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Abstract

We develop an Autoregressive Moving Average (ARMA) model for
decoding hand motion from neural firing data and provide a simple
method for estimating the parameters of the model. Results show that
this method produces comparable reconstructions of hand position to
the previous Kalman filter and linear regression methods. The ARMA
model combines the best properties of both these methods, producing
reconstructed hand trajectories that are smooth and accurate. This
simple technique is computationally efficient making it appropriate for
real-time prosthetic control tasks.

1 Introduction

The advancement of computer technology has led to the emergence of many
new interdisciplinary fields. In particular, computer science has recently been
applied to a variety of problems in medicine. Among these is the problem
of restoring mobility to amputees or people who have been paralyzed. One
approach to this is the creation of neural motor prostheses. Essentially, one
would like to place an implant in the patient’s brain, and by decoding signals
detected from this implant, control an artificial limb or functional electrical
stimulation of the patient’s existing limb. This problem is interdisciplinary
in nature, as it involves medicine, engineering, neuroscience, and computer
science, as well as many other fields.
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One of the primary problems in the development of practical neural mo-
tor prostheses is the formulation of accurate, efficient methods for decoding
neural signals. The electrical activity of the brain is recorded in terms of dis-
crete action potentials (“spikes”). The number of spikes a neuron produces
in a particular time interval is counted, and this number is called the “firing
rate.” Here we focus on the problem of reconstructing the trajectory of a
primate hand given the extracellularly recorded firing rates of a population
of neurons in the arm area of the primary motor cortex (M1).

Various machine learning techniques, mathematical models, and decoding
algorithms have been applied to this problem [1–7]. The simplest and most
common of these is the linear regression method which represents hand posi-
tion at a given time instant as a linear combination of population firing rates
over some preceding time interval [2,3,6]. While simple and relatively accu-
rate, the resulting reconstructions require post hoc smoothing to be practical
in a neural prosthesis [8].

Alternatively, Bayesian decoding methods have been used, including the
Kalman filter [4] and particle filter [5,7]. In contrast to the linear regression
method, Bayesian methods include an explicit temporal smoothness term
that models the prior probability of hand motion. The Kalman filter is
particularly appropriate for prosthetic applications given its accuracy and
efficiency (for both training and decoding) [8]. Unlike the linear regression
method which uses a large history of firing data to reconstruct hand motion
at every time instant, conditional independence assumptions in the standard
Kalman filter restrict it to using only the current firing rates of the neurons.
While the hand trajectories decoded with the Kalman filter do not require
post hoc smoothing, they still lack the smoothness of natural hand motion [8].

Here we develop a simple Autoregressive Moving Average (ARMA) model
for the neural decoding task that combines the linear regression method with
the smoothness term of the Kalman filter. By using more data at each
time instant than the Kalman filter, accuracy is improved, and by adding a
spatial smoothing term to the linear regression method, smooth trajectories
are obtained without post hoc smoothing.

An ARMA model was suggested by [1] in the context of decoding a center-
out reaching task. They extended the method to model a non-linear relation-
ship between firing rates and hand motions using Support Vector Regression.
Here we apply the simpler ARMA model to a more complex task involving
arbitrary 2D hand motions. We show that a very simple algorithm suffices
to estimate the parameters of the ARMA process, and that the resulting
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decoding method results in reconstructions that are highly correlated to the
true hand trajectory. We explore the choice of parameters and provide a
quantitative comparison between the ARMA process, linear regression, and
the Kalman filter, expanding on the results reported in [9]. We found that
the simple ARMA process provides smooth reconstructions that are typically
more accurate than linear regression and sometimes more accurate than the
Kalman filter.

2 Methods

2.1 Recording

Our experiments here use two sets of previously recorded and reported data
[10] in which a Bionic Technologies LLC (BTL) 100-electrode silicon ar-
ray [11] was implanted in the arm area of the primary motor cortex of a
macaca mulatta monkey. The monkey was trained to move a two-joint pla-
nar manipulandum to control a feedback cursor on a computer screen. The
position of the manipulandum and the neural activity were recorded simul-
taneously, and the neural activity was summed into 70-ms bins for data set
A, and 40-ms bins for data set B. The task the monkey performed was a
“pinball” task [4] in which he moved the cursor to hit a target on the screen,
and when he succeeded, a new target appeared. Neural signals were detected
on 42 electrodes for data set A and 50 electrodes for data set B, and a simple
thresholding operation was used to detect action potentials. The spikes on
each electrode were treated as one (potentially) multi-unit channel of data.
In [12] it was found that multi-unit data provided decoding accuracy on a par
with the best single unit data obtained by human spike sorting. The data
sets were divided into separate training and testing sets using held-out data,
in which the testing set ranged from approximately 8 to 15 percent of the
total length of the data set. For data set B, the entire data set encompassed
200 seconds of recording; data set A encompassed 370 seconds of recording.

2.2 Linear Regression

The linear regression method is the most common method used for motor
cortical decoding and assumes that the current hand state (position, velocity,
and acceleration) can be represented as a linear combination of the current

3



firing rates of a population of neurons. Least-squares regression is performed
to determine the coefficients (the “filter”) for this linear combination based
on training data, and the filter is then used on testing data to decode the
state at each time instant [2, 6]. The linear relationship is described by

X = ZF (1)

where X is a state matrix containing the (xt, yt) hand positions at time
instants t = 1 . . . T , Z is a matrix of firing rates of the N = 42 or 50 multi-
units over the same time period (for data sets A and B, respectively), and
F is the linear filter matrix relating hand positions and firing activity. In
particular,
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where xt represents the hand x position at time t (analogous for y), zi
t rep-

resents the firing rate of neuron i at time t, fxp represents the pth filter
coefficient for x (same for y), and the fp’s represent constant offset terms.
Note that k is a constant representing a time window of neural firing rates to
be considered. Also, the column of ones in X provides a constant bias term.
This model can easily be expanded to include velocity and acceleration.

We solve for F by minimizing the squared error ‖X − ZF‖2
2 which gives

the solution for the filter matrix F as

F = (ZTZ)−1ZTX = Z+X
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where Z+ is the pseudo-inverse of Z. The hand position xt = (xt, yt) at a
particular time instant can be reconstructed as

xt = zt
t−kF

where zt
t−k ∈ <1×Nk is a vector representing a k time bin history of neural

firing preceding time instant t (a row of the Z matrix above).

2.3 Autoregressive Moving Average (ARMA) Model

The linear filter models how hand position is related to neural activity over
some time interval, but it does not explicitly model anything about how
hands move. The motion of the hand is constrained by physics and the prop-
erties of the body, and therefore evolves smoothly over time. Consequently
we add an additional term to the linear regression method to model this
smoothness assumption; that is, the current state is represented as a linear
combination of a history of firing rates and the preceding hand states, given
by

xt = Axt−1
t−m + Fzt

t−k (2)

where A ∈ <D×Dm (D is the dimensionality of the state vector x) and
F ∈ <D×Nk, and m and k are parameters determining how many previ-
ous time steps (of hand state and neural firing respectively) to include in the
calculation. xt−1

t−m ∈ <Dm×1 is a column vector containing the concatenation
of the states from times t−m to t− 1, and zt

t−k ∈ <Nk×1 is a column vector
containing the concatenation of the firing rates for all neurons from times
t − k to t. We call this an Autoregressive Moving Average (ARMA)(m, k)
model [13].

The parameters to be estimated in this model are A and F. We alternate
learning these (beginning with F) using the same least squares minimization
as linear regression:

F = (ZT )+(X2 −AX1) (3)

A = (XT
1 )+(X2 − FZ) (4)

where X2 ∈ <D×T−1 is a matrix of states from times 2 to T (T being the
total number of time steps), Z ∈ <Nk×T−1 is a firing rate matrix where each
column is of the form zt

t−k as described above, and X1 ∈ <Dm×T−1 is a matrix
in which each column is of the form xt−1

t−m as described above.
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Initially, we set A to a matrix of zeros and learn F (note that this is simply
the standard linear regression method). To determine when convergence has
occurred, we use the mean squared error of the training data [4]. Convergence
has occurred when the difference between the previous iteration’s error and
the current error is less than some parameter ε. In our experiments, we varied
ε between 0.001 and 1000.

2.4 Kalman Filter

The Kalman filter has been proposed for decoding motor cortical data [4].
Like the above methods it assumes a linear relationship between neural firing
and hand kinematics (though formulated as a generative model) and like the
ARMA model assumes the hand motion evolves linearly, as follows:

xt = Axt−1 + w (5)

zt = Hxt + q (6)

where w ∼ N(0,W) and q ∼ N(0,Q). A recursive Bayesian method is used
to predict xt given zt. While the reader is referred to [4] for details, it is
worth noting that the Kalman filter reconstructs hand kinematics as

xt = Axt−1 + Kt(zt −H(Axt−1))

were Kt is the Kalman gain matrix. Note that the first term is the same as
in the ARMA model but is restricted to using only the previous time instant
due to a first order Markov assumption used to derive the filter. Note also
that the second term is a linear function of the difference between the firing
rates and the predicted firing rates, HAxt−1. In contrast, the ARMA model
uses a linear function of the firing rates themselves.

2.5 Lag

The introduction of lag has been shown to improve the results of the Kalman
filter [4]. To implement a lag, we shift the data so that xt corresponds to
zt−` for some lag `, rather than zt. We ran experiments both with no lag
(` = 0), and with a constant lag of 2 time bins (140ms for data set A, 80ms
for data set B), which has been shown to provide good results for the Kalman
filter [4].
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Method Data Set A CC X Data Set A CC Y Data Set B CC X Data Set B CC Y

Linear Regression 0.6647 ± 0.0197 0.8131 ± 0.0239 0.7395 ± 0.0026 0.7988 ± 0.0082

Kalman Filter 0.7086 ± 0.0214 0.8646 ± 0.0053 0.9146 ± 0.00109 0.9070 ± 0.0014

ARMA Model 0.6895 ± 0.0345 0.8762 ± 0.0095 0.8027 ± 0.0064 0.7772 ± 0.0133

Table 1: Comparison of mean and variance of correlation coefficients for X and Y

position among different decoding methods, both data sets.

2.6 Statistical Analysis

Two different types of statistics were calculated with respect to the results
of each decoding method: the mean squared error and the correlation coef-
ficients. The mean squared error is defined as

MSEd =

∑T
i=1(x

i
d − x̂i

d)
2

T
(7)

where xi
d is dimension d of the true state at time i, and x̂i

d is dimension
d of the estimated state at time i. The correlation coefficient is defined as
follows:

CCd =

∑

t(x
t
d − x̄d)(x̂

t
d −

¯̂xd)
√

∑

t(x
t
d − x̄d)2

∑

t(x̂
t
d −

¯̂xd)2
(8)

where x̄d represents the mean of dimension d of the state, and ¯̂xd is that
of the estimated state.

In order to compare the methods, for each data set, each method was run
ten times using different held out data each time. The mean and variance of
the resulting 10 values for the mean squared error and correlation coefficients
were then calculated and compared for each method.

3 Results

Table 1 shows a comparison of the correlation coefficients for each decod-
ing method on both data sets. These correlation coefficients and the mean
squared error results are shown graphically in figure 5. For linear regression
and ARMA, a time history of five time bins was used. Note that this may
not be the optimal number of time bins for each set of data. In all cases,
position, velocity, and acceleration were included in the state vector. The
values shown are the mean values obtained from 10 trials using different held
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ε Training CC Testing CC
0.1 1.9994 1.4021

1 1.9994 1.4216
10 1.9989 1.4428

100 1.9938 1.4230
1000 1.9405 1.3421

Table 2: Effect of varying the convergence parameter ε on data set B. Correlation

coefficients reported are the sum of X and Y coefficients.

Method Lag MSE X MSE Y CC X CC Y

Linear Regression 0 5.394 1.857 0.769 0.901
(13 history bins) 2 5.398 1.861 0.769 0.901
Kalman Filter 0 5.788 1.903 0.726 0.902

2 4.281 1.806 0.804 0.914
ARMA Model 0 3.388 1.433 0.820 0.923
(7 history bins) 2 3.364 1.507 0.825 0.926

Table 3: Effects of constant lag of 2 time bins on the three models, data set A
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Figure 1: Comparison of actual and reconstructed trajectory using the ARMA(1,

7) model on data set A. The solid line shows the actual trajectory and the dashed

line shows the reconstructed trajectory. Seven bins of history in the firing rate were

used, and the state was a six-dimensional vector containing position, velocity, and

acceleration in x and y. The convergence parameter ε was 0.001.

out data each time, and the corresponding variance. A constant lag of 2 time
bins was used for linear regression and the Kalman filter.

For data set A, in the Y dimension the ARMA model was best (had
the highest correlation coefficient), followed by the Kalman filter, and finally
linear regression. However, in the X dimension, there was no significant
difference between the ARMA model and the other two methods, although
the Kalman filter was significantly better than linear regression. On data set
B, the Kalman filter performed better than the other methods in both the X
and Y dimensions. In the X dimension, the ARMA model performed better
than linear regression, but in the Y dimension linear regression performed
better than the ARMA model. There were no significant differences in the
mean squared error.
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Figure 2: Comparison of the effects of history length on decoding results for all

three methods, data set B. 184s of training data and 16s of test data were used.

For ARMA, ε = 10. The top two plots show correlation coefficients in the X and

Y dimensions, the middle two show mean squared error in the same dimensions,

and the bottom plot shows training time. Note that the Kalman filter can only

use a single history bin and thus is a horizontal line in all plots.

Fig. 1 shows a comparison of the actual and reconstructed trajectories
for the ARMA method on data set A. Fig. 4(a) shows the mean squared
error with respect to the number of history bins included in the firing rate,
varied from one to twenty, and Fig. 4(b) shows the correlation coefficients
in the same case. The lowest mean squared error and highest correlation
coefficients appeared at seven bins of firing rate history, in this case.

Figure 2 shows the same information for data set B. In this case, the
number of history bins was varied from 1 to 15 for both the ARMA model
and linear regression, and these are compared to the Kalman filter. The top
two plots show the results for correlation coeffecients, the middle two show
the mean squared error, and the bottom plot shows the training time versus
the number of history bins. Both the ARMA method and linear regression
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Figure 3: Percent contribution of each history bin to the ARMA decoding result

for all six hand state parameters (X and Y positions, velocities, and accelerations).

7 history bins were used with ε = 10 on data set B.

approach the Kalman filter in both correlation coeffecients and mean squared
error, and in the X dimension, they in fact produce a lower mean squared
error than the Kalman filter. However, the time plot indicates the high cost
of a large number of time bins to the ARMA model.

Figure 3 shows the contribution of each bin of history to the reconstructed
value for the ARMA model. The filter analyzed here was generated on data
set B using ARMA(1,7) with ε = 10. It appears that in general for the
X-related parameters (position, velocity, and acceleration) the first two bins
are the most important and the contributions of bins 3 to 7 decline, with an
anomalous higher contribution from bin 6. In the Y dimensions, the third
bin appears to have the highest contribution, with a declining trend in bins
4 through 7.

When history was added in the state term (i.e., ARMA(m, k) where m >

1), the error increased and the correlation coefficient decreased. We believe
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Figure 4: Data Set A. The number of history bins in the firing rate term was

varied from one to twenty, and the mean squared error and correlation coefficients

between the reconstruction and the true trajectory were calculated in x and y. In

both cases, the top graph shows the x dimension and the bottom the y dimension.

(a) shows the mean squared error, and (b) shows the correlation coefficients.
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(a) Data Set A (b) Data Set B

Figure 5: Results of statistical analysis comparing the three methods. Each

method was run 10 times. The points on the plots represent the mean result of

these runs, and the error bars represent the variance. For each plot, the points

represent ARMA, linear regression, and the Kalman filter from left to right. The

top two plots show the correlation coefficient results and the bottom two show the

mean squared error results. (a) and (b) show the results for data sets A and B,

respectively.
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this to be due to over-fitting, since the error on the training data was very
small, while the error on the testing data increased dramatically. A constraint
on the norm of A might eliminate this problem. Overfitting was also a
problem on data set B, even without using a state history larger than one
bin. Table 3 shows the correlation coeffecients on the training and test data
for values ε from 0.01 to 1000. The correlation coeffecient on the training
data is surprizingly high, and larger ε values seem to non-intuitively produce
better results in testing.

We compared the mean squared error and correlation coefficients for the
ARMA model with and without lag, and found that they were effectively the
same. Table 3 shows the effect of lag on ARMA and the other models on data
set A. The lag seems to make little difference in the linear regression method
as well as the ARMA process, although it greatly improves the performance of
the Kalman filter. The Kalman filter has been shown to be further improved
by implementing non-uniform lag (so that each neuron has its own lag) [4],
but we do not consider that model here.

Additionally, we investigated the state vector. In particular, we tried
decoding with ARMA using only the position, as opposed to the position,
velocity, and acceleration. This provided mixed results; the correlation coef-
ficient was lower without the extra terms (0.823 in x and 0.923 in y), but the
mean squared error was slightly less (3.313 in x and 1.457 in y), suggesting
that the extra data may not be necessary.

Finally, we examined the training time required for each method. Train-
ing the Kalman filter is insignificant, while the linear filter and the ARMA
process both are highly dependent on the number of history bins used. The
ARMA process is also dependent on the choice of the convergence parameter
ε, in that the smaller ε is, the longer it takes to converge. We found for data
set A that for 13 history bins, the linear filter took approximately 20 seconds
to train, while for seven history bins and ε = 0.001, the ARMA process took
approximately six minutes. Setting ε equal to 0.01 cuts the training time
in half, while still providing good results (MSE 3.865 in x and 1.469 in y,
CC 0.796 in x and 0.921 in y). Although this training is significantly longer
than that of the other methods, it is still feasible, especially since decoding
incoming data is essentially instantaneous once training is complete (0.1ms
to decode a single time instant, as opposed to 0.7ms for the Kalman filter).
However, for data set B, training took much longer, as shown in Figure 2.
Since increasing ε provided better results in this case (due to overfitting), the
training time can be easily reduced using higher ε.
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4 Discussion

We found that the ARMA model provided comparable neural decoding re-
sults (mean squared error and correlation coefficients) to the linear regression
method and the Kalman filter. In some cases, the ARMA model provided
better results than either method, but statistical analysis indicates that this
is not always the case. The ARMA method is, however, typically more
accurate than linear regression in terms of correlation coefficients. These
results suggest that the advantage of the ARMA model over the linear filter
is that the model includes information about the previous state as well as
neural firing. The Kalman filter also uses information about the motion of
the hand and the firing rate, but in common usage it is constrained by a
first-order Markov assumption, so that neural data from only a single time
instant is considered at each time step. The statistical analysis suggests that
the Kalman filter is likely the most reliably good option to use. However,
the simplicity of the ARMA method makes it attractive as an option for
neuroscientists.

The optimization method used to estimate parameters for the ARMA
process is simple and fast for small histories and larger values of the conver-
gence parameter ε. The training time increases as the number of history bins
increases and as the convergence parameter is reduced. However, once the
model is trained, decoding can be performed on-line.

A restriction of the ARMA process is its linearity. By changing the linear
relationship with the firing rate to a nonlinear function or a kernel (as in [1]),
better results may yet be achieved. Additionally, the Kalman filter with
non-uniform lag has been shown to provide results similar to or better than
those of the ARMA process [4] but the ARMA method is much simpler to
understand and use.

A more sophisticated model of Support Vector Regression has been devel-
oped for motor cortical data, but on a simpler center-out task [1]. Adapting
this SVM model to the sequential random tracking task used here may pro-
vide even better results. Finally, these methods should be explored with
more datasets and in on-line experiments.
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