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1 ABSTRACT

By extracting one or more instruments from one piece of music
and mixing them with instruments from another, a professional
DJ is able to create a new, ”remixed” music track. As a result,
there has been a growing need for instrument-only tracks fueled
by amateur DJs wanting to mix their own music. In this paper, we
discuss an algorithm for improving upon a previous method of sep-
arating instrument tracks from a piece of music. We also discuss
how effective the previous separation is compared to this improved
method by introducing a Euclidean-based wavelet distance metric.
Lastly, we illustrate how sound separation can be used to remix ar-
bitrary tracks of music without having the individual instrumentsa
priori . All the example instrument separations and remixes in this
paper can be found on the project website at:

http://www.rasik.com/salil/html/index.php?name=Newscatid=2

2 INTRODUCTION

The research in this paper helps to ameliorate the current state-of-
the-art sound separation techniques by using Fourier analysis and
wavelet decomposition. The general class of problems in sound
separation involves trying to separate independent sources from
mixed observed data. In other words, the goal is to recover the
individual signals from a mixed signal. The algorithm being pre-
sented in this paper is a special case of the sound separation prob-
lem, specific to musical recordings.

The need to separate sounds from a mixed signal is an old one and
has many implications in areas as far reaching as signal process-
ing, medicine, etc. [12]. Although the signal sources differ in each
one of these cases, it is common to want to unmix a signal and
analyze the constituent sources individually. In the case of mu-
sical recordings, instrument separation has many uses [10]. For
instance, by separating the trumpet from a recorded symphony, it
might be easier a computer algorithm to transcribe the notation.
Indeed, it has been noted that even humans have difficulty in tran-
scribing an instrument in the presence of other instruments. Thus,
by separating an instrument, we can make the transcription task
easier. A separated instrument can also be used for cataloging. By
separating an instrument from a piece of music, we can catalog our
output for later retrieval. Searches can be done on the melody of
a single instrument, for instance. Without instrument separation,
this would not possible.

An important third use, and the one we focus on in this paper,
is the case of DJ remixes. In today’s music, the role of the DJ has

changed dramatically. While a DJ from decades ago merely played
back exisiting recordings sequentially, today’s DJ can mix two or
more recordings at the same time thereby creating a completely
new musical performance [4]. Although a DJ can always mix two
existing recordings, he/she will usually want to select individual
instruments from different recordings and mix them together. This
unfortunately requires access to the original instrument-only tracks
before they were mixed together into a final song. To complicate
the matter, getting access to these instrument-only musical tracks
from the record companies is difficult due to copyright issues.
Due to these obstacles, DJs only have access to the instrument-
only recordings that the music industry publishes. At present, the
recordings that are released in this instrument-only form are re-
stricted to certain genres or types of music. The Azimuth Discrim-
ination and Resynthesis (ADRes) algorithm solves this problem
by allowing an amateur DJ to separate instruments from arbitrary
pieces of music. In its current state, however, ADRes leaves cer-
tain extraneous audio artifacts after it performs the instrument sep-
aration.

In this paper, we will discuss a way to remedy some of the audio ar-
tifacts produced by the Azimuth Descriminiation and Resynthesis
approach through the usage of wavelets. First, by detecting when
an instrument comes in and goes out, we can selectively resyn-
thesize the instruments in a time-varying fashion in order to yield
a higher quality separation. Secondly, we use the wavelet coeffi-
cients to define a metric by which we can compute the quality of
the separation mathematically. Finally, we discuss how a DJ would
be able to use instrument separation to remix music without having
access to the record company owned instrument-only tracks.

3 RELATED WORK

There has been extensive research in the area of sound separation.
The main areas of research can be grouped under two headings:
ICA and CASA.

By assuming a linear mixture model for the sources being sepa-
rated, Independent Component Analysis (ICA) techniques attempt
to demix a signal by guessing the mixing parameters that are used
to arrive at the final output. ICA assumes the sources to be non-
Gaussian and statistically independent for the process to work. Fi-
nally, traditional ICA requires the number of observations to be
equal to the number of sources, but recent work has eliminated
this requirement [14].

The three main algorithms used in ICA are the Infomax algorithm,
FastICA, and JADE. All three approaches follow a similar princi-
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ple – they attempt to reproduce the output recorded by an array of
sensors by trying to recover the mixing coefficients as well as the
sources being mixed by iteratively tweaking parameters. The Info-
max algorithm [1] assumes the input sources to be statistical prob-
ability density functions and tries to guess the pdfs as well as the
mixing parameters using a maximum likelihood esimation (MLE)
technique. FastICA [11] makes the algorithm quicker by first pre-
whitening the data meaning it tries to decorrelate the data using
PCA (Principal Component Analysis). Then, FastICA makes the
observation that since our sources must be non-Gaussian, they
must have a small kurtosis. The algorithms opts to use a mea-
sure that closely approximates the kurtosis called negentropy. The
algorithm then tries to find a set of basis functions which might
transform the pre-whitened data to a set of axes which are as in-
dependent as possible. The independence property is measured
using the contrast function. This set of independent basis function
then corresponds to our non-Gaussian sources of minimal kurtosis.
Lastly, the JADE algorithm [8] provides another possible contrast
function. Instead of explicitly pre-whitening the output data, it
works from the statistics of the data using the second-order cumu-
lants. It then tries to make the data as independent as possible using
an approach called Joint Diagonalization. In all cases, the advan-
tage of ICA is that it requires no parameter tweaking on the part of
the user. Unfortunately, because of the high statistical dependence
of musical instruments and ICA’s requirement of non-Gaussian,
independent sources [8], we are not able to use these techniques
for instrument separation.

Besides the ICA approach, Computational Auditory Scene Anal-
ysis (CASA) takes a more psycho-acoustical and perceptual ap-
proach by trying to classify the independent sources by features
such as fundamental frequency and common onset. The set of
features used to classify the independent sources parallels the hu-
man’s approach to separate sound [17]. Because of the rudimen-
tary nature of these features, the system works best for simple
sound sources like speech and tends to fall apart for sources which
overlap in the frequency domain, such as musical instruments. As
a precursor to CASA, Bregman [3] developed the idea of Audi-
tory Scene Analysis by modeling the human’s perception of sound
as a method for sound separation. Computation Auditory Scene
Analysis then describes how computers can be used to compute
ASA. Early work in [9] and [5] try to separate sounds by using
a flow-based CASA approach. The idea is to model the human
ear as stages and to get the final output only at the end. The flow
starts with modeling the cochlea of the ear by using filter-banks
to separate the input sound into different response ranges. It then
attempts to structure the sound into atomic components such as
those with the same fundamental frequency or a similar frequency
onset/offset. After this stage, the algorithm attempts to group these
components together based on special rules. Lastly, it resynthe-
sizes these groups to get the individual sounds. The work in [10]
improves on these early techniques by introducing a predicitive-
model that separates sounds at each instance and keeps a running
likeliness of each sound separation. Much like the human per-
ceptual system, the paper keeps an accurate account of the sound
separation at each instant.

There exist other algorithms that do not quite fit into these head-
ings but are alternative attempts at the instrument separation prob-
lem. One large area of research looks at breaking up the frequency-
time plot of a recording into subspaces of typical instruments. For
instance, certain instruments tend to stay within frequency pock-

ets and by filtering these pockets in a smart way, it is possible in
some cases to attain the instrument separation desired. These tech-
niques tend to use some learning method such as Non-negative
Matrix Factorization [22] as a means to understanding the rela-
tionships of instruments and their corresponding subspaces in the
frequency-time domain. Another learning-based approach [21]
borrows the mixture estimate ideas from ICA. They pose the in-
strument separation problem as a multiple-cause mixture problem.
By assuming the instruments (or causes) are all mixed in a lin-
ear fashion, the algorithm attempts to estimate the volumes of the
instruments. It requires a database of instruments that might be
used in the recorded output and then it guesses the mixing param-
eters using a neural network whose objective is to get as close
as possible to the recorded output in a least-squares sense. Al-
though the algorithm works well for instrument separation, it is
slow and more importantly, it requires a catalog of instruments
which it can then mix to produce an output at each iteration of the
algorithm. This database requirement is impractical in the gen-
eral case of the instrument separation problem where the charac-
terstics of a instrument vary from recording to recording. Finally,
we are seeing some early work in using unsupervised machine-
learning techniques like LLE to understand the underlying struc-
ture of sound and music. Using LLE, the authors in [] use LLE
to project a high-dimensional monophonic instrument track into a
lower dimension to see if they can visualize any underlying struc-
ture in the music. While the lower dimensional representation only
seems to describe some rudimentary characteristics about the pitch
and harmonic structure of the music, it is possible that future tech-
niques might use LLE to understand the structure of the mixed
instruments and then use this to demix the signal.

In addition to these main techniques for sound separation, another
more special case technique, and the one this paper will be focus-
ing on, exists for the separation of instruments in a piece of mu-
sic called Azimuth Descriminiation and Resynthesis (ADRes) [2].
This technique exploits the interaural intensity difference in the
left and right channels of an audio recording for each instrument.
By using phase cancellation in the frequency domain as well as
magnitude estimation, the algorithm is able to recover each instru-
ment (or group of instruments) in a piece of music. The algorithm
works well in practice though it tends to leave artifacts in recov-
ered instruments.

A closely related related approach to ADRes is the DUET (De-
generate Un-mixing and Estimation Technique) algorithm [14] –
it is an ICA approach which assumes the sensors recording the
signals are at different positions in space. This means the sen-
sors will record the sources with different time-delays due to the
distance from the sensor and the source. It also means the record-
ings will differ in amplitude. If the sources being separated are
W-disjoint orthogonal, they can be separated by analysing the ra-
tio of the amplitudes of bins in the frequency domain. The W-
disjoint requirement means the sources need to be disjoint in the
frequency domain or that two sources cannot overlap in any one
frequency bin. Unfortunately, because of the harmonic overlap
of instruments, this approach doesn’t work well for commercial
recordings.
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4 Background

4.1 ADRes Algorithm

While the complete details of the Azimuth Descrimination and
Resynthesis process is beyond the scope of this paper, we will de-
scribe the most importants parts. In this way, we may build off the
results of the Azimuth Descrimination and Resynthesis algorithm
and extend it to produce better results.

We begin by describing a typical recording of a piece of music. In
today’s mixing studios, it is common to combine instruments into
the left and right channels to create a stereo recoding [16]. The
contents of the left and right audio channels differ slightly in that
an instrument mixed into one channel of audio will have a slightly
different volume as compared to the other audio channel. The hu-
man brain interprets this interaural intensity difference (IID) [19]
as giving a distinct location in 3d space for the instrument being
mixed. Thus, the mixing engineer will give an instruments differ-
ent volume settings, or panning value [16], for each audio channel
to separate the instruments into sound pockets. Furthermore, mul-
tiple instruments will be mixed into each channel of audio. The
combination of these two facts gives us a way of describing the
mixing model for a channel of audio. The model can be defined
as:

L(t) =

J∑
j=0

Ij(t)Plj (1a)

R(t) =

J∑
j=0

Ij(t)Prj (1b)

whereL(t) andR(t) correspond to the left and right audio chan-
nels in time respectively,Ij(t) describes one of the J independent
instruments being mixed, andPlj andPrj define the amount the
mixing engineer wanted to scale the volume (or pan) the instru-
ment in the left and right channels. We can also express the ratio
of the left panning value of thejth instrument to the right panning
value of thejth instrument as:

s(j) =
Plj
Prj

(2)

From these equations, we can see that the left and right audio chan-
nels only differ in the amount of each instrument they receive in
the final mix. Furthermore, we can uses(j) to express the ratio of
the left audio channel to the right audio channel. In fact, if we scale
the right audio channel bys(j), we would expect to be scaling the
right channel to the same volume as the left channel for a given in-
strumentj. In fact, if we were to subtract the two audio channels
after performing the scaling, we would also expect the instrument j
to cancel out. The aforementioned operations can be performed in
the amplitude-time domain or in the frequency-time domain. We
can look at these signals in the frequency domain by performing a
short-time Fourier transform on one frame of the time signal using
the following equations:

Lf(k) =

T−1∑
t=0

L(t)e−j 2πtk
T (3a)

Rf(k) =

T−1∑
t=0

R(t)e−j 2πtk
T (3b)

We can illustrate all this visually by supposing we had the two
audio channels in Figure 1. Notice how the right audio channel
contains the same signal as the left audio channel except it has
been scaled by 70%. We can also look at the same two signals in
the frequency domain (Figure 2) and find we are still able to see
the right audio channel being the same but scaled version of the
left audio channel. If we scale the right audio channel by 70%
and subtract from the left audio channel, we get the bottom plot
in Figure 2 which shows the two frequencies cancelling each other
out.

Figure 1:The image on the left shows the time-domain plot of the
left audio channel containing a pure tone at 100% volume. The
image on the right shows the time-domain plot of thr right audio
channel containing the same pure tone as the image on the left
image except the volume has been scaled to 70% of its original
amplitude.

This example is slightly contrived since in a real musical piece, we
are not dealing with single pure tones but multiple, independent
instruments. Furthermore, we do not know what panning values
were used in the original studio mix. Luckily, we do know that if
we have the correct panning value, we can perform the scale and
substract operation and an instrument in the piece of music will
cancel out of the audio channel. By knowing where an instrument
cancels out, we can guess the amplitude before it was cancelled
out, zero out all other frequencies and then resynthesize to get out
instrument.

Thus, the Azimuth Discrimination and Resynthesis algorithm be-
gins by tranforming the input audio channels into the frequency
domains. It then proceeds by scaling one of the audio channels by
one of a range of values and then it performs the subtraction with
the other channel. This can be expressed as:

AzL(i, k) = |Rf(k)− s(i, k)Lf(k)| (4a)

AzR(i, k) = |Lf(k)− s(i, k)Rf(k)| (4b)

where,

s(i, k) =
i

β
(5)
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for integer values ofi such that0 ≤ i ≤ β. Depending on the
choice ofβ, the algorithm can create more azimuth planes though
in practice, 10 azimuth planes suffices.

For each frame of the short-time Fourier transform, we can per-
form this scaling and subtraction operation and then graph our re-
sult in a set of planes (called azimuth planes) one for eachs(k)
value – each plane will show the STFT magnitude plot for the
corresponding azimuth value. We then look for places where the
graph crosses zero since these are places where we can postulate an
instrument has been cancelled out. At each of these zero-crossings,
we can estimate the original magnitude of the cancelled out instru-
ment and zero out the same frequency for all other azimuth planes
since only one plane for a given frequency will have a zero cross-
ing. This operation constitutes the ”Azimuth Discrimination” step
in ”Azimuth Discrimination and Resynthesis” and the algorithm
for it looks like:

Zero-Crossing Detection and Magnitude Estimation

Perform Azimuth Scaling/Subtraction for an audio channel,Az(i, k)

for each frequency binkcurrent do
Find the minimum frequency magnitudeAz(kcurrent)min

Find the maximum frequency magnitudeAz(kcurrent)max

Compute the estimated magnitude,
Magnitude =Az(kcurrent)max - Az(kcurrent)min

for each azimuth planeicurrent do
if Az(icurrent, kcurrent ==Az(kcurrent)min then
Az(icurrent, kcurrent) =Magnitude

else
Az(icurrent, kcurrent) = 0

end if
end for

end for

After performing this normalization operation, ideally, each instru-
ment should be separated on an azimuth plane. By taking one az-
imuth plane and running an inverted short-time Fourier transform
using either overlap-add or overlap-save allows, we can resynthe-
size the original instrument. This constitutes the ”Resynthesis”
step in ”Azimuth Discrimination and Resynthesis.”

Figures 4-7 illustrate a more complete example, showing the Az-
imuth Discrimination and Resynthesis process from start to finish.

4.2 Problems with Azimuth Descrimination and Resynthesis

If each instrument was independent in the frequency domain and
had a distinct panning value, the Azimuth Discrimination and Resyn-
thesis process would work perfectly. Unfortunately, in the case of
instruments in a piece of music, there is a large degree of har-
monic overlap which leads to ”azimuth smearing.” [2] In effect,
this means that two instruments contribute to one frequency bin of
the STFT and this results in instruments not grouping perfectly on
the azimuth planes.

The net effect of this smearing is the resynthesis of not just one
instrument but stray frequencies from other instruments as well.

The inclusion of these stray frequencies leads to a poor separation
for those instruments which come in and out of the piece of mu-

Figure 2:The top-left image shows the left audio channel from Fig-
ure 1 in the frequency domain. The top-right image shows the right
audio channel from Figure 1 in the frequency domain. The bottom
image shows the left audio channel scaled by 70% and subtracted
from the audio channel, resulting in frequency cancellation.

Figure 3:The top-left and top-right images show the left and right
audio channels in a test sound clip. Two pure tones have been
mixed into the left and right audio channels. One tone is panned
40% to the left and 90% to the right. The second tone is panned
just the opposite. The lower-left and lower-right plots show the
magnitude frequency plots for one frame of the STFT of the left the
right audio channels, respectively.
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Figure 4:Azimuth planes, which are the magnitude frequency plots
rotated into the YZ plane, for the left channel, before the normal-
ization step. Notice the magnitude frequency in the front start out
high at plane 3, go lower in plane 4, and then rise again in plane
5. At plane 4, we have phase cancellation and therefore, an instru-
ment.

Figure 5: Azimuth planes after the normalization step. Here, we
see the estimated magnitude for one of the tones at plane 4.

Figure 6: After using overlap-save, we see one of the pure tones
recovered by resynthesizing azimuth plane 4.

Figure 7: After performing Azimuth Discrimination, we see an
instrument smeared across the azimuth planes instead of being
neatly grouped into the planes.

Figure 8:Separated vocals from a Doors tracks. The vocals begin
15 seconds into the clip, evidenced by the large peaks in the plot.
However, because of the ”azimuth smearing”, we see stray noise
in the clip, especially at the beginning.

sic (see Figure 8). This stray noise is particularly evident when
the instrument itself isn’t audible or playing. As a result, we now
describe a way to selectively resynthesize an instrument in a time-
varying fashion so that when an instrument isn’t playing, we are
able to insert silence and avoid the stray noise. In the end, this will
give a higher quality instrument separation for special cases where
the separated instrument isn’t always playing.

5 METHOD

5.1 Wavelet Decomposition for Instrument Detection

In order to resynthesize a separated instrument in a time-varying
fashion, we need to be able to detect the presence or absence of an
instrument in a piece of music. Thus, we would like a represen-
tation of the instrument that allows us to make this distinction. It
is possible to use the time-domain signal itself but we may detect
frequencies we are not interested in for the purpose of instrument
detection. An example of unwanted frequencies would be transient
noise introduced by the resynthesis step of the Azimuth Descrim-
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ination and Resynthesis algotihm. Since the time-domain repre-
sentation makes no distinction between instruments and noise in
different frequencies, this turns out to be a suboptimal approach.

A better approach to this problem uses wavlet decomposition which
transforms our data into the scale domain (scale being inversely
proportional to frequency). Wavelets do not provide as accurate a
view of the frequency information of our signal compared to the
FFT or STFT but it provides excellent time-resolution. In other
words, the wavelet representation of our signal allows us to capture
the frequency and more importantly, when the frequencies occur,
accurately.

Our instrument signal can be taken into scale domain using the
continuous wavelet transform (CWT) [23] with the following equa-
tion:

γ(s, τ) =

∫
f(t)ψ∗s,τ (t) dt (6)

where our instrumentf(t) is transformed intoγ(s, τ) which rep-
resents our signal at different scales,s , and time-dilations,τ of
the mother waveletψ∗s,τ (t). The mother wavelet itself can be any
of a number of basis functions that can be scaled and dilated with
the following equation:

γ(s, τ) =
1√
(2)

ψ(
t− τ

s
) (7)

While the theory of wavelets is beyond the scope of this paper, it
is clear that the CWT produces a large amount of information be-
cause of the mother wavelet being continuously scaled and dilated
in time. In practice, looking at discrete scalings and dilations of
the mother wavelet produces enough information for our discrete
signal. Thus, our discrete signal can be transformed into the scale
domain using the discrete wavelet transform (DWT) [23] wavelet
decomposition:

γ(s, τ) =
∑

f(t)ψ∗s,τ (t) dt (8)

5.2 Implementation

After transforming our signal into the scale domain, we would like
to be able to detect large increases in the amount of energy in the
signal as well as large decreases. The first corresponds to an instru-
ment becoming audible while the latter occurs when the instrument
becomes inaudible.

In our experiments, a wavelet scale level of 4 tends to be sufficient
to filter out unwanted frequencies and detect the instrument’s com-
ings and goings. Also, the Daubechies 10 (db20) mother wavelet
works well to capture signals with large changes in energy as is the
case with our instrument. Figure 9 shows the wavelet decomposi-
tion for the voice track shown in Figure 8.

By looking at the bottom layer of the wavelet decomposition in
Figure 8, we can see large increases and large decreases of the
energy in the signal evidenced by the changes in color. These
changes in energy correspond to the instrument (or vocals in this
case) becoming audible and inaudible.

Figure 9:Wavelet decomposition for the voice track in Figure 8.

To be able to detect these changes, we implement a straightforward
running total algorithm which first breaks the lower scale data into
blocks of 1024 samples. We then compute the amount of energy
in this block by squaring the samples and summing (squaring the
samples allows us to estimate the magnitude of the energy). In
addition to the individual blocks of energy, we also keep a history
of the energy for the last second. If our sampling rate is 44.1k,
we keep 43 blocks in our history assuming our blocks are 1024
samples long. It should also be noted that the choice of 1024 sam-
ple blocks was made under the assumption that even if we miss
the detection of an instrument’s coming or going by 1024 samples,
it shouldn’t make a big difference because at a sampling rate of
44.1k, 1024 samples represents roughly 1/44th of a second. We
now step through each block of the wavelet decomposition and
compare the current block to the previous 1 second history blocks
and see if there has been a large increase or decrease in energy.
If so, we mark the area as the instrument coming in or going out
respectively. The algorithm is as follows:

Instrument Detection

Use wavelet decomposition on instrument and extract an
appropriate scale,W (t)

Compute energy on first block ofW (t),Ecurrent

Create history buffer of 43 elements,Ehistory filled withEcurrent

for each block inW (t) do
Compute energy on current block ofW (t),Ecurrent

Compute average energy for history,Eavg = 1
43

∑
Ehistory

if Ecurrent ≥ αEavg then
Instrument is now audible

else
if Ecurrent ≤ βEavg then

Instrument is no longer audible
end if

end if

AddEcurrent toEhistory by replacing oldest value
end for

Compute Energy of a Block

energy =
∑t+1024

t
W (t)2
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Theα andβ variables can be used to tweak how much of an in-
crease or decrease in energy constitutes an instrument coming in
and out. After performing the instrument detection phase of the al-
gorithm, we can zero out those samples in the original signal which
do not represent the separated instrument. The resulting waveform
with stray noise removed can be seen in Figure 10.

Figure 10:The altered voice track from Figure 8, after detecting
the instrument and removing the stray frequencies.

6 Results

6.1 Instrument Separation Quality Metric

In order to objectively measure the quality of the instrument sep-
aration, we need to define an appropriate metric and apply it to
our results. To this end, we use the wavelet once again. By us-
ing the wavelet decomposition of our final signal, we can compare
our results to the original Azimuth Discrimination and Resynthesis
paper. We choose to use wavelet decomposition for a metric be-
cause it allows us to look at different scales of our signals (again, in
practice, a scale level of 4 tends to work well) thereby comparing
our instrument separation to the original instrument track in differ-
ent frequency (or scale) bands. We have also found that using the
Haar basis functions is sufficient for this calculation though other
functions like the higher tap Daubechies functions would probably
work just as well.

After performing the wavelet decomposition, we treat the output
coefficients as a vector in high dimensional Euclidean space. We
can then perform a standard L2 norm distance calculation on the
vectors to see how close they are and in effect, how similar they
are in the scale and time domains. In other words, if we are com-
paring instrument separations A and B to the original instrument,
C, and A is closer to C than B, then we know A provides a better
instrument separation. The algorithm for this metric looks like:

Quality of Separation Calculation

Perform wavelet decomposition for original instrument track,
γ(s, τ)original

Perform wavelet decomposition for the separated instrument track,
γ(s, τ)separated

Normalize both vectors,γ(s, τ)original andγ(s, τ)separated

distance =
√∑

s,τ
(γ(s, τ)original − γ(s, τ)separated)2

6.2 Instrument Separation Results

We performed three instrument separations for which we not only
had the mixed track but also the individual instruments before the
mix. In this way, we could compare the quality of our separation
to the ideal separation we would have liked to achieve. We also
computed the distance between the original instrument with ran-
dom noise added and the original instrument so that we could get
a feel for how close our separations come to a noisy version of the
ideal separation. The tracks we used for the separation were:

Track 1 ”Yeah” by Usher, Performed by Amit Apte
Track 2 ”Soniya (Girl)” by Amit Apte
Track 3 ”No Name” by Amit Apte

The results of the separation are listed in the table below:

Original w/ Noise3 ADRes1,3 T-V ADRes2,3

Track 1 0.2059 0.7624 0.7241
Track 2 0.2132 0.3485 0.3167
Track 3 0.2028 0.3598 0.3574

1ADRes = Azimuth Discrimination and Resynthesis
2T-V ADRes = Time-Varying Azimuth Discrimination and Resyn-
thesis
3All distances are normalized

In all cases, we see that our Time-Varying Azimuth Discrimination
and Resynthesis approach produces better results from a purely
mathematical standpoint. In one case, the results are better by a
factor of the distance between the original instrument track and the
original instrument track with added noise track. This leads us to
the believe that indeed, we have successfully removed unwanted
noise and stray frequencies from our instrument separation. The
improvement in separation can also be expressed perceptually by
listening to the example recordings and noting the absence of noise
artifacts when the instrument in the music sample isn’t playing.

Finally, while we cannot use this metric to compare our instrument
separation of the example tracks from [2] (as we do not have ac-
cess to the original instrument-only tracks), the results have been
included anyway for completeness.

6.3 DJ Remix Example

In addition to the sample instrument separation, we also demon-
strate the possibility of taking two or more pieces of music, sepa-
rating out instruments and creating a new remix song. By using the
Time-Varying Azimuth Discrimination and Resynthesis approach,
we present two examples to demonstrate the repurposing of ex-
isting music – an amateur DJ might be follow this exact process
when remixing a song.

For the first example, we take the track ”Broken Dreams” by Green
Day and remove the vocals (removing instruments can easily be
accomplished by the Azimuth Discrimination and Resynthesis al-
gorithm by resynthesizing azimuth planes before the zero cross-
ing/magnitude estimation phase). We then separate the vocals from
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”Wonderwall” by Oasis and overlay them on top of the instrumen-
tal Green Day track. Because both songs have the same chord
progression and are in the same key, the remix works perfectly.

The second example illustrates a more complicated usage of the
instrument separation. In this remix, we take the vocals from the
”Bonus Track” from Dido’s ”Life for Rent” album and use the
backing drum and bass from Zero 7’s ”Speed Dial No. 2”. Lastly,
we add a higher range string orchestration from Morcheeba’s ”Fear
and Love”. Because all these tracks were played in major keys,
with a bit of key transposition, we were able to mix the separated
instrument into one cohesive remix track.

7 Conclusion

In this paper, we have shown an improved method for instrument
separation. By taking the output from the original ADRes algo-
rithm, we can use wavelet decomposition to detect the presence
or absence of an instrument in time. In this way, we can resyn-
thesize our instrument in a time-varying fashion so that the more
noticible audio artifacts left behind by ADRes are less obvious.
Additionally, we defined an objective metric which can be used to
measure the quality of our separation compared to an ideal sepa-
ration. Lastly, we have illustrated a possible application of instru-
ment separation, namely a way to repurpose existing music so as
to create new remix tracks.
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