:H7.
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Start End
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

Percent
Consensus

Errors
3793916 3794702 393 2.01 394 81.7 5.2 1045 9.1

# 4520856 4521322 234 2 233 78 1.7 566 11.1
# 3249429 3249780 119 2.92 120 81.4 4.6 416 11.3

2971505 2971739 116 2.03 117 78.3 1.7 288 11
3244819 3245036 115 1.9 115 87.6 2.9 343 5.9
4009295 4009525 113 2.02 114 79.2 5.8 286 10.3
3823291 3823507 113 1.94 112 78.7 5.6 267 10.5
776587 776808 113 2.03 110 81.9 6 291 9.3

# 5472324 5472519 101 1.94 101 88.4 0 315 5.6
5180652 5180846 94 2.02 95 83.5 8.7 266 8.1

Table 4.9: Some repeats missed by ATRHunter in E. coli O157:H7.

ATRHunter reports 193 repeats (marked with “+” in Table A.2) among the

751 repeats detected by our algorithm. Table 4.9 lists 10 of the missed repeats by

ATRHunter sorted according to the periods.

Again all of the 558 repeats that are missed by ATRHunter are legitimate within

the assumed 20% percent error model and a significant number of them have scores

much higher than θscore.

These results show that our algorithm detects significantly more (between 2× and

3.3×) tandem repeats that are legitimate within the assumed error model than the

Tandem Repeats Finder and ATRHunter in less time. One may suspect that the

repeats missed by Tandem Repeats Finder and ATRHunter contain too many errors

according to their definition of tandem repeats, however if we inspect the outputs

of theirs, we see the number of errors in these missed repeats are no more than the

number of errors in the repeats that they report with similar periods (also for the

number of indels).

In addition, we see that the repeats that could not be detected by our algorithm

are missed because of the very critical range of the score of those repeats around the

threshold θscore. This does not mean that the other algorithms do a better job when

determining the start positions and aligning the repeating units because they miss

many more repeats having this critical range of score than our algorithm misses. A

full list of these repeats are included in Appendix A (Tables A.1 and A.2).
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Tandem Repeats Finder ATRHunter Our Algorithm
Sequence 1 91 87 99
Sequence 2 95 92 100
Sequence 3 92 90 100
Sequence 4 91 86 99
Sequence 5 97 91 100

Overall 93.2% 89.2% 99.6%

Table 4.10: Comparison of algorithms on synthetic sequences.

4.3 Synthetic Data

The quality of our algorithm is also demonstrated on synthetic data. In the paper by

Wexler et al. [45], experiments were performed on 10 synthetic sequences of length

100000 to compare ATRHunter with Tandem Repeats Finder. Each of these sequences

includes 100 approximate tandem repeats with location, period, and level of similarity

randomly chosen, and the number of copies geometrically distributed with parameter

p = 0.5. The average score of an ATR over all the sequences was 238 with a standard

deviation 116. We could obtain the first 5 of these 10 sequences from the website 1

of ATRHunter, and we scanned them by our algorithm, Tandem Repeats Finder

(Version 4.00) and ATRHunter. Table 4.10 shows the numbers of tandem repeats

recovered by the three algorithms for each of these five synthetic sequences.

Our algorithm recovered almost all (99.6%) of the tandem repeats and was the

fastest (≈ 0.36 seconds on each sequence). Tandem Repeats Finder recovered 93.2% of

the repeats in a time comparable to our algorithm (≈ 0.43 seconds on each sequence).

ATRHunter recovered 89.2% of the repeats while running approximately 1.5 times

slower than Tandem Repeats Finder.

1http://bioinfo.cs.technion.ac.il/atrhunter/ATRexperiments.htm
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Tandem Repeats Finder ATRHunter Our Algorithm
Sequence for period 50 46 45 100

Sequence for period 100 51 50 99
Sequence for period 200 38 70 100
Sequence for period 400 37 91 100

Table 4.11: Comparison of algorithms on repeats with significant number of errors.

4.3.1 Repeats with Significant Errors

To demonstrate our algorithm’s ability to detect repeats with significantly high num-

ber of errors, we created several synthetic sequences containing repeats with 10%

substitutions and 10% indels. First we created a random sequence of length 100000

and then we planted 100 single repeats with period 50 where on the second repeating

unit, 5 substitutions (10%) are applied to randomly chosen positions and 5 indels

(10%) are applied again to randomly chosen positions. We repeated the same process

for period sizes of 100, 200 and 400 such that each repeat has 10% substitutions and

10% indels. Then we ran all the three algorithms on these sequences. The numbers

of recovered repeats are shown in Table 4.11.

Again our algorithm recovered all of them (with only one exception) while being

fastest. ATRHunter has also a good performance for repeats with large periods.

However as the experiments on real data also confirms, Tandem Repeats Finder is

not as good as the others for long repeats with errors.

4.3.2 Repeats with Long Periods

Our algorithm is virtually capable of detecting repeats with any period range. While

ATRHunter is limited by only detecting repeats with period up to 500, Tandem Re-

peats Finder can detect periods up to 2000. To compare the effectiveness of our

algorithm on repeats with long periods, we created two sets of sequences of length
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Tandem Repeats Finder Our Algorithm
Sequence for period 1000 19 100
Sequence for period 1800 18 100

Table 4.12: Comparison of algorithms on repeats with long periods.

1000000 containing 100 approximate single repeats with periods 1000 and 1800 re-

spectively. The repeats are created and planted as described above to have 10%

substitutions and 10% indels. We ran Tandem Repeats Finder and our algorithm on

these sequences (Table 4.12).

Our algorithm recovered all of the repeats running in approximately 4 seconds.

On the other hand Tandem Repeats Finder only recovered 20% of the repeats running

in 3.3 seconds.
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Chapter 5

Conclusions

An efficient algorithm for detecting approximate tandem repeats in genomic sequences

is presented in this thesis. The algorithm is based on statistical criteria to detect

candidate regions which may include tandem repeats and then these regions are sub-

sequently verified by alignments using dynamic programming. No prior information

about the period size or pattern which is repeated is needed. Also the algorithm is

virtually capable of detecting repeats with any period.

The parameters (pM , pI) for the error model of formation of tandem repeats as

well as the similarity thresholds θmax(t) between the repeating units are adjustable,

therefore our algorithm can be used for detecting tandem repeats with various range

of similarity measures.

An implementation of the algorithm is compared with the two state-of-the-art

tandem repeats detection tools, Tandem Repeats Finder [6] and ATRHunter [45], and

as the results show that our algorithm performs significantly better both in detecting

more repeats and spending less time.
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5.1 Future Work

5.1.1 Accuracy for Short Repeats

While our algorithm performs better than the others for repeats with periods smaller

than 40, most of the false alarms are produced for those repeats as explained in

Section 3.4.3. Different approaches can be incorporated to reduce the false alarms

for short repeats such as combining the idea of producing chains with looking all the

occurrences (not only the immediately preceding ones) of shorter windows (of size 2

or 3), or using some suffix tree based approaches.

5.1.2 Speeding up the Alignments

The chains are only used to detect the positions and the periods of candidate tandem

repeat regions in our algorithm. However they also include a lot of information

about the matching substrings of these regions. When computing the alignments

in the verification phase, this information could be effectively used to reduce the

computation effort.

5.1.3 Detecting Hierarchical Tandem Repeats

Some tandem repeats exhibit a hierarchical structure, namely the repeated pattern

may include several other tandem repeats. Our algorithm may be modified to detect

such kind of hierarchies in tandem repeats.
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Appendix A

Detected Tandem Repeats in Yeast

Chromosome I and Complete

Genome of E. Coli O157:H7

The approximate tandem repeats that are detected by our algorithm are listed in

the following tables for the sequences of yeast chromosome I and E. coli O157:H7.

The redundancies are removed in these tables as described earlier. The mark “#”

at a repeat indicates that that repeat is detected by Tandem Repeats Finder as well

as our algorithm. Similarly the mark “+” indicates that the repeat is detected by

ATRHunter. Repeats marked by both “#” and “+” are detected by all the three

algorithms. Unmarked repeats are only detected by our algorithm.

Table A.1: Tandem repeats found by our algorithm in yeast chromosome I.

Start End
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

Percent
Consensus

Errors
#+ 15 61 6 7.83 6 83.7 9.3 55 10.2

219 296 36 2.14 36 75 11.4 73 13.8
5763 5815 25 2.04 26 75 7.1 55 13

#+ 11864 11935 27 2.7 27 84.8 2.2 88 11
#+ 12249 12327 21 3.64 22 79.3 5.2 77 13.4
#+ 12466 12855 48 8.08 48 89.5 0.6 573 7.4
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Start End
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

Percent
Consensus

Errors
#+ 13001 13128 15 8.53 15 81.9 5.2 130 14.1
#+ 14791 14821 13 2.38 13 94.4 0 55 3.2
+ 14892 14927 18 2 18 83.3 0 51 8.3

18042 18081 19 2.16 19 81.8 4.5 52 9.8
18186 18230 24 1.91 23 78.3 13 51 10.9
23551 23612 33 1.94 31 74.2 6.5 64 12.9

#+ 24296 24367 27 2.7 27 84.8 2.2 88 11
24373 24417 24 1.92 24 78.3 13 53 10.6

#+ 24688 24780 21 4.43 21 80.6 0 109 11.8
24919 25012 47 1.94 48 78.7 6.4 114 10.5

#+ 25166 25293 15 8.53 15 81.9 5.2 130 14.1
#+ 25403 26598 135 8.86 135 92.5 0.2 987 16.6
#+ 26464 27148 135 5.07 135 92.4 0 1069 6.3

32850 32907 30 2.03 29 74.2 9.7 58 13.3
39130 39180 24 2.04 25 74.1 7.4 51 13.5
40241 40281 18 2.29 17 80 12 50 9.8
49399 49451 29 1.96 27 74.1 11.1 53 12.7

#+ 55048 55093 21 2.14 21 80 4 55 10.9
69661 69711 26 1.93 27 76 4 60 11.5
73168 73217 25 1.93 27 76.9 15.4 56 11.3

#+ 76702 76746 21 2.14 21 87.5 0 69 6.7
#+ 76831 76862 15 2.13 15 88.2 0 50 6.2

76981 77033 27 2.08 26 79.3 10.3 62 10.9
#+ 77011 77057 24 1.96 24 78.3 0 59 10.6
+ 77062 77132 30 2.48 29 74.4 4.7 70 13.7

#+ 77497 77544 3 15.67 3 93.3 2.2 80 4.2
#+ 77572 77601 12 2.5 12 94.4 0 53 3.3

80780 80825 24 1.92 24 72.7 0 50 13
87687 87726 20 1.95 21 80 5 52 9.8
95349 95393 24 1.91 23 77.3 4.5 53 11.1
97511 97560 25 2.04 25 76.9 3.8 58 11.8

#+ 99940 99971 14 2.29 14 100 0 64 0
#+ 100363 100399 18 2.06 18 89.5 0 60 5.4
#+ 100449 100508 27 2.22 27 78.8 0 71 11.7
#+ 101466 101506 15 2.73 15 88.5 0 54 9.8

106182 106228 26 1.92 25 71.4 0 50 12.2
107771 107817 23 2 23 75 4.2 50 12.8
110647 110711 33 2.03 33 74.3 11.4 65 13.2

#+ 113050 113096 3 15.67 3 88.6 0 73 6.4
#+ 113285 113317 9 3.67 9 87.5 0 52 6.1
#+ 116424 116467 21 2.1 21 78.3 0 53 11.4
#+ 116489 116515 9 3 9 100 0 54 0

118234 118280 24 1.96 24 75 8.3 50 12.5
#+ 118468 118515 18 2.61 18 76.7 3.3 52 12.5
#+ 120158 120184 5 5.4 5 100 0 54 0
#+ 124924 124953 9 3.33 9 95.2 0 53 3.3

129282 129322 19 2.16 19 83.3 16.7 50 9.3
129692 129746 27 2.04 27 75 0 61 12.7

+ 132935 132979 21 2.14 21 79.2 0 55 11.1
133378 133418 20 2 20 81 4.8 52 9.8
133426 133486 30 2.07 30 76.5 14.7 62 12.5

#+ 139547 139605 24 2.46 24 82.9 0 76 10.2
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141443 141489 24 2.04 23 76 8 50 12.5
142557 142602 24 1.92 24 72.7 0 50 13

+ 151474 151512 19 2.05 19 80 0 50 10.3
151499 151534 20 1.9 20 83.3 11.1 51 7.9

# 151514 151566 25 2.2 25 80 6.7 64 10.9
156062 156116 30 1.93 28 75.9 17.2 55 12.3
162401 162463 32 1.94 33 74.2 3.2 70 12.5
168115 168157 21 2.1 21 78.3 4.3 51 11.4
175803 175854 26 2.08 25 75 7.1 53 13.2
176473 176534 29 2.03 29 77.1 20 58 12.5
176559 176602 24 2 23 79.2 16.7 51 10.6
176958 177001 21 2.1 21 78.3 0 53 11.4
184598 184656 27 2.04 28 75 12.5 56 13.3

#+ 190123 190152 13 2.23 13 94.1 5.9 51 3.3
#+ 192282 192321 3 13 3 89.5 5.3 57 7.5
#+ 193957 194025 27 2.56 27 78.6 0 82 11.6
#+ 196003 196039 18 2.11 18 85 5 53 7.9
#+ 198830 198866 11 3.27 11 88.5 3.8 51 8.1

200781 200841 32 1.94 31 75.9 10.3 64 13.1
202638 202670 18 1.94 17 88.2 11.8 50 5.9

#+ 204217 206360 135 15.88 135 91.1 0.3 2451 12.1
#+ 206226 206632 135 3.01 135 85.7 0 590 7.9
#+ 206737 206783 15 3.2 15 81.8 3 52 12.5
#+ 206769 206830 15 4.07 15 83 2.1 71 11.1

206990 207086 48 2.02 48 75.5 0 110 12.4
#+ 207222 207286 21 3.1 21 81.8 0 88 9.2
#+ 207609 207697 27 3.3 27 88.7 0 136 6.7
+ 214006 214045 19 2.16 19 81.8 4.5 52 9.8

216469 216523 27 2.11 27 73.3 6.7 54 14
217349 217388 20 2 20 80 0 52 10

#+ 219178 219214 15 2.47 15 86.4 0 60 5.4
#+ 222276 222314 18 2.17 18 81 0 50 10.3

222559 222776 108 2.02 108 82 1.8 294 9.1
#+ 223114 223149 1 36 1 100 0 72 0
#+ 229746 229806 15 4.07 15 80.4 0 73 11.5
#+ 229945 229981 11 3.36 11 88.9 7.4 51 7.9
#+ 230112 230201 6 15.5 6 87.8 11.1 136 6.4
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Table A.2: Tandem repeats found by our algorithm in E. coli O157:H7.

Start End
Period
Size

Copy
Number

Consensus
Size

Percent
Matches

Percent
Indels Score

Percent
Consensus

Errors
#+ 198 254 12 4.75 12 86.7 0 79 8.8
#+ 208 255 6 8.17 6 81.4 2.3 54 12.2

14452 14497 24 1.92 24 86.4 0 71 6.5
18579 18632 27 2.04 27 79.3 10.3 64 10.7
36404 36448 23 2.05 22 79.2 8.3 53 10.9

# 54992 55033 21 2 22 81.8 9.1 56 9.1
58639 58690 28 1.93 27 73.1 7.7 53 13.2
62879 62926 24 2 24 75 0 54 12.5
63902 63958 30 1.9 30 74.1 0 65 12.3

#+ 64015 64082 15 4.53 15 94.3 0 122 2.9
#+ 71495 71675 85 2.13 85 92.7 0 313 3.9

75274 75315 23 1.9 21 81 9.5 52 9.5
82587 82639 24 2.25 24 76.7 3.3 57 13

+ 88943 88979 17 2.12 17 85 5 51 8.1
96804 96857 27 1.96 27 75 10.7 55 12.7
107555 107602 23 2.04 23 76.9 11.5 50 12.2
108558 108611 27 2.15 26 77.4 12.9 57 12.3
110903 110953 24 2.04 25 77.8 7.4 58 11.5

#+ 130499 131095 303 2.01 298 81.7 4.2 790 9.3
#+ 133999 134273 96 2.89 96 81.8 1.1 368 9.4
#+ 134666 134710 21 2.14 21 79.2 0 55 11.1

181510 181555 24 1.92 24 72.7 0 50 13
185304 185375 35 2.03 35 75.7 2.7 79 12.5
199182 199228 23 2.09 23 76.9 11.5 50 12.2
204093 204133 22 1.91 22 80 5 54 9.5
211571 211609 21 1.9 21 78.9 5.3 50 10
241744 241788 23 1.92 24 78.3 13 53 10.6

+ 241885 241926 21 2 21 81 0 56 9.5
#+ 248787 248856 27 2.5 26 84.4 11.1 65 12.7

252237 252281 22 1.95 22 78.3 8.7 51 11.1
266526 266574 25 2 25 76 4 56 12
267754 267805 27 2.08 26 75.9 13.8 53 12.7

#+ 271422 271477 6 9.33 6 100 0 112 0
274673 274725 27 2.04 26 75 7.1 55 13
288099 288145 24 1.96 25 75 8.3 52 12.2
301283 301328 24 1.96 24 73.9 4.3 50 12.8

+ 303746 303787 20 2.05 20 86.4 4.5 61 7.1
#+ 303789 303857 23 3.04 23 85.4 6.2 87 9.9
# 314566 314625 30 1.91 32 76.7 10 69 11.3

317569 317614 24 1.92 24 72.7 0 50 13
339818 339869 24 2.04 25 75 10.7 51 13.2
342165 342210 24 1.92 24 72.7 0 50 13
350355 350407 28 1.93 28 73.1 3.8 57 13
373311 373357 24 1.96 24 73.9 0 52 12.8

#+ 382641 382696 18 3.11 18 81.6 0 63 12.5
#+ 391253 391716 93 5.02 93 94.7 1.1 802 3.9
#+ 411014 411759 94 8.02 95 92.3 1.7 1163 6.2

417371 417416 24 1.92 24 72.7 0 50 13
440781 440832 27 1.96 26 73.1 3.8 53 13.5
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# 451613 451662 25 2.04 25 76.9 3.8 58 11.8

468680 468727 26 1.96 24 76 12 50 12.2
#+ 487334 487404 23 3.09 22 78 10 50 16.7
# 502429 502463 16 2.25 16 90 5 56 5.6

522259 522304 22 2 22 80 16 51 10.6
533600 533660 34 1.94 31 74.2 12.9 60 12.7
547081 547127 21 2.23 22 74.1 7.4 52 12.2
550962 551013 28 1.93 28 77.8 14.8 60 10.9
551184 551229 21 2.05 22 80 12 53 10.6
555796 555840 21 2.14 21 83.3 0 62 8.9

# 559475 559513 18 2.18 17 82.6 13 53 7.7
565903 565964 29 2.07 29 72.7 6.1 57 14.5
567815 567846 16 2.06 16 88.2 5.9 50 6.1
583066 583112 25 1.92 24 73.9 4.3 50 12.8
586772 586823 27 1.96 27 73.1 3.8 55 13.2
587256 587302 24 1.96 25 75 8.3 52 12.2
595451 595505 27 2.07 27 75.9 3.4 61 12.5
595644 595693 25 1.92 26 76 8 56 11.8

#+ 596193 596810 308 2 308 99.7 0.3 1227 0.2
598401 598446 24 1.92 24 72.7 0 50 13

#+ 607318 607364 25 2 24 76 12 50 12.2
607399 607439 22 1.91 22 80 5 54 9.5

#+ 608929 609008 33 2.41 32 75 4.2 77 13.8
612720 612772 28 1.96 27 74.1 7.4 55 13

+ 616217 616258 21 2 21 81 0 56 9.5
619057 619104 26 1.92 25 76 16 50 12
620396 620448 27 2.04 26 75 7.1 55 13
630080 630127 25 1.92 25 73.9 0 54 12.5
634515 634568 28 1.93 28 75.9 20.7 53 12.3
643664 643712 25 1.92 25 76 12 52 12
671298 671362 30 2.03 31 74.3 11.4 61 13.6

# 671873 671913 22 1.91 22 80 5 54 9.5
#+ 671912 671955 17 2.47 17 81.5 3.7 56 9.1

673282 673321 21 1.9 21 78.9 0 52 10
699586 699639 28 1.93 28 75 14.3 55 12.5

+ 702686 702728 20 2.14 21 79.2 8.3 51 11.1
708812 708865 30 1.93 28 75.9 20.7 53 12.3
714221 714264 23 1.96 24 78.3 13 53 10.6
721205 721245 21 1.95 21 80 0 54 9.8
730509 730559 27 1.92 26 76 4 58 11.8
735796 735842 23 2 23 79.2 4.2 57 10.6
744846 744894 24 1.92 25 76 12 52 12
754854 754899 24 1.96 24 72.7 0 50 12.8
756412 756447 20 1.9 20 83.3 11.1 51 7.9

+ 771047 771084 20 1.9 20 83.3 0 55 7.9
#+ 776475 776544 34 2.03 34 83.3 2.8 96 8.6

776587 776808 113 2.03 110 81.9 6 291 9.3
776916 777126 109 2.01 105 84.5 7.3 295 7.9
799416 799482 32 2.12 33 74.4 17.9 60 13.9
804774 804812 21 1.9 21 83.3 0 57 7.5
811302 811354 28 1.93 27 74.1 11.1 53 13
813815 813868 26 2 26 75 7.1 55 13
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837632 837678 24 2.09 23 76.9 11.5 50 12.2
852936 852979 24 1.91 23 77.3 9.1 51 11.1
858107 858153 24 1.92 25 73.9 4.3 52 12.5

# 861246 861277 15 2.13 15 88.2 0 50 6.2
#+ 861261 861311 24 2.12 24 77.8 0 60 11.8
#+ 861331 861416 45 1.91 45 80.5 0 116 9.3
#+ 861409 861487 36 2.11 37 79.5 11.4 96 9.9
#+ 861470 861628 77 2.01 79 78 4.9 188 11.2
+ 865062 865476 208 2.01 208 90.5 2.4 688 4.8

867161 867206 24 1.92 24 72.7 0 50 13
887009 887047 20 1.9 20 84.2 5.3 55 7.7
887063 887139 35 2.05 37 73.8 11.9 71 13.9
889264 889312 23 2.09 23 78.6 17.9 50 11.8
892279 892325 25 1.96 24 75 8.3 50 12.5
900281 900329 23 2.09 23 76.9 3.8 54 12.2
912924 912956 17 1.94 17 87.5 0 52 6.1
922439 922490 27 1.96 27 74.1 11.1 53 13
944426 944465 19 2.1 20 81.8 9.1 52 9.5

#+ 951746 951774 15 1.93 15 92.9 0 51 3.4
954291 954330 21 1.9 21 80 10 50 9.8
987156 987205 23 2.04 24 78.6 17.9 52 11.5
991009 991047 20 2 20 80 5 50 10
1009634 1009688 30 1.93 29 75.9 17.2 57 12.1
1018182 1018228 24 1.96 24 75 8.3 50 12.5
1023473 1023520 23 2.04 23 76.9 11.5 50 12.2
1055675 1055714 21 1.9 21 78.9 0 52 10

+ 1064943 1064977 18 1.94 18 88.2 0 56 5.7
+ 1065508 1065587 39 2.05 39 82.9 0 111 8.8

#+ 1066509 1066787 39 7.18 39 86.7 0.4 383 8.9
1066598 1066644 24 1.96 24 73.9 0 52 12.8
1084183 1084228 24 1.92 24 72.7 0 50 13
1084222 1084271 27 1.92 26 75 4.2 56 11.8
1085109 1085168 30 2 29 75.8 18.2 56 12.9

+ 1101699 1101748 26 1.92 26 75 0 58 12
1107627 1107665 21 1.9 20 84.2 5.3 55 7.7

#+ 1116636 1116675 20 1.95 21 80 5 52 9.8
1118692 1118735 22 1.95 22 77.3 4.5 51 11.4
1130812 1130872 34 1.94 31 75 15.6 60 12.7
1151406 1151446 20 1.95 21 81 9.5 52 9.5
1152411 1152452 23 1.91 22 81 9.5 54 9.3
1152817 1152858 20 2.05 20 82.6 13 52 9.3
1162983 1163035 28 1.93 28 73.1 3.8 57 13
1166611 1166660 24 1.92 26 73.1 11.5 54 11.5
1168380 1168427 25 1.96 25 75 4.2 54 12.2
1168417 1168465 26 1.92 26 75 4.2 56 12

#+ 1170333 1170368 11 3.27 11 84 0 58 5.6
# 1170372 1170410 20 2.05 19 85.7 9.5 55 7.5

1176068 1176111 23 1.92 24 77.3 9.1 53 10.9
#+ 1183758 1183809 21 2.48 21 74.2 0 55 13.5

1187019 1187078 33 1.9 31 80 10 74 9.8
#+ 1208487 1208577 45 2.02 45 80.4 0 119 9.9
#+ 1209270 1209883 141 4.35 141 98.5 0 1179 1.1
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1218433 1218479 25 1.96 25 78.3 13 50 12
1228652 1228690 18 2.17 18 81 0 50 10.3
1228723 1228768 24 1.92 24 72.7 0 50 13
1237461 1237501 20 2 20 81 4.8 52 9.8
1237627 1237666 21 1.95 20 80 5 50 10

#+ 1258968 1258999 11 3 11 86.4 4.5 50 6.1
#+ 1263615 1263679 29 2.21 29 80.6 2.8 79 10.8

1270020 1270069 27 1.92 26 76.9 15.4 54 11.5
1274682 1274729 27 1.92 25 76 16 50 12

#+ 1275728 1275780 12 4.42 12 82.9 0 78 7.5
+ 1280030 1280069 21 1.9 20 85 10 55 7.5

1280548 1280594 24 1.96 24 73.9 0 52 12.8
#+ 1285194 1285241 23 2.18 22 77.8 7.4 52 12.2

1285380 1285420 21 1.95 21 80 0 54 9.8
#+ 1286351 1286441 45 2.02 45 87 0 140 6.6
#+ 1287869 1287913 21 2.19 21 84 4 62 8.7
#+ 1295551 1295589 15 2.6 15 83.3 0 57 7.7

1308545 1308608 31 2.09 32 77.1 8.6 72 11.9
1319289 1319338 24 2.08 25 77.8 7.4 58 11.5
1319899 1319952 24 2.08 26 76.7 13.3 55 12.5

+ 1321395 1321445 27 2 26 74.1 11.1 51 13.2
#+ 1326597 1326638 20 2.05 20 81.8 4.5 54 9.5
+ 1335618 1335661 23 2.05 22 79.2 12.5 51 10.9

1340687 1340734 24 2.04 24 76 4 54 12.2
1364014 1364063 25 1.93 27 76 8 58 11.5
1366236 1366275 19 2.1 20 81.8 9.1 52 9.5

#+ 1373654 1373689 18 2.06 18 89.5 5.3 58 5.4
1377617 1377665 24 2.08 24 77.8 11.1 54 11.8
1398133 1398181 25 1.96 25 80 8 61 10

#+ 1399064 1399156 46 2.02 46 89.4 0 151 5.4
#+ 1399871 1400170 149 2.01 149 86.1 0.7 451 7
# 1401221 1401253 17 2.06 16 88.9 11.1 50 5.9

1401947 1401992 22 2 23 79.2 8.3 55 10.6
#+ 1405286 1405385 47 2.2 46 80.4 5.4 121 10.8
#+ 1406245 1406273 15 1.93 15 92.9 0 51 3.4

1421972 1422017 23 2.13 23 76.9 11.5 50 12.2
#+ 1425404 1425442 19 2.05 19 95 0 71 2.6

1425494 1425543 26 2 25 76.9 7.7 56 11.8
#+ 1443913 1443940 13 2.15 13 100 0 56 0

1445301 1445340 21 1.95 21 81 14.3 50 9.5
1448136 1448186 27 1.92 26 76.9 11.5 56 11.5
1448493 1448539 23 2 23 75 4.2 50 12.8
1455316 1455364 24 2.04 23 76.9 7.7 52 12.2

+ 1463666 1463707 18 2.33 18 79.2 0 56 9.5
1472053 1472102 27 1.96 26 76.9 11.5 56 11.5
1488303 1488354 25 2.08 26 75 7.1 55 13
1494411 1494456 23 2.04 24 76 12 50 12.2
1498005 1498045 21 1.91 22 80 5 54 9.5
1501225 1501278 24 2.08 25 76.7 13.3 53 12.7
1510118 1510165 26 1.92 26 75 8.3 54 12

#+ 1520733 1520758 6 4.33 6 100 0 52 0
1521812 1521858 24 1.96 25 75 8.3 52 12.2
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1525128 1525178 26 2.08 25 75 10.7 51 13.2
1532488 1532532 24 1.92 24 77.3 4.5 55 10.9
1536362 1536408 24 1.96 25 75 8.3 52 12.2
1544528 1544574 25 1.92 25 73.9 4.3 52 12.5
1545194 1545242 26 1.92 25 75 4.2 54 12.2

#+ 1546194 1546219 10 2.6 10 100 0 52 0
1550415 1550482 33 2.03 33 74.3 2.9 71 13.2
1552551 1552594 23 1.92 24 77.3 9.1 53 10.9

+ 1557627 1557673 23 2 23 75 4.2 50 12.8
1560187 1560234 27 1.92 25 76 16 50 12

#+ 1568084 1568729 162 4.01 162 92 1.4 959 7.2
1574291 1574350 27 2.23 26 73.5 5.9 60 13.3
1583210 1583248 21 1.95 21 80 10 50 9.8
1588187 1588235 26 1.96 25 76 8 54 12
1589314 1589353 21 1.91 22 78.9 5.3 52 9.5
1594603 1594641 19 2.05 19 80 0 50 10.3

#+ 1600691 1600741 21 2.43 21 86.7 0 74 7.8
1600796 1600839 20 2.05 21 83.3 12.5 56 8.9
1605065 1605108 21 2.05 21 78.3 4.3 51 11.4
1605683 1605729 23 2.09 23 76 4 52 12.5
1609519 1609609 48 1.92 48 74.4 0 105 12

#+ 1618160 1618201 12 3.42 12 86.7 3.3 61 7.1
#+ 1619929 1620019 47 2.02 45 77.6 12.2 99 11.7

1628670 1628710 22 1.91 22 80 5 54 9.5
#+ 1631353 1631394 21 2 21 81 0 56 9.5

1641208 1641263 30 1.96 28 73.3 16.7 50 13.8
#+ 1648311 1648352 19 2.2 20 83.3 8.3 56 9.1
+ 1648331 1648383 26 2 26 75 10.7 53 13

1650040 1650079 21 1.91 22 80 10 52 9.5
#+ 1650890 1651223 132 2.53 132 78.9 2 377 12.2

1652281 1652336 27 2.07 27 77.4 12.9 59 12.1
#+ 1678731 1678808 33 2.36 33 97.8 0 149 1.3

1679600 1679640 20 2 20 81 4.8 52 9.8
1680700 1680747 22 2.09 23 76.9 7.7 52 12.2

+ 1696443 1696489 23 2 23 79.2 4.2 57 10.6
1702199 1702245 25 1.92 25 73.9 4.3 52 12.5
1705823 1705874 27 1.96 27 75 17.9 51 12.7

#+ 1711513 1711541 15 1.93 15 92.9 0 51 3.4
#+ 1731891 1732307 178 2.34 176 89.2 1.7 570 8.6
+ 1732109 1732677 297 1.92 298 81.4 4.3 766 9

#+ 1754208 1754239 12 2.67 12 80 0 50 6.2
1756792 1756835 23 1.92 24 77.3 9.1 53 10.9

#+ 1757508 1757542 11 3 11 91.7 8.3 52 5.7
# 1759828 1759911 42 2.02 43 77.3 6.8 98 11.5

#+ 1763778 1763827 22 2.19 21 80 16.7 57 10
1765509 1765549 21 1.9 21 80 5 52 9.8
1771070 1771113 23 1.92 24 77.3 9.1 53 10.9
1779131 1779178 27 1.92 25 76 16 50 12

#+ 1786557 1787203 162 4.01 160 87.6 2.6 831 9.6
1792603 1792662 27 2.23 26 73.5 5.9 60 13.3

#+ 1799875 1799965 45 2.02 45 80.4 0 119 9.9
# 1805029 1805090 30 2.07 30 78.1 0 75 11.3
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1805603 1805655 28 1.93 28 74.1 11.1 55 12.7
1811533 1811581 26 1.92 26 75 4.2 56 12
1828895 1828938 22 2.05 22 79.2 12.5 51 10.9

# 1830277 1830307 16 2 16 93.8 6.2 55 3.1
#+ 1833663 1833710 24 1.96 24 79.2 4.2 59 10.4

1875046 1875098 28 1.93 28 76 8 55 12.7
1878790 1878846 31 1.9 31 75 7.1 65 11.9
1880803 1880851 24 1.92 26 76 12 54 11.8
1884232 1884272 22 1.9 21 78.9 0 52 9.8
1923653 1923695 22 2 22 77.3 4.5 51 11.4
1929101 1929147 24 1.92 25 73.9 4.3 52 12.5
1937514 1937557 23 1.91 23 76.2 0 53 11.4
1940387 1940436 27 1.96 27 73.9 13 51 13.2
1946429 1946476 27 1.92 25 76 16 50 12

#+ 1953881 1954444 162 3.48 160 93.3 1 895 5.5
#+ 1969375 1969465 45 2.02 45 84.8 0 133 7.7
#+ 1984416 1984625 30 7.2 30 83.9 4.8 280 9.3

1994356 1994411 27 2.07 27 77.4 12.9 59 12.1
1995419 1995464 23 1.96 23 80 20 51 10.4
2021124 2021169 26 1.92 24 79.2 16.7 53 10.4
2030289 2030328 22 1.9 21 83.3 0 50 9.8
2044562 2044608 25 1.96 24 75 8.3 50 12.5
2045303 2045348 24 1.92 25 78.3 8.7 57 10.4

#+ 2045334 2045386 24 2.21 24 89.7 0 85 5.7
2047913 2047960 26 1.92 25 76 16 50 12
2049252 2049304 27 2.04 26 75 7.1 55 13

#+ 2050663 2050688 13 2 13 100 0 52 0
#+ 2051838 2051870 8 4.12 8 100 0 66 0

2064558 2064601 23 1.91 23 77.3 9.1 51 11.1
2065760 2065814 28 1.93 28 75 10.7 57 12.5

#+ 2065961 2065992 15 2.13 15 88.2 0 50 6.2
2067866 2067904 21 1.9 20 84.2 5.3 55 7.7
2073672 2073729 28 2.04 28 74.2 9.7 56 13.6
2089851 2089896 24 1.92 24 78.3 8.7 55 10.6
2095906 2095952 24 1.96 24 73.9 0 52 12.8
2097778 2097829 26 2.04 26 75 10.7 53 13
2114470 2114526 31 1.93 29 75.9 10.3 61 12.1
2120463 2120517 30 2 28 73.3 16.7 50 13.8
2128723 2128769 25 1.92 25 78.3 4.3 59 10.4
2132306 2132345 21 1.9 21 78.9 0 52 10
2138431 2138477 24 2 24 75 4.2 52 12.5
2138862 2138907 24 1.91 23 78.3 8.7 53 10.9

#+ 2161419 2161447 9 3.22 9 100 0 58 0
# 2163487 2163529 19 2.26 19 84 8 56 9.1

2165278 2165320 22 1.95 22 76.2 0 51 11.6
# 2180760 2180801 21 2 21 81 0 56 9.5

#+ 2183150 2183194 23 2.09 22 80 12 53 10.6
2193461 2193514 30 1.93 29 75 14.3 57 12.3
2194593 2194656 33 1.94 33 78.1 6.2 77 10.8

#+ 2197861 2197895 6 5.83 6 86.2 0 56 5.7
2197904 2197946 21 2.14 21 79.2 8.3 51 11.1
2199098 2199142 24 1.91 23 77.3 4.5 53 11.1
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2210450 2210502 28 1.93 28 73.1 3.8 57 13
2210586 2210635 28 1.93 28 73.1 15.4 51 13

#+ 2212142 2212170 9 3.22 9 100 0 58 0
2215090 2215145 26 2 27 73.3 13.3 50 14
2215999 2216041 22 1.95 22 76.2 0 51 11.6

#+ 2226621 2227268 162 4.01 163 87.8 2.2 875 9
2244345 2244412 34 2.03 34 74.3 2.9 73 13
2245289 2245329 20 2 20 81 4.8 52 9.8
2247180 2247221 19 2.1 20 82.6 8.7 54 9.3

#+ 2247254 2247322 30 2.3 30 79.5 0 82 11.6
#+ 2252889 2252935 21 2.19 21 81.5 11.1 55 10.4

2252933 2252979 21 2.25 20 81.5 7.4 55 10.6
2274169 2274209 22 1.91 22 81 14.3 52 9.3

+ 2305798 2305835 19 2.11 18 85.7 9.5 53 7.7
#+ 2308176 2308819 96 6.7 94 90.6 1.1 665 12.7

2332652 2332705 28 1.93 27 75 14.3 53 12.7
2335534 2335573 21 1.9 21 78.9 0 52 10

#+ 2346145 2346307 81 2.01 81 89 0 263 5.5
2346599 2346638 21 1.9 21 78.9 0 52 10
2373365 2373417 28 1.93 27 74.1 11.1 53 13
2387791 2387836 24 1.92 24 72.7 0 50 13
2395443 2395478 18 2 18 83.3 0 51 8.3

+ 2408437 2408478 20 2.15 20 82.6 4.3 56 9.3
#+ 2430926 2430974 24 2.04 24 80 0 63 10.2
#+ 2431827 2431872 23 2.04 23 83.3 4.2 64 8.5

2465259 2465315 32 1.93 28 77.8 7.4 50 13.8
+ 2484685 2484731 21 2.14 22 76.9 7.7 50 12.5

2512910 2512956 25 1.96 24 75 8.3 50 12.5
2517082 2517130 25 1.92 26 76 12 54 11.8
2528345 2528413 27 2.46 28 77.3 15.9 62 13.9

+ 2535112 2535160 23 2.17 23 77.8 3.7 56 12
# 2539827 2539866 15 2.73 15 76.9 3.8 52 9.8

2540418 2540470 27 1.96 26 74.1 7.4 53 13.2
#+ 2546049 2546281 97 2.38 98 91.2 1.5 387 4.7

2549334 2549377 22 1.95 22 77.3 4.5 51 11.4
2551369 2551436 36 2 35 75 11.1 71 12.7
2557882 2557928 25 1.96 25 76 16 50 12
2558680 2558726 24 1.96 24 75 8.3 50 12.5
2573983 2574029 21 2.14 21 77.8 14.8 53 10.4
2589175 2589237 31 2.06 31 75.8 3 70 12.5
2595570 2595624 30 1.93 28 76 4 50 14.3

# 2608776 2608820 21 2.15 20 80 8 51 11.1
2617728 2617778 26 2 26 73.1 3.8 53 13.5
2625387 2625441 29 2.07 27 74.2 16.1 50 13.8

#+ 2640987 2641124 62 2.26 62 97.4 2.6 262 1.4
2651955 2652002 24 2 24 76 8 52 12.2
2652189 2652253 33 2.03 33 74.3 11.4 65 13.2
2658421 2658477 29 1.93 29 75 3.6 63 12.3
2660084 2660123 17 2.29 17 75 8.3 50 10
2668970 2669018 26 1.92 25 75 4.2 54 12.2
2669012 2669064 29 1.93 28 74.1 11.1 55 12.7
2669218 2669273 29 2.04 28 76.7 10 61 12.1
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#+ 2669778 2670543 141 5.45 140 96.2 0.5 1333 3.5
#+ 2671239 2671329 45 2.02 45 80.4 0 119 9.9
# 2673437 2673479 19 2.26 19 84 8 56 9.1

2675228 2675270 22 1.95 22 76.2 0 51 11.6
2688244 2688287 24 1.91 23 76.2 4.8 51 11.1
2689680 2689741 30 1.97 31 78.1 9.4 71 11.1

+ 2690704 2690756 23 2.17 24 76.7 10 53 13
2709757 2709807 21 2.48 21 71 3.2 53 13.5
2709791 2709830 21 1.9 21 78.9 0 52 10

#+ 2711234 2711276 20 2.1 20 87 4.3 63 7
#+ 2711954 2711980 13 2.08 13 100 0 54 0

2734311 2734350 20 1.95 21 80 5 52 9.8
2739268 2739328 32 1.94 31 75 15.6 60 12.7
2751677 2751725 24 2.04 25 76.9 7.7 56 11.8
2754200 2754245 25 1.92 24 78.3 8.7 55 10.6
2771475 2771523 27 1.92 26 76 12 54 11.8
2781812 2781861 26 1.92 25 76 8 54 12
2781910 2781960 28 1.96 27 74.1 14.8 51 13
2784045 2784087 22 2 22 77.3 4.5 51 11.4
2791528 2791581 24 2.24 25 75 12.5 57 12.3
2798855 2798901 24 1.92 24 73.9 4.3 50 12.8

# 2809724 2809755 15 2.07 15 94.1 5.9 55 3.1
2815598 2815642 24 1.91 23 77.3 4.5 53 11.1
2824654 2824706 27 1.96 27 74.1 7.4 55 13

#+ 2828402 2829311 328 2.75 328 90.2 1.2 1461 5.4
2839060 2839122 33 1.91 35 75.8 18.2 68 11.8
2861560 2861597 20 1.9 20 83.3 0 55 7.9

#+ 2861998 2862044 21 2.09 22 80.8 11.5 55 10.4
2862005 2862078 36 2.06 36 78.9 0 92 10.8
2871300 2871361 30 2.03 29 74.3 20 51 14.1
2875526 2875577 28 1.93 28 74.1 14.8 53 12.7
2883640 2883702 30 2.07 30 73.5 8.8 59 14.1

#+ 2897316 2897406 45 2.02 45 84.8 0 133 7.7
2900390 2900445 26 2 27 73.3 13.3 50 14
2901299 2901341 22 1.95 22 76.2 0 51 11.6
2922593 2922642 25 1.92 26 76 12 54 11.5
2931507 2931550 24 1.91 23 76.2 4.8 51 11.1
2931539 2931608 23 3.36 22 78.8 9.6 52 15.8

#+ 2931552 2931631 39 2.05 39 85.4 0 118 7.5
2945099 2945152 29 1.93 27 74.1 7.4 55 13
2968131 2968191 31 2.03 30 75.8 12.1 62 12.7

#+ 2970885 2970940 26 2.07 27 80.6 12.9 66 10.3
2971505 2971739 116 2.03 117 78.3 1.7 288 11
2982735 2982783 25 1.92 26 76.9 19.2 52 11.5
2990096 2990152 24 2.4 25 75 13.9 56 13.1

+ 2990836 2990879 23 1.91 23 86.4 9.1 65 6.7
#+ 2993248 2993289 18 2.16 19 83.3 12.5 52 9.3
#+ 2994292 2994329 18 2.11 18 90 0 62 5.3

2994717 2994774 30 1.97 29 73.3 10 56 13.6
2995350 2995397 24 2 24 76 8 52 12.2
2996839 2996888 28 1.92 26 76.9 15.4 54 11.5
2999842 2999889 24 1.96 25 76 12 52 12
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3025521 3025553 16 2 16 88.2 5.9 50 6.1
3026580 3026626 24 1.92 25 73.9 4.3 52 12.5
3027333 3027389 27 2.12 26 74.2 6.5 54 14
3027777 3027825 26 1.96 25 76.9 15.4 52 11.8
3033482 3033530 25 2.04 24 76.9 7.7 54 12
3037425 3037463 20 1.95 20 78.9 0 50 10.3
3038143 3038191 26 1.92 25 76 12 52 12

#+ 3049821 3050045 114 2.01 112 81.7 3.5 299 9.3
3062585 3062629 24 1.92 24 76.2 0 55 10.9

+ 3063574 3063609 18 2 18 83.3 0 51 8.3
+ 3067134 3067180 18 2.61 18 79.3 0 52 12.8

3067423 3067474 26 2 25 74.1 7.4 51 13.5
3069245 3069279 18 1.94 18 88.2 0 56 5.7

#+ 3072944 3073134 81 2.36 81 92.8 1.8 338 3.1
3075937 3075975 19 2.11 19 81 4.8 50 10
3076019 3076063 24 1.92 24 77.3 4.5 55 10.9
3076239 3076290 26 2.08 25 75 7.1 53 13.2
3078362 3078411 25 1.96 25 76 8 54 11.8

+ 3087027 3087084 24 2.43 23 80 5.7 63 12.1
3092721 3092758 20 1.95 20 84.2 5.3 55 7.7
3096307 3096355 26 1.92 25 75 4.2 54 12.2
3101688 3101733 24 1.96 24 73.9 4.3 50 12.8
3103196 3103247 29 1.93 27 76.9 15.4 51 13
3114255 3114295 22 1.95 21 81 9.5 52 9.5
3133240 3133278 20 1.95 20 78.9 0 50 10.3

#+ 3157084 3157367 91 3.12 91 94.3 0 505 3.2
# 3157685 3157732 24 2 24 79.2 0 61 10.4

3178680 3178726 25 1.92 25 73.9 4.3 52 12.5
3179419 3179467 24 2.12 24 74.1 7.4 56 11.8
3188845 3188896 28 1.93 27 76 8 53 13.2
3196154 3196206 27 2.12 25 76.7 13.3 53 12.7
3197371 3197430 29 2.03 29 75.8 15.2 58 12.9

+ 3222738 3222780 21 2.05 21 77.3 0 51 11.6
3228249 3228303 27 2.04 27 76.7 13.3 57 12.3
3236646 3236694 26 1.92 25 78.3 8.7 52 12
3244819 3245036 115 1.9 115 87.6 2.9 343 5.9
3248337 3248386 26 1.93 27 76 8 58 11.5

# 3249429 3249780 119 2.92 120 81.4 4.6 416 11.3
3255071 3255121 24 2.04 24 78.6 14.3 54 11.5
3269103 3269156 23 2.25 24 74.2 6.5 57 12.7
3290526 3290570 24 1.91 23 77.3 4.5 53 11.1

#+ 3297762 3297793 14 2.29 14 88.9 0 50 6.2
#+ 3297802 3297840 18 2.11 18 95.2 4.8 69 2.6

3306412 3306455 24 1.96 23 78.3 13 51 10.9
3317404 3317455 28 1.92 26 73.1 7.7 51 13.5
3331761 3331815 26 2.12 25 73.3 6.7 50 14.5
3335130 3335182 28 1.93 28 74.1 11.1 55 12.7
3349002 3349048 25 1.92 24 73.9 4.3 50 12.8
3349332 3349380 24 1.92 25 76 12 52 12
3377943 3377994 28 1.96 28 75 17.9 53 12.5
3390235 3390279 21 2 22 83.3 12.5 58 8.7
3402689 3402736 24 1.91 23 80 16 53 10.4
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3416361 3416414 28 1.96 28 75.9 17.2 55 12.3
3420297 3420349 27 2 27 75 10.7 55 12.7
3421853 3421907 29 2.04 27 76.7 13.3 57 12.3
3424006 3424080 36 2.06 36 76.2 16.7 72 12.8
3460242 3460291 24 1.96 25 73.1 11.5 52 11.5
3471734 3471776 22 1.95 22 76.2 0 51 11.6
3478317 3478366 22 2.04 24 78.6 17.9 52 11.5

+ 3487380 3487425 23 2 23 79.2 8.3 55 10.6
# 3490138 3490178 21 2 21 81 4.8 54 9.5

#+ 3490391 3490454 6 10.5 6 96.6 1.7 112 3.1
#+ 3491791 3491949 6 26.5 6 98 0 297 1.9

3492029 3492078 26 2 26 73.1 7.7 51 13.5
3492430 3492468 21 1.9 21 78.9 5.3 50 10
3493969 3494011 21 2.1 21 78.3 4.3 51 11.4
3498420 3498467 25 2.04 24 76.9 11.5 52 12

#+ 3501274 3501310 12 3.08 12 80 0 53 8.1
3503709 3503750 21 1.95 21 81 4.8 54 9.5

# 3505850 3505883 15 2.27 15 89.5 0 54 5.9
+ 3541923 3542285 182 2.01 181 88.2 3.8 566 6

#+ 3542118 3542478 139 2.58 140 96.4 0.9 664 2.2
3544527 3544576 26 2.04 26 74.1 11.1 51 13.2
3552943 3552998 28 2.03 29 74.2 16.1 54 13.3
3561882 3561927 24 2 24 79.2 8.3 57 10.4
3563258 3563303 24 2 24 75 8.3 50 12.5
3569736 3569779 23 1.91 23 77.3 9.1 51 11.1
3570664 3570711 24 2.12 24 78.6 17.9 52 11.5
3570756 3570794 21 1.9 21 78.9 5.3 50 10
3570820 3570873 27 2 27 74.1 0 59 13
3571498 3571534 20 1.9 20 83.3 5.6 53 7.9
3577560 3577610 28 1.93 27 73.1 11.5 51 13.2
3589038 3589086 24 2.04 24 80 0 63 10.2
3598345 3598456 61 1.92 59 76.8 8.9 129 11.3
3623891 3623946 30 1.96 28 79.3 10.3 66 10.5
3633754 3633812 29 2.03 29 75 12.5 58 13.1

#+ 3644203 3644234 15 2.13 15 88.2 0 50 6.2
3644754 3644804 26 2.04 26 75 14.3 51 13
3648967 3649014 22 2.04 23 76.9 11.5 50 12.2
3652555 3652600 24 1.92 24 72.7 0 50 13

#+ 3669784 3670108 110 3.02 111 91 4 510 6
3685807 3685853 26 1.92 25 75 12.5 50 12.2
3693381 3693426 21 2.19 21 76 0 50 13

# 3704787 3704834 21 2.18 22 81.5 7.4 59 10.2
+ 3717890 3717942 25 2.12 26 76.7 13.3 62 10.7
+ 3718570 3718618 24 2.04 24 80.8 7.7 61 10
+ 3720043 3720085 21 2.05 21 77.3 0 51 11.6

3722306 3722341 20 1.9 20 83.3 11.1 51 7.9
3724210 3724252 22 1.95 22 76.2 0 51 11.6
3729727 3729778 25 2.21 24 76.7 10 60 11.1
3734870 3734916 23 2.09 23 76.9 11.5 50 12.2
3741918 3741957 21 1.95 20 80 5 50 10
3744230 3744287 27 2.04 28 75.8 21.2 52 13.1
3746383 3746429 23 2.13 23 76.9 11.5 50 12
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3758889 3758952 32 2.06 31 76.5 5.9 70 12.3
3759750 3759799 25 1.92 26 80 8 63 9.8
3782360 3782414 30 1.93 29 74.1 18.5 50 13.8
3784326 3784373 26 1.92 25 75 8.3 52 12.2
3793916 3794702 393 2.01 394 81.7 5.2 1045 9.1
3803515 3803567 27 1.96 26 75 14.3 51 13
3806772 3806821 24 2.08 25 77.8 7.4 58 11.5
3823291 3823507 113 1.94 112 78.7 5.6 267 10.5
3824068 3824105 21 1.9 20 82.4 0 53 7.7
3826195 3826242 24 2.04 24 76.9 11.5 52 12
3831675 3831728 29 1.93 27 75 14.3 53 12.7

#+ 3839912 3840117 87 2.3 89 87.4 4.2 315 6.2
+ 3849940 3849980 21 1.9 21 80 5 52 9.8

3852114 3852152 20 1.95 20 78.9 0 50 10.3
+ 3853442 3853494 27 1.96 26 74.1 7.4 53 13.2

3860321 3860368 26 1.92 25 75 8.3 52 12.2
3862531 3862574 23 1.95 22 77.3 4.5 51 11.4
3876913 3876958 25 1.92 24 82.6 8.7 62 8.5

+ 3890931 3891162 111 2.07 112 83.1 6.5 309 8.9
3918385 3918450 34 2.06 33 72.2 11.1 60 14.5
3926047 3926092 24 1.92 24 72.7 0 50 13
3929245 3929287 21 2.05 21 77.3 0 51 11.6

#+ 3934069 3934822 376 2 376 90.7 0.3 1261 4.6
3935539 3935581 21 2.05 21 77.3 0 51 11.6
3935764 3935813 25 1.92 26 76 8 56 11.8

+ 3947413 3947452 21 1.9 21 78.9 0 52 10
3952772 3952824 28 1.93 27 73.1 3.8 55 13.2

#+ 3970781 3971183 100 4.02 100 91.7 0.3 622 6.5
3972365 3972424 32 1.93 30 74.2 16.1 56 12.9
3974095 3974153 29 2.03 30 80.6 6.5 76 9.8
3975894 3975939 23 1.96 23 78.3 4.3 55 10.9
3992359 3992406 24 2.04 24 77.8 18.5 50 11.8

#+ 3995188 3995233 21 2.29 21 77.8 7.4 50 12.5
4001346 4001404 30 2.03 30 75 12.5 60 12.9
4009295 4009525 113 2.02 114 79.2 5.8 286 10.3
4033166 4033219 26 2.12 26 77.4 16.1 55 12.3
4036907 4036966 30 2 31 74.2 6.5 64 12.9
4040276 4040332 28 2.07 28 75 15.6 54 13.3
4040441 4040481 20 2 20 81.8 13.6 50 9.5
4048526 4048617 46 2.02 46 76.6 2.1 107 11.8

#+ 4048564 4048650 33 2.64 33 83.3 0 104 11.5
4048952 4049001 24 2.08 24 84.6 0 72 8

#+ 4057877 4057924 21 2.29 21 85.2 0 68 8.3
#+ 4057911 4057960 24 2.08 24 88.5 0 79 6
#+ 4058047 4058143 24 4.04 24 79.7 2.7 87 15.3
# 4058148 4058204 24 2.38 24 84.8 0 72 10.5

4058877 4058929 27 2.08 26 75.9 10.3 55 12.7
4063630 4063682 28 1.93 28 73.1 3.8 57 13
4074350 4074390 20 2 20 81 4.8 52 9.8
4104820 4104863 21 2.1 21 78.3 0 53 11.4
4105564 4105625 33 1.94 33 74.2 6.5 68 12.5
4117074 4117112 20 1.95 20 78.9 0 50 10.3
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4138164 4138210 24 1.92 25 73.9 4.3 52 12.5
4143134 4143172 20 1.9 20 84.2 5.3 55 7.7
4153201 4153252 27 2 27 74.1 7.4 55 13

+ 4153543 4153585 21 2.05 21 77.3 0 51 11.6
4171970 4172009 21 1.9 21 78.9 0 52 10
4192530 4192573 22 2.05 22 78.3 4.3 53 11.1
4196361 4196404 22 2 23 78.3 8.7 53 10.9

#+ 4196531 4196573 18 2.33 18 84 4 56 9.3
4199504 4199566 33 2 32 78.8 9.1 75 10.8
4212615 4212673 30 1.97 29 75.9 10.3 58 13.6

#+ 4216866 4216895 12 2.42 12 94.4 5.6 51 3.3
4233141 4233188 24 2.04 24 76.9 11.5 52 12
4243065 4243124 31 1.97 30 73.3 3.3 62 13.3
4253882 4253930 25 1.92 26 76 12 54 11.8

#+ 4288073 4288105 14 2.29 14 89.5 5.3 50 6.1
#+ 4292992 4293051 29 2.1 29 96.8 0 113 1.6

4302303 4302347 22 1.96 23 78.3 8.7 53 10.9
#+ 4323045 4323076 15 2.13 15 88.2 0 50 6.2

4324527 4324562 18 2 18 83.3 0 51 8.3
4333217 4333259 23 1.91 23 81 4.8 58 9.1
4346067 4346111 23 1.91 23 77.3 4.5 53 11.1
4359222 4359273 24 2.04 25 75 10.7 51 13.2

+ 4365789 4365841 27 1.96 27 76.9 0 64 11.3
4409843 4409893 28 1.93 27 73.1 11.5 51 13.2

# 4418060 4418102 22 2 22 81.8 4.5 58 9.1
#+ 4432482 4432517 9 4 9 100 0 72 0

4441608 4441646 21 1.9 21 83.3 0 57 7.5
4446486 4446532 24 1.92 24 78.3 4.3 57 10.6
4446772 4446811 21 1.91 22 80 10 52 9.5
4449504 4449550 25 1.92 25 75 12.5 50 12.2
4458109 4458158 27 1.92 26 78.3 4.3 54 11.5
4458122 4458155 16 2.06 16 88.9 5.6 52 5.9
4459659 4459699 21 2 21 85.7 4.8 61 7.1
4464230 4464281 24 2.08 25 71.4 7.1 53 13.2
4469857 4469924 33 2.06 33 72.2 5.6 64 14.5
4471437 4471478 21 1.91 22 81 9.5 54 9.3
4492673 4492719 23 2 23 75 4.2 50 12.8
4493076 4493120 24 1.91 23 77.3 9.1 51 10.9
4499601 4499646 23 1.92 24 78.3 8.7 55 10.6
4504969 4505020 28 1.96 27 74.1 11.1 53 13
4508177 4508229 28 1.93 27 74.1 11.1 53 13
4518220 4518258 21 1.9 21 78.9 5.3 50 10

#+ 4520570 4520633 21 3.05 21 75 4.5 56 15.4
+ 4520601 4521111 255 2 256 80.2 0.8 665 9.9

#+ 4520835 4520884 21 2.38 21 79.3 0 65 10
# 4520856 4521322 234 2 233 78 1.7 566 11.1

4540529 4540576 25 1.96 25 76 12 52 12
4550619 4550656 18 2.06 18 85 5 53 7.9
4556940 4556996 32 1.93 29 74.1 7.4 52 13.6
4584565 4584613 24 2.04 23 76.9 7.7 52 12.2
4585875 4585921 22 2.13 23 76.9 7.7 52 12.2

#+ 4589333 4589781 141 3.18 141 99 0 877 0.7
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4592065 4592104 21 1.9 21 78.9 0 52 10

#+ 4601000 4601057 18 3.22 18 82.5 0 67 12.1
4601619 4601670 28 1.93 28 73.1 7.7 55 13

#+ 4608698 4608734 18 2.06 18 89.5 0 60 5.4
4609960 4609995 19 1.95 19 83.3 5.6 51 8.1
4612931 4612978 20 2.4 20 75.9 10.3 52 12.2
4614993 4615055 32 1.94 32 74.2 3.2 68 12.7
4619446 4619507 30 2.07 30 75.8 6.1 66 12.7
4620048 4620095 26 1.92 25 75 8.3 52 12.2

#+ 4626907 4626935 15 1.93 15 92.9 0 51 3.4
4654024 4654064 20 2.16 19 82.6 8.7 52 9.5
4656712 4656768 28 2.07 28 74.2 9.7 56 13.6

# 4663160 4663191 15 2.13 15 82.4 0 50 6.2
4674674 4674710 20 1.9 20 82.4 0 53 7.9
4688184 4688233 27 1.92 25 76 8 54 12
4690802 4690847 21 2.1 21 80 8 53 10.9

+ 4690834 4690877 23 1.91 23 77.3 9.1 51 11.1
4690863 4690906 22 2.05 22 78.3 4.3 53 11.1
4696865 4696905 21 1.95 21 80 0 54 9.8
4707851 4707894 24 1.91 23 77.3 9.1 51 11.1
4714690 4714740 28 1.93 27 73.1 11.5 51 13.2
4727255 4727290 18 2 18 83.3 0 51 8.3

#+ 4743784 4743820 15 2.47 15 90.9 0 60 5.4
4744010 4744060 28 1.93 28 73.1 11.5 53 13

+ 4770604 4770650 25 1.92 25 73.9 4.3 52 12.5
4774783 4774823 21 1.95 21 80 0 54 9.8

#+ 4775955 4776428 225 2.11 226 98 0.8 913 1.1
# 4779965 4779994 16 1.94 16 93.3 6.7 53 3.2

#+ 4781565 4781601 6 6.17 6 93.5 0 60 5.4
4796631 4796673 21 2.05 21 77.3 0 51 11.6

#+ 4799044 4799080 18 2.11 18 85 5 53 7.9
#+ 4811539 4811577 19 2 19 85 5 55 7.7
# 4842737 4842776 19 2.05 19 81 4.8 50 10

4847102 4847156 28 1.96 27 75 7.1 57 12.7
4848177 4848229 27 2.04 26 75 7.1 55 13
4853210 4853250 21 1.95 21 80 0 54 9.8

# 4858458 4858497 21 1.95 20 80 5 50 10
4869224 4869269 25 1.92 25 73.9 8.7 50 12.5
4886082 4886130 24 1.92 25 76 12 52 12
4892002 4892044 20 2.1 20 78.3 4.3 56 9.3
4896375 4896419 23 1.91 23 77.3 4.5 53 11.1
4897956 4898000 21 2.1 21 79.2 4.2 53 11.1
4898056 4898098 22 2 22 77.3 4.5 51 11.4
4901879 4901930 26 2 26 74.1 7.4 53 13.2
4917365 4917416 29 1.93 27 74.1 14.8 51 13
4920611 4920661 25 1.93 27 76.9 11.5 58 11.3

# 4924240 4924281 20 2.1 20 82.6 8.7 54 9.3
4924275 4924339 33 2.03 32 74.3 11.4 63 13.4
4926163 4926211 24 1.96 25 76 8 54 12
4926963 4927013 28 1.93 27 73.1 11.5 51 13.2
4928962 4929013 28 1.96 27 74.1 11.1 53 13
4932170 4932222 28 1.93 27 74.1 11.1 53 13
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Percent
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Errors
4940776 4940819 23 1.96 23 77.3 4.5 53 11.1

# 4942184 4942233 23 2.08 24 81.5 7.4 63 9.8
4949944 4949989 24 1.91 23 82.6 8.7 60 8.7
4958216 4958251 17 2.06 17 89.5 5.3 56 5.6
4959068 4959120 28 1.93 27 75 17.9 51 12.7
4971525 4971564 21 1.9 21 78.9 0 52 10
4989489 4989540 27 2.04 26 75 10.7 53 13
4991664 4991722 30 2.03 29 74.2 6.5 60 13.3

+ 4992407 4992442 18 2 18 83.3 0 51 8.3
4994879 4994914 18 2 18 83.3 0 51 8.3
4996179 4996225 24 1.96 24 75 8.3 50 12.5
5010160 5010200 21 1.91 22 80 5 54 9.5

#+ 5061675 5061729 6 9.17 6 98 0 103 1.8
5067198 5067240 22 1.95 22 76.2 0 51 11.6
5072803 5072849 25 2.04 23 80.8 15.4 55 10.2
5076628 5076683 32 1.9 30 76.9 7.7 59 11.9
5079547 5079588 22 1.91 23 81 9.5 56 9.1
5080347 5080398 29 1.93 27 76 8 51 13
5087098 5087137 21 1.95 20 78.9 0 50 10
5097061 5097099 21 1.9 21 77.8 0 50 10
5109003 5109049 22 2.09 22 76.9 11.5 55 10.4
5110249 5110288 21 1.9 21 78.9 0 52 10
5122056 5122095 19 2.16 19 77.3 4.5 52 9.8

+ 5127652 5127695 21 2.05 21 78.3 4.3 51 11.4
+ 5144492 5144533 21 1.95 20 81.8 13.6 50 9.5

5147326 5147373 25 1.92 25 75 8.3 52 12.2
5147420 5147480 32 1.94 32 73.3 3.3 66 12.9
5154845 5154896 25 2.08 25 75 7.1 53 13.2
5166852 5166899 25 1.92 24 75 8.3 50 12.5

#+ 5167108 5167133 9 2.89 9 100 0 52 0
5168935 5168988 30 1.93 28 75.9 20.7 53 12.3
5171303 5171364 35 1.91 32 75 15.6 62 12.5
5180652 5180846 94 2.02 95 83.5 8.7 266 8.1
5184052 5184106 27 2.07 27 72.4 3.4 54 14.3
5188286 5188325 20 1.95 20 80 5 50 10
5190106 5190158 27 2.08 26 75.9 10.3 55 12.7
5199352 5199407 28 1.93 29 75.9 13.8 59 12.1
5202066 5202114 27 1.92 26 77.3 13.6 52 11.5
5205521 5205563 21 2.05 22 78.3 8.7 51 11.1
5226565 5226605 21 1.95 21 81 9.5 52 9.5

#+ 5227081 5227116 9 4 9 92.6 0 58 5.6
5229783 5229833 27 1.96 26 77.8 14.8 56 11.3

#+ 5234811 5234848 18 2.17 18 85 0 55 7.7
5235091 5235134 23 1.91 23 76.2 4.8 51 11.1

#+ 5246049 5246385 112 3.02 110 91.7 3.1 508 6.5
5248544 5248602 30 1.94 31 75.9 3.4 69 11.7
5263282 5263336 28 1.96 27 75 7.1 57 12.7
5268160 5268223 32 2.06 31 74.3 11.4 61 13.6

#+ 5277382 5277422 15 2.73 15 80.8 0 54 9.8
5281487 5281542 28 2 29 75.9 6.9 63 12.1
5286256 5286294 19 2.11 19 76.2 4.8 50 10
5287055 5287106 27 1.96 26 73.1 3.8 53 13.5
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#+ 5295259 5295313 17 3.24 17 97.4 0 103 1.8

5318248 5318288 21 1.9 21 80 5 52 9.8
5323695 5323740 24 1.92 24 72.7 0 50 13
5325640 5325694 28 2 28 76.7 16.7 57 12.1

#+ 5331530 5331726 18 11.06 18 92.8 1.1 168 16
5332338 5332385 21 2.24 21 77.8 3.7 52 12.5
5332383 5332422 16 2.62 16 88 4 52 9.5

#+ 5339708 5340025 96 3.29 96 90.1 1.8 490 6.3
5354955 5355011 30 1.97 29 73.3 13.3 54 13.6

#+ 5355678 5355728 21 2.43 21 93.3 0 88 3.9
5378478 5378534 31 1.9 30 75 7.1 63 12.1
5385225 5385268 21 2.05 21 78.3 4.3 51 11.4
5387552 5387594 23 1.91 23 76.2 4.8 51 11.4

#+ 5424366 5424470 24 4.38 24 82.7 0 105 14.3
5424450 5424583 24 5.58 24 79.1 0 149 12.7

#+ 5424895 5424931 18 2.06 18 89.5 0 60 5.4
#+ 5426061 5426110 6 8.33 6 100 0 100 0

5431585 5431633 23 2.04 24 76.9 7.7 54 12
#+ 5432831 5432887 25 2.28 25 100 0 114 0
+ 5434746 5434791 23 1.96 23 78.3 4.3 55 10.9

5444232 5444278 24 1.92 25 73.9 4.3 52 12.5
5448603 5448648 24 1.96 24 73.9 4.3 50 12.8

# 5454852 5454892 19 2.05 20 81.8 9.1 52 9.5
# 5472324 5472519 101 1.94 101 88.4 0 315 5.6

5472803 5472851 25 1.92 25 76.9 19.2 50 11.8
5482094 5482147 29 1.93 28 75 14.3 55 12.5
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