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1 Introduction

The longstanding working model for system security on Unix machines has consisted 
mainly in restricting access to files based on user-specific rights and permissions.   The 
widespread success and use of the Internet, however, has afforded malicious parties the 
opportunity to expose a number of holes in this traditional security model.  One such 
defect allows potentially dangerous applications downloaded or run from the Internet to 
operate with the full rights and permissions of the user executing the application, even if 
that application should only need access to a small subset of the many files accessible to 
the user.

A better security model would limit the files a process (or more generally, a subject) 
could access to only those that it truly needs.  We call this subject-specific list of file 
access rights a Subject ACL (Access Control List).  In effect the process is run within a 
virtual sandbox, with its file access permissions strictly defined by the Subject ACL.  
Note that this modification to the traditional security model is only an improvement, not a 
substitute: a process should only be granted access to a file if it has both the appropriate 
user-specific privileges as well as the appropriate subject-specific privileges.

This document provides a technical specification of how these Subject-ACLs are 
implemented and enforced with a Linux 2.6 kernel.
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2 System Overview

Ultimately, this software system grants users the ability to safely execute a program 
without having to worry about whether the program will access any files beyond those 
specified in the associated Subject-ACL.  This Subject-ACL will form a sandbox around 
processes, setting explicit boundaries on which files they are allowed to access.

The user is able to inspect the Subject-ACL associated with the executable s/he desires to 
run and add or remove items from the Subject-ACL as necessary.  Moreover, since it can 
often be difficult to predict exactly which files a program will need before it is executed, 
the software system also provides a means for dynamically adding access rights to the 
Subject-ACL while a program is running.  

The method by which a user executes a target process within a sandbox is the rexec()
system call (short for “restricted exec”).  This system call starts up a user-specified 
guardian process along with the target process, and sets up a communication channel 
between the guardian and target.  

Subsequently, any time the target process attempts to access a file via a system call such 
as open(), the system call will, in addition to its regular access checks, also check the 
Subject-ACL associated with that process.  If the requisite file permissions are not found 
in the Subject-ACL, the system call contacts the guardian, which in turn decides whether 
or not to augment the protection domain (usually by prompting the user to make a 
decision).  If the guardian decides not to allow access, the guardian notifies the waiting 
system call, which just returns an error value indicating that the access check failed.  If 
the guardian does decide to allow access, it will open the file and obtain a file descriptor 
on behalf of the restricted process and pass this opened file descriptor back to the system 
call, which can just return it.

There are two possible ways to specify the Subject-ACL that is to be associated with a 
program.  The first option requires putting a copy of the Subject-ACL in the inode of the 
executable file to be run.  When rexec() is called, the Subject-ACL will just be copied 
into the resulting target’s task (Linux term for a process or thread) struct.  The second 
option simply involves passing the Subject-ACL directly to rexec() as an argument.  
Obviously, some combination of the two methods could be used as well.  

Importantly, any tasks (processes or threads) subsequently spawned by the target will 
inherit the same Subject-ACL and the same flag indicating that the task is running within 
a sandbox.  Thus, there is no way for a task already running within a sandbox to augment 
its own protection domain by spawning other tasks.  Only the appropriate guardian 
process has the ability to add privileges to a Subject-ACL.

The guardian process itself should be implemented at the user level by the application 
developer.  Thus, there is a good deal of flexibility in how this process communicates 
with the user, whether it is via the command line or some sort of advanced GUI.  The 
system, however, does ensure that the guardian can only add to the target’s protection 
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domain those file permissions that it already has.  Further, only the guardian process 
specified by the rexec() call has the ability to inspect the Subject-ACL of the target task 
and dynamically make changes to it on the fly.

3 Design Considerations

3A. Assumptions and Dependencies

The software system is designed specifically for Linux, and as such, involves making 
modifications specifically to the Linux (2.6) kernel.  Although the basic premise of this 
software system is easily adapted to other flavors of Unix and other Operating Systems, 
this document focuses on the specific development of the system on Linux.

The first option (described above) for specifying the Subject-ACL of a program requires 
storing a copy of the Subject-ACL in the executable file’s inode.  The system makes use 
of Linux facilities for associating meta-data with files (known as Extended Attributes) to 
accomplish this.  Extended Attributes are a relatively new feature of Linux (2.6 kernels) 
and depend on the underlying filesystem-specific implementation.  Under the ext3 
filesystem (with which this software is being developed), all Extended Attributes must fit 
on a single disk block (1, 2, or 4 Kilobytes).  This space constraint could be a potential 
problem for very long Subject-ACLs, depending on how Extended Attributes are 
implemented in the future.

The Debian attr package for extended attributes is currently being used to set and
modify the Subject-ACL associated with an executable’s inode, since at this point the 
Subject-ACL is merely specified as an Extended Attribute of the executable.  

In order to ease kernel development, the system has been tested and debugged using a 
Linux 2.6 kernel running on VMWare.  Vim and Cscope are the major tools employed 
for software development.

3B. Open Issues

It is currently an open issue of whether to allow the Subject-ACL to specify directories 
under which all files and directories are granted the same access permissions.  

The exact format of the Subject-ACL is still to be determined.  Currently the system uses 
a string of ASCII text of the form 
“:6:/usr/fileOne:5:/etc/local/fileTwo:6:/tmp/fileThree:”  Note 
that the access permissions for a file are indicated by the integer number (used in the 
same way as chmod) that precedes it in the Subject-ACL, and that items in the Subject-
ACL are delimited by colons.   Pathnames are used rather than inode numbers for the 
sake of usability and persistence.  One major problem with this scheme is that colons are 
allowed to be part of filenames in Linux.  A better standard format for the Subject-ACL 
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would be highly desirable. 

4 Implementation Details

4A. Associating a Subject-ACL with a Task

I. Specifying Subject-ACL as an Extended Attribute of an executable.

The getfattr and setfattr commands of the Debian attr package are currently being used 
to store a Subject-ACL as an Extended Attribute of an executable file.  An Extended 
Attribute (EA) consists of a name for the attribute and a corresponding value.  The 
current name for the Subject-ACL EA is “user.perms”.  The value is a string of text in the 
format described above (in 3B) representing the actual Subject-ACL.

EAs utilize a namespace system, whereby attributes named under certain namespaces can 
be modified and accessed by any user (such as the “user” namespace), while other 
namespaces may only be accessible to the kernel (such as “system”).  It is desirable to 
move the Subject-ACL EA into a more restrictive namespace once the mechanism for 
securely modifying and accessing the Subject-ACL EA is more fully developed.   

Once the Subject-ACL is associated with an executable as an Extended Attribute, it is 
then relatively straightforward to copy the Subject-ACL into the corresponding task 
struct when the executable is run with rexec().  A new field has been added to the task 
struct object: “char* subject_acl”.  The code for rexec()first allocates enough space 
for a buffer to hold the Subject-ACL at the subject_acl pointer, and then copies over 
the Subject-ACL stored as an Extended Attribute into the allocated buffer.  One 
consideration is whether it may be more efficient to allocate some extra space to allow 
for the buffer stored in the task struct at subject_acl to grow rather than having to 
allocate a new larger buffer any time the Subject-ACL needs to be longer.

The do_exit() code has also been modified so that the memory for the Subject-ACL 
buffer pointed to in the task struct is freed when the task exits.

II. Specifying Subject-ACL by passing it as an argument to the rexec() system call.

The other method for associating a Subject_ACL with a running task is to simply pass the 
Subject-ACL directly into the call to rexec() as an argument.

Again, rexec()copies the Subject-ACL into a buffer referenced by the subject_acl
pointer in the task struct, just as in the case when the Subject-ACL is an Extended 
Attribute of the executable file.  Obviously, if the Subject-ACL is specified both by an 
argument passed to rexec() as well as an Extended Attribute, the two Subject-ACL’s 



5

should be combined, and enough space should be allocated for the subject_acl buffer to 
hold the combination of the two lists.

One important security consideration in this implementation is that a task T is not 
allowed to call rexec()and pass in a Subject-ACL containing file permissions that T 
does not itself have in its own Subject-ACL.  This prevents malicious programs from 
using rexec() to augment their own privileges or the privileges of other tasks.

4B. More on the rexec() system call

The only means by which a target task can be run in a restricted sandbox environment is 
via the rexec() system call.  Just as many standard system calls like sys_open() are 
actually invoked by users primarily via wrapper functions provided by standard libraries, 
users should not call rexec() directly and should instead use the wrapper function 
user_rexec().  Callers of user_rexec() must, in addition to the arguments normally 
passed into regular exec()and the argument specifying the Subject-ACL, also pass in the 
arguments needed to execute a guardian process.

The first action that user_rexec() takes is to fork(), with the parent task executing the 
target task via a call to the actual rexec() system call, and the child task executing the 
guardian process.  

In the target task where rexec() is invoked, before the task begins its normal execution, 
a number of steps are performed by the kernel.  As a first step, all open file descriptors 
are closed in case any previously opened files are not specified by this target task’s 
Subject-ACL.  

Next, a Unix Domain Socket connection is established with the guardian task.  This 
requires waiting until the guardian has set up its end of the socket connection.  The 
current method used for waiting is to wait in a loop until the connection is successfully 
established, yielding the processor each time an attempt is unsuccessful.  One potential 
issue with this approach is that waiting in the kernel in this manner makes the task 
unresponsive to signals, so there is no easy way to end the task if the guardian never 
establishes its end of the connection.  Improvement on this approach is left to future 
work.

The target’s task struct is then modified as follows: the Subject-ACL is copied into a 
buffer pointed to by subject_acl, the is_restricted flag is set to indicate that the 
target is being run within a sandbox, and the file descriptor for the socket connection 
with the guardian is copied into the guardian_fd field.  

Finally, the appropriate target executable is exec()’d and begins normal (but restricted) 
execution.

The guardian process, implemented in user land, does the work of setting up its own end 
of the Unix Domain Socket connection and listens for the target’s attempts to connect to 
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it.  After the connection has been established and as the target begins execution, the 
guardian starts listening for messages from the target regarding protection domain 
violations.

4C. Enforcement of Subject-ACL access policies

Since any user-level task that desires to use a given file must first make one of a limited 
number of system calls (such as open() or socket()) before it can obtain a file 
descriptor to work with that file, all such system calls are modified to check for Subject-
ACL privileges in addition to the usual file-based privileges.  For explanatory purposes, 
we will focus in this section on the open() system call.

Whenever a task with the is_restricted flag set calls open(), the kernel code first 
checks whether the target file is listed in the current task’s Subject-ACL.  If it finds a 
match, and the corresponding permissions listed in the Subject-ACL for that file are 
sufficient, then open() proceeds as normal (including the regular user-specific access 
checks).  Otherwise, the kernel sends a message over the Unix Domain Socket (whose 
file descriptor is specified in the current task’s task_struct) to the guardian task indicating 
that a file access violation has occurred.  The kernel code then listens on the same Unix 
Domain Socket for the guardian’s response.  

Although the guardian process is specified and written by the application developer for 
user land to allow for more flexibility, it will generally follow a few essential steps when 
it receives a file access violation message:  

Upon receiving the message over the Unix Domain Socket, the guardian prompts the 
user, asking whether the restricted task should be allowed to access the given file.  The 
three possible responses are to (a) simply deny access, (b) grant one-time access to the 
file, or (c) persistently augment the task’s Subject-ACL  to allow future access to the file 
as well.  If the user grants access, the guardian just opens the file on behalf of the 
restricted task.  Note that the guardian is in this way limited to opening only files for 
which it already has the appropriate permissions.  The guardian then just sends back a 
response message over the same Unix Domain Socket containing the opened file 
descriptor and indicating whether the file should be added to the target’s Subject-ACL as 
an additional privilege.  

The kernel code executing on behalf of the restricted task receives the guardian’s 
response, and accordingly either adds the file to the Subject-ACL (if the message 
indicates that it should do so) and returns the already-opened file descriptor, or returns an 
access error code indicating insufficient permissions.  

Note that some special cases may need to be handled differently.  The file /dev/tty, for 
example is a special file that refers to a process-specific controlling terminal, if one 
exists.  A problem arises if the guardian is executing in a different terminal, in which 
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case it will open up /dev/tty for its own terminal rather than the target’s terminal.  The 
workaround for this case is to translate the /dev/tty path into a path to the more specific 
filename for the target process’ terminal (such as “/dev/pts/4”) and to pass this more 
specific path to the guardian for opening.  Any other process-specific special files must 
also be handled in a unique manner.

4D. Handling the children of a restricted task

When a new task is spawned by a restricted task via a clone() or fork() system call, 
the child task can at best inherit all the file permissions specified by the Subject-ACL of 
the parent.  It is important for the child task to be prohibited from “inheriting” any 
additional file access rights that its parent did not already have. 

An important open question in regards to fork() and clone() is whether or not the new 
child task should be monitored by the same guardian as the original parent task.  

If the guardian manages child (and grandchild) tasks as well, things might start to get 
complicated, as the guardian will have to keep track of all of the different tasks it is 
guarding.  Since the guardian provides the user a means to dynamically modify a target 
task’s Subject-ACL, these modifications would either have to be sent to all protected 
tasks, or the user would somehow have to identify the specific task(s) that should receive 
those privileges.  There may also be a difficulty in the case of protection domain faults as 
it will be hard for the guardian to accurately and informatively indicate to the user which 
task is requesting additional privileges.  

One solution to all this complexity could be to have a single authoritative Subject-ACL 
stored at the guardian for all the tasks that it guards.  This simplifies the adding/removing 
of privileges and makes things clearer for the user.  In this case, the Subject-ACL stored 
in the task_struct gets passed to the guardian one time at the beginning of the initial 
rexec() call, after which the Subject-ACL in the task_struct becomes obsolete as the 
guardian holds the only “official” copy.  Checking of the Subject-ACL is then done in the 
guardian rather than in the system call kernel code of the target process.  The simplicity 
of this method must be weighed against a loss of flexibility inherent in having only one 
Subject-ACL for many different tasks.

In either case, if the fork() or clone() call creates a brand new file descriptor table for 
the child task, the guardian_fd stored in the task_struct will no longer be valid, and so 
either this fd must be somehow migrated to the new table or a new connection must be 
established (further adding to complexity). 

On the other hand, if we don’t require the guardian to also manage the protection domain 
of the target’s child tasks, we would instead have to create a new guardian to manage 
each new child task.  This would unfortunately add a great deal of undesirable overhead 
to spawning a new task.
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4E. Dynamic Runtime access to and modification of Task Subject-ACLs 

The capability for dynamically changing and viewing the Subject-ACL of a running task, 
even when there has been no access permission error, is implemented in the form of a set 
of system calls.  These system calls are specified to work only when invoked by the 
actual guardian process of the target task.  

As has been mentioned earlier in this document, particular care and attention must be 
paid to ensure that only the actual guardian for the target task can successfully make 
these system calls.  This restriction is fairly straightforward to implement, as the listing of 
all tasks guarded by the current guardian process is easily accessible from within the 
kernel. 

5 Past, Present, and Future Work

Our initial implementation of the system was done completely in user land (no work was 
done in the Linux kernel).  A C function named open()was written to communicate with 
the guardian process over a Unix Domain Socket.  This function was compiled into a 
shared library such that the LD_PRELOAD environment variable could be set to point at 
this library.  Thus any program run with LD_PRELOAD set appropriately would have its 
open() system calls intercepted by our library code.

This fairly rudimentary implementation did not deal specifically with checking and 
modifying the Subject-ACL, but rather assumed that the Subject-ACL was empty.  Thus, 
all file accesses would result in protection-domain-fault messages being sent to the 
guardian.  

The guardian process we created provided a simple command-line interface for the user 
in a separate terminal window.  Whenever the guardian received a message over its Unix 
Domain Socket from our open() library code indicating that a program was attempting to 
open a file, it would prompt the user for input.  If the user permitted the access, the 
guardian would open the file on behalf of the protected process and send the opened file 
descriptor back over the socket to the library code.  Using the built-in features of Unix 
Domain Sockets, the protected process could receive the file descriptor and use it just as 
if it had opened the file independently.  On the other hand, if the user denied the access, 
the guardian would send an error message over the Unix Domain Socket to the protected 
process, and the open() library code would return an access error value.

After completing this user-level implementation to demonstrate that our concept would 
actually work, we were able to move forward and translate what we had done into a more 
faithful implementation of our system.
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At present, we have completed a basic working version of our system with different parts 
implemented either in the Linux kernel or in user land: 

The function user_rexec(), a user-level wrapper for our rexec() system call, performs 
the work of both calling rexec() and starting a separate guardian process.  The rexec()
system call traps into the kernel, where it performs some initial setup steps (such as 
connecting to the guardian via a Unix Domain Socket and setting the is_restricted
flag) before it executes the protected process.

Just as in the all-user-level implementation, an empty Subject-ACL is assumed by 
default.  Thus, the kernel code handling the open() system call ensures that all attempts 
by a restricted process to access files require the permission of the guardian process.  

The current system uses the same user-level guardian process implementation as in the 
initial system.  Future work could potentially improve on this basic guardian with a more 
sophisticated GUI-based guardian sporting more advanced (and prettier) features.

The system has been tested extensively and shown to work quite well for various 
common Linux programs such as echo, cat, more, less, and vim.  All of these programs 
have been sandboxed successfully without complication.  Testing has consisted mainly in 
running these programs with user_rexec() and verifying that the guardian supervises 
all attempted file accesses on the part of the protected processes.   A walkthrough of a 
sandbox test of vim (with screenshots) is contained in the Appendix.

Ours is a fairly basic implementation of the system described in this paper, but now that 
the fundamental framework is in place and has been shown to work correctly, it should be 
fairly straightforward to add more advanced features in the near future.  The many 
possibilities for future work include improving on the handling of error conditions, 
adding support for the managing and checking of Subject-ACLs, and making design 
decisions on dealing with the child tasks of protected processes.
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Appendix: Sandboxing vim:

The following screenshots demonstrate the use of our system to sandbox the vim 
program.  

Fig. 1: The program “test” being executed is a simple C program that just does a 
user_rexec() of /usr/bin/vim.  In this case, vim is trying to open the Makefile that is in 
the current directory.  As you can see, the guardian is automatically started up in another 
window.
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Fig. 2: As vim starts up, it needs to open up a number of standard libraries, configuration 
files, and of course the Makefile itself.  Each time vim attempts to open a file for reading, 
writing, or executing, the guardian prompts the user for permission.
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Fig. 3: Now the user makes some changes to the Makefile with vim and is ready to save 
his changes to the file Makefile.commented.
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Fig. 4: The guardian prompts the user, who allows the write operation.
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Fig. 5: Now the user makes a second change to the file in vim and tries to save again.  
This time, however, the user does not allow the write in the guardian window, so vim is 
not be able to save the second change.  Now if we just quit out of vim…



15

Fig. 6: …we see that the guardian window automatically closed.  If we enter the ls
command, we can see that the first change was saved as Makefile.commented, but that the 
Makefile.rejectme version did not get saved at all.


