
Fast, Secure Encryption for Indexing in a Column-Oriented DBMS

Tingjian Ge, Stan Zdonik
Brown University

{tige, sbz}@cs.brown.edu

Abstract
Networked information systems require strong security

guarantees because of the new threats that they face.
Various forms of encryption have been proposed to deal
with this problem. In a database system, there are often two
contradictory goals: security of the encryption and fast
performance of queries. There have been a number of
proposals of database encryption schemes to facilitate
queries on encrypted columns. Order-preserving
encryption techniques are well-suited for databases since
they support a simple, and efficient way to build indices.
However, as we will show, they are insecure under
straightforward attack scenarios.

We propose a new light-weight database encryption
scheme (called FCE) for column stores in data warehouses
with trusted servers. The low decryption overhead of FCE
makes comparisons of ciphertexts and hence indexing
operations very fast. Since it is hard to use classical
security definitions in cryptography to prove the security of
any existing symmetric encryption scheme, we propose a
relaxed measure of security, called INFO-CPA-DB. INFO-
CPA-DB is based on a well-established security definition
in cryptography and relaxes it using information theoretic
concepts. Using INFO-CPA-DB, we give strong evidence
that FCE is as secure as any underlying block cipher (yet
more efficient than using the block cipher itself). Using the
same security measure we also show the inherent insecurity
of any order preserving encryption scheme under
straightforward attack scenarios. We discuss indexing
techniques based on FCE as well.

1. Introduction
Typically a DBMS provides two ways to achieve

security: access control and data encryption. Of the two,
access control is a relatively older way to protect sensitive
data. However, access control by itself is not sufficient. An
adversary who gains access to the database files can access
sensitive data, thus, bypassing the access control
mechanism. As a result, it is necessary to encrypt data in
the DBMS.
 Encryption is well studied in cryptography. However,
when used in a DBMS, the traditional security definitions
and properties of classical encryption schemes have a
considerable performance impact on queries on encrypted
data. First, standard definitions of security in cryptography
[7,8,3] do not allow ciphertext values to reveal any
information about the plaintext values, including the
relative order information between their corresponding

plaintexts. This implies that even comparisons have to go
through decryption first. Second, encryption and decryption
of existing cryptographic schemes have high CPU cost.
Analogous to disk I/O, even though the speed of modern
symmetric encryption schemes is improving, it remains
costly for the database CPU. Therefore, data encryption
significantly slows down query processing. For example,
evaluating predicates that reference an encrypted column
would generally require an expensive decryption step.
 DBMS-specific encryption schemes that perform well
for queries, but that preserve security are, thus, very
desirable. One state-of-the-art technique is order-preserving
encryption (e.g., OPES [1]). Such a scheme supports direct
comparison of ciphertexts, which allows us to build indices
in support of range queries. However, as we will show,
such schemes are inherently not secure under
straightforward attack scenarios.
 In this paper, we propose an efficient light-weight
database encryption scheme (called FCE), in which
comparisons can be done with partial decryption (Early
Stopping). FCE uses any block cipher to encrypt only a few
bytes of random seeds in each page of the database, and
uses lighter-weight computation to encrypt the actual data
in a page. The low overhead of FCE enables efficient
comparison and, therefore, efficient indexing on the
ciphertext. We present evidence regarding the security of
this scheme.
 There have been a few proposals of “homegrown”
encryption schemes for database systems for the purpose of
fast search [1,2,9,15]. But how secure are these schemes?
We stress that the importance of security cannot be under-
estimated, because after all, “hiding” the information of
data is the goal of using any encryption to begin with
(otherwise the usage of it would not exist).
 Let us look at a specific example. Suppose a mortgage
company uses a customer table with schema Customer
(name, age, address, loan type, net assets). Assume that
only net assets is sensitive. So it is more efficient to encrypt
only sensitive columns while leaving other columns in the
clear. This way, fetching results of a non-sensitive column,
say age, does not require decryption. For example, Oracle
[14] provides column-level encryption. In this paper we
assume this usage scenario. Consider using any order
preserving encryption scheme (e.g., [1]) to encrypt net
assets while leaving other columns in the clear. Then, an
adversary who has access to the database files can discover
the relative order of the net assets values between two
customers identified by other attributes. This phenomenon
of “insecurity” of newly proposed database encryption

schemes is fairly common. The “bucketing” approach of
[9] reveals value range correlation between columns. For
example, an adversary could discover that the records that
have values in the same bucket on one column are very
likely to have values in the same bucket on another column.
Column value distributions can also be revealed as pointed
out by [1]. Similarly, column value distributions can be
revealed by other schemes such as summation of random
numbers [2], or by polynomial functions [15].
 The security of a database encryption scheme must be
examined more carefully. Unfortunately it is hard to prove
the security of any symmetric encryption scheme used in
databases today using the established security definitions in
cryptography [7,8,3] (public key encryption schemes,
which are provably secure, are slower and generally not
used in databases). In light of this fact, we propose a
relaxed measure of security based on the Real-Or-Random
definition [3] in cryptography. The relaxation uses the
concept of “entropy”, and gives strong evidence that FCE is
as secure as any block cipher that it uses for encrypting the
random seeds (a few bytes) in each page header in the
database. We also show the insecurity of any order
preserving encryption scheme using this same measure. As
any other new scheme, besides the theoretical analysis, the
security of FCE needs to stand the scrutiny of cryptanalysts
as well as the test of time. But those are beyond the scope
of this paper.
 FCE is specifically tailored to database systems in the
following ways:
• Comparison is fast, which facilitates the search of

indices.
• We show its security using INFO-CPA-DB, a security

measure defined in the database context.
• Secret random functions are stored at the database

page level, which corresponds to the unit of I/O.

 The rest of the paper is organized as follows. We first
discuss the threat model in Section 2. Section 3 presents
our new database encryption scheme: FCE. We also show
a variant of it, r-FCE, which will be used for analysis.
Section 4 discusses our security measure. In Section 5, we
provide a detailed analysis of the security of any order-
preserving scheme, and of FCE. Then, in Section 6, we
discuss how indexing works with FCE. Section 7 gives our
experimental performance results. We present related work
in Section 8 and summarize the paper in Section 9.

2. Threat Model
 We separate the issue of the security of the
communication channel between client and DBMS server,
and the issue of the security of the on-disk data [1], i.e.,
data security in the storage system of the server (“divide
and conquer” approach). We assume the database software
is trusted, in particular, the adversary does not have access
to the values in the memory of the database software, and
the database software is trusted to decrypt column values to

evaluate predicates on encrypted columns (otherwise
efficient processing by the server on encrypted data is not
possible anyway). See Figure 1 for the system model.

 In this work, we specifically aim at encryption to ensure
the security of on-disk data. We leave open the security of
the communication between the client and server as a
separate orthogonal issue, which can be protected by a
traditional symmetric key encryption scheme if needed.
Our threat model and protection goal are also considered by
[1], which is not a surprise, as both consider efficient
processing of encrypted data by the server.

3. The New Encryption Scheme
3.1 C-Store: A Column Oriented DBMS
 We will analyze the usage of the newly proposed
encryption scheme in the context of an open-source
column-oriented DBMS called C-Store [19]. C-Store is a
read-optimized relational DBMS. The most salient
differences between C-Store and a traditional “row-store”
system are that C-Store organizes data by column rather
than by row, and that it makes heavy use of sorting and
compression [18].

3.2 Fast Comparison Encryption (FCE)
3.2.1 r-FCE Algorithms

 We first consider a version of FCE based on random
permutations, hence the name r-FCE. C-Store stores the
values of a column together in a set of pages. Suppose we
somehow associate with each (encrypted) data page a truly
random permutation whose size is the same as the page size
(in bytes). Let the page size be P bytes (for C-Store,
P=64KB). Thus each page (of the encrypted column) is
associated with one of the P! random permutations. To
represent the random permutation, at least log(P!) random
bits are needed. When P=64K, using Stirling’s formula
[13], we can compute that each page needs

954037)!64(log2 ≈K random bits to represent the permutation.
This is unrealistic. Hence, r-FCE is an idealized version.
But we use r-FCE just as an intermediate scheme, purely

Trusted DBMS Server

Sensitive Data
Encrypted On
Disk

Communication may be
protected

Figure 1: Divide and conquer approach for DBMS security.

Client

for the purpose of information theoretic analysis. In section
3.2.2, we’ll give an actual FCE scheme that uses k-wise
independent functions, and we’ll argue that it is
computationally indistinguishable [7] from r-FCE.
 r-FCE is a symmetric key encryption scheme for a
DBMS. As in C-Store, we assume we are encrypting a
whole page of data values of some column. Let’s denote
the key by K, and its bit-length by |K|. A typical value is
32Kb (“K” here following a number denotes a unit of
“1024”, not to be confused with the secret key “K”. It
should be clear from the context). The key generation
algorithm is simply to generate a random |K| bit number.
We next describe the encryption algorithm for a page of
plaintext values.

Encryption Algorithm

Input: encryption key K (one key for the entire database), a
page of plaintext values (P bytes), and a random
permutation (function) associated with the page (one for
each page) },..,1{},..,1{: PPperm → .
Output: a page of ciphertext values.

We consider and encrypt each byte of the page separately:

,1 PtoiFor =

(1) Let ||mod)(Kipermdi = which is clearly in the range
of [0, |K|-1].

(2) Then the ciphertext byte ic of the plaintext byte ib of
the page is simply the bitwise XOR of byte ib and the
byte starting from the id ’th bit of K (See Figure 2). If

id falls on the last 7 bits of K, wrap around and use
both the ending bits and the starting bits of K to form a
pad byte. For example, if 2|| −= Kd i , then the pad
byte is the last two bits of K concatenated with the first
6 bits of K.

Example: Let’s say we are encrypting the 30th byte of a
page, and the plaintext byte value is 00101110 in binary.
As in C-Store, let |K|=32768, and P=65536. In step (1) of
the encryption algorithm, the 30th byte gets a random
permutation value 32768mod)30(permd i = , where perm is
the random permutation associated with the page. Suppose

33466)30(=perm , so 69832768mod33466 ==id . Next,

in step (2) of the algorithm, we find the byte value starting
from the 698th bit of the key K. Assume the byte (in K) is
10011010. Then the ciphertext byte is simply the XOR of
this key byte and the plaintext byte:

101101000010111010011010 =⊕ .

 The decryption algorithm is the reverse of the
encryption. The details are omitted, as it is fairly easy to
derive.

3.2.2 The FCE Algorithms for C-Store

 The only difference between FCE and r-FCE is that in
FCE, we replace the random permutation perm associated
with each page by a “secret” k-wise independent function
[12] (informally, it means any k points of the function are
completely independent). Specifically, we can use a 4-wise
independent function family (i.e., k=4; we’ll explain the
reason in Section 5) in step (1) of the encryption algorithm.
We use a rather natural and efficient construction of a 4-
wise independent function family, namely, random
polynomials of degree k-1 (where k=4) as described in
[12]:

dcxbxaxxp +++= 23)(
where]1,0[,,,, −∈ Pxdcba .
 We now describe the implementation in C-Store where
the page size is 64KB (hence the domain]12,0[16 −), and

152|| =K (hence 152mod in FCE algorithms). We need one
such (secret) random polynomial per page, which means
we need four (secret) random values dcba ,,, per page,
totaling 64 bits. Therefore, we can store a random 64-bit
seed at the page header (for a 64KB page, a 64-bit seed is
certainly acceptable1), and use a block cipher (say DES) to
get a 64-bit actual (secret) seed from the original seed, and
split it to get dcba ,,, . We will use the same block cipher
key (e.g., a 64-bit DES key) for every page of the database,
and a different seed for each page of the database. The key
of the block cipher and the encryption key K described
above together form the secret key of FCE.
 Observe that in step (1) of the encryption algorithm, the
function)(xp is applied on each byte position of the page,
which means the set of input values (]12,0[16 −) are the
same across pages. We therefore can pre-compute 3x and

2x values for each byte position, and use them universally
for any page. Thus an evaluation of the random polynomial
function simply involves 3 multiplications and additions
and is very efficient. For example, this is fewer than 10
CPU cycles per encrypted byte on TMS320C6211 [4, 20],
considering both computation and possible cache miss cost.
The detailed analysis is in the full version of the paper, due
to space constraints. In contrast, a DES implementation on
the same processor needs 30 to 50 cycles per byte [16].

1 Note that we can increase the number of random bits for more security.

|K|

0

id
8 bits used for pad

1

Figure 2: Using di to find one byte in K as a pad

1

 The comparison of two ciphertext values starts from the
most significant byte (assuming this can be known from the
value type) and proceeds byte by byte from left to right. It
is essentially an Early Stopping (ES) partial decryption of
the two ciphertext values. The procedure stops as soon as a
byte difference is found. This is feasible with FCE because
encryption is done byte by byte, whereas in other block
ciphers (e.g., DES) it is done in a unit of 8 bytes or more.
 FCE uses a block cipher as a subroutine to encrypt only a
small number of bytes per page. The encryption of the
remainder of the data on the page is very light-weight. In
FCE, comparing two ciphertext values and comparing a
ciphertext with a plaintext value are very similar, as both
work in the same manner starting from the most significant
byte. As a result, joining two FCE encrypted columns and
joining an encrypted with a non-encrypted column will
work similarly. We’ll discuss in Section 5.1 that this is not
the case with OPES.

C-Store is read-optimized and targets data warehousing
applications [18]. In such a system, an UPDATE is rare and
is of less concern. Updates are applied in batch, rather than
incrementally. During batch updates, a fresh random seed is
generated for a page that uses FCE, to ensure security.

4. The Security Measure

 It would be best to prove the security of our scheme
according to an established definition. Unfortunately, the
fact is that no symmetric encryption scheme is provably
secure in that regard. We therefore propose a relaxation of
an existing security definition in cryptography, the so-
called Real-Or-Random definition [3]. The relaxation gives
a formal security measure of an encryption scheme. We use
entropy, which is a basic concept in information theory [5]
that gives a universal measure of randomness. The entropy
in bits of a discrete random variable X is given by
 ∑ ==−=

x
xXxXXH)Pr(log)Pr()(2

where the summation is over all values x in the range of X.
We assume the threat model defined in Section 2 and that
encryption is specified per attribute. Observe that a
column-wise storage is most friendly to such selective
encryption. Nonetheless, this definition can be easily
extended for cases that must encrypt every column of the
table.

We first describe the intuition behind the security
measure. An encryption scheme is secure if the adversary
cannot distinguish the ciphertexts of any two (equal length)
messages (i.e., plaintext values). In turn, the scheme is
secure if the adversary cannot tell apart the ciphertext of
any Real message and that of an equal-length Random
message (By transitivity, one cannot tell apart the
ciphertext of any two real messages). Namely, this is
exactly what the Real-Or-Random definition requires. To
capture the notion of “any” message, we simply let the
adversary (to her advantage) arbitrarily choose any
message. The more power we give to the adversary (and if

we can still demonstrate certain security conditions are
met), the more secure the system is. Such a notion in a
security measure is termed “Chosen Plaintext Attack”
(CPA) [7,3]. In our security measure (INFO-CPA-DB), we
add a player (Guard of the cryptosystem) into the game.
The Guard has to come up with random messages, which
under a legally generated key, encrypt to the exact same
ciphertext of the messages that the adversary has chosen.
Consequently, not knowing which key is actually used, but
just seeing the ciphertext, no one can tell whether it was
from a real message or from random garbage. The security
measure leaves space for certain “imperfections” of the
cryptosystem by measuring the entropy of the (supposedly)
random string that the Guard comes up with. The closer it
is to the maximum entropy, the more random it is, and
hence, the more secure the scheme is. In other words, we
use “entropy” as a metric that measures how far the system
is from being “perfectly secure”. See Figure 3.

Definition 1 [INFO-CPA-DB] Let),,(DSE εκ= be a
symmetric encryption scheme used for a DBMS (the three
parameters are key generation, encryption, and decryption
algorithms respectively). A relational table T that has
sensitive information includes two columns: ID, which is
the primary key, and MSG, which is encrypted. Consider a
game between player A (Adversary) and player G (Guard
of the cryptosystem).

(1) First, the key generation algorithm is run for A and A
gets key K. To her own advantage, A arbitrarily
generates q records for the table T (i.e., A chooses q
ID values and MSG plaintext values
())1(, qimid ii ≤≤). A encrypts the MSG values using
her key K, and the table data is stored on disk. Let

nm
q

i
i =∑

=1
|| and),(Kmencc ii = . The database files (but

not K) are passed to G.
(2) G, without knowing K, tries to come up with a

“simulation script” that would create the exact same
database files: G needs to run the key generation
algorithm to get K ′ , and come up with a sequence of
“random” messages)1(qimi ≤≤′ such that |||| ii mm =′

 m
Player A
(Adversary)

 c

 m′

Generate K; Encrypt

Generate K’; Encrypt Player G
(Guard)

Judge: How close is this to
a random string?

Figure 3: A mental game between A & G in INFO-CPA-DB
definition.

and),(Kmencc ii ′′= for all qi ≤≤1 . In other words,
using K ′ to encrypt the random messages, together
with the same ID values used by A must produce the
exact same files that A passes to G. Let

qmmmm ′′′=′ ...21 (where is bit-string
concatenation).

(3) The success of G (and the security of SE) is measured
by how close m′ is to a uniformly random n bit string,
specifically, how close)(mH ′ is to n. Then we say that
SE is)),((nmH ′ secure. Clearly, the most secure
scheme would be (n, n) secure.

 Using entropy, INFO-CPA-DB relaxes the Real-Or-
Random definition, and is a continuous measure of security.
We note a caveat here that the exact relationship between
the amount of entropy and the amount of resources
necessary to break the scheme is unknown, and is left as
future work.

5. Analysis of Order Preserving Encryption
Schemes and of FCE

5.1 Analysis of Any Order Preserving Scheme
 Under an order-preserving encryption scheme, ciphertext
values preserve the order relationship of the corresponding
plaintext values. It is ideal for query performance since
comparisons can operate directly on ciphertext, saving the
cost of expensive decryptions. A state-of-the-art order-
preserving encryption scheme is OPES [1]. As expected, B-
tree indices can be built and used on encrypted columns as
well. However, as we will show, any order preserving
encryption scheme is inherently not secure under the
common usage scenario that only a subset of the columns is
encrypted, which is our assumed usage model.
 Intuitively, any order-preserving scheme reveals the
order of column values between records. This information
may be quite significant. We have seen an example in
Section 1. Further, if the adversary somehow knows one or
more plaintext values of the column, he or she can narrow
down the possible range of other values. Thus, order-
preserving schemes are prone to inference attacks. To be
concrete, in our example if we know Alice and Charles
bracket Betty, and we have side information about the
assets of Alice and Charles ($1M and $1.1M), then we have
a good estimate for Betty’s assets. [1] uses “percentile
exposure” as the security measure. However, that only tells
if the scheme hides the column value distribution (which an
adversary might already know to begin with). Security via
encryption must hide much more than that.

Now we formally analyze the security of order-
preserving encryption schemes using our information
theoretic security measure. Recall that the idea of our
definition is to give the adversary (player A) advantage and
freedom to choose an arbitrary set of plaintext, and the
player G (Guard of the cryptosystem) needs to respond

with a set of “random” message that (under some key)
encrypts to the same ciphertext. Intuitively, this definition
rules out the security of any order-preserving scheme,
because if the adversary chooses two values 21 mm < , then
their ciphertext must satisfy 21 cc < . And whatever
“random” messages),(21 rr the Guard comes up with must
satisfy 21 rr < , which makes 21 rr as a whole not random.
Theorem 1 that follows is based on this observation and
says that there is a set of messages (which the adversary
may choose) that leaves the Guard nothing but one choice
of plaintext that is the same as the adversary’s, and hence is
not at all random. So the entropy is 0, and the order
preserving encryption is insecure.

Theorem 1: Consider the INFO-CPA-DB definition of
security for an order preserving encryption scheme. In the
game, there exists a strategy for player A, such that
whatever player G’s strategy is, it holds that 0)(=′mH .

Proof: Let us give such a strategy for player A. We simply
let plaintext be fixed-length bit strings, of length l bits. We
can thus represent the plaintext domain as [0, 12 −l], in that
order, i.e., 12...210 −<<<< l . Note that A has the freedom
to choose l such that l2 is a reasonable number and A can
fill in the table with this many records. A’s strategy is to fill
the table with l2 records, where the MSG column values
are distinct and in increasing order (as the ID column).
 Now, because the encryption is order preserving, the
ciphertext values must also be distinct and in increasing
order. Player G, given the ciphertext, has to create a
simulation script and come up with “random” MSG values

)21(l
i im ≤≤′ with the same length (l bit), which can

encrypt to the same set of ciphertexts with G’s key K ′ .
Again due to the order-preserving property, it must be that

lmmmm 2321 ... ′<<′<′<′ . Clearly, due to the plaintext
domain, it must be that)21(1 l

i iim ≤≤−=′ . In other words,
there’s only one possibility for)21(l

i im ≤≤′ . Therefore,

0)(=′mH .

 Theorem 1 verifies our observation that any order
preserving scheme is inherently insecure. Put another way,
the INFO-CPA-DB definition protects us from attacks
based on the order-preserving property of the encryption.
 OPES assumes that the adversary does not have prior
information about the value distribution. But in reality,
many applications may have a column of sensitive data
whose distribution is well known by the adversary, or
whose distribution can be easily guessed (e.g., if there are
only a limited number of probable distributions). Therefore,
OPES cannot be used in these cases. On the other hand, it
should be noted that once plaintext values are encrypted,
unlike FCE, OPES can be used in an untrusted server
environment, where decryption is not an option.

 Further, OPES requires that the distribution is well
known to the database (e.g., when a large amount of data
already exists), before the key can be generated and
encryption can happen. If data updates change the
distribution, this process has to be repeated. For
applications, a lot of times the column data’s distribution is
unpredictable before encryption is required, and may
change over time. A complete recoding costs too much.

Also, consider the JOIN operation on two OPES
encrypted columns of two tables. Most likely, the two
columns do not have the same distribution, which means
they are not directly comparable. Conversion from one
side to the other must be carried out which involves
expensive decryptions and/or encryptions.
 Overall, the most severe problem with any order
preserving encryption scheme is not its usage limitations,
but the inherent security problem.

5.2 Security Analysis of r-FCE
 We now show that r-FCE is indeed secure. In the game
defined by INFO-CPA-DB, player A is the adversary, and
we play the part of the player G (Guard). A picks a
sequence of plaintext messages (and ID’s) totaling n bits,
then encrypts them using her key K under r-FCE. The
resulting files on disk are handed to G. G now needs to
create the simulation script. Our strategy for G is to simply
call the key generation algorithm to generate a key K ′ ,
decrypt the ciphertext values on disk using K ′ (note that
the ciphertext values were encrypted using A’s key K).
During the decryption, a fresh random permutation for each
page (and hence “d” values for each ciphertext byte) is
obtained as in the encryption in r-FCE. Let the resulting
plaintext values be m′ . Now we try to obtain a lower bound
of)(mH ′ , the entropy of m′ .
 To compute the entropy of m′ , we first need to
understand the random factors that determine the different
outcomes of m′ . In the game of the INFO-CPA-DB
definition, A passes to G a sequence of ciphertext values,
which we denote as c . G applies a randomized decryption
algorithm to c . So, c is fixed. There are two
probabilistic factors that determine the value of m′ :
• The random permutations for each page, which derive

the bit offsets into the key for decryption of each byte.
• The key K ′ , which determines what bits are actually

XOR’ed with c to get m′ .

 We first consider the effect of the random permutations.
Suppose a random K ′ (the second random factor) is fixed.
The process of decrypting each byte of c uses some
random d value (determined by the permutation) to get 8
bits from K ′ and XOR’s them with the byte of c . Two d
values may result in the same sequence of 8 bits for the
XOR. We put the 32K d values (1 to 32K) into 25628 =
groups, such that each group corresponds to a distinct
sequence of 8 bits (let’s call it a “pad byte” from now on).

We consider random variables)2550(≤≤ iX i
 that are the

cardinalities of each group. We want to compute the
number of unique assignments of pad bytes for a 64KB
page. This is the same as the number of ways to write 256
numbers 2550 ≤≤ i ,

iX2 times respectively, on a board that
can hold 64K numbers. So the number of unique
assignments in a page (resulting in unique m′ values) is

])!2([

)!64(
255

0
∏

=i
iX

K . There are
K

n
648 ×

pages, totaling
K

n

i
iX

K 648
255

0

)
])!2([

)!64(
(×

=
∏

unique assignments, each with equal probability (note that
the equal probability property will greatly simplify the
computation of entropy), resulting in unique m′ values.
Now we compute a lower bound of)(mH ′ . Resorting to
conditional entropy [5], we have:

)...,,,|()(25510 XXXmHmH ′>′

)1()
])!2([

)!64(
log(

648

)
])!2([

)!64(log()...,,Pr(

)
)

])!2([

)!64((

1
log(

)
])!2([

)!64(
(

1)
])!2([

)!64()(...,,,Pr(

255

0

...,,,

648
255

0

25525500

648
255

0

648
255

0

...,,,

648
255

0

2552551100

25510

25510

∏

∑
∏

∏

∏

∑
∏

=

×

=

×

=

×

=

×

=

×
=

===

−⋅

⋅====

i
i

xxx

K
n

i
i

K
n

i
i

K
n

i
i

xxx

K
n

i
i

X

K
E

K
n

x

KxXxX

x

K

x

Kx

KxXxXxX

We can approximate this bound by
)2(

]))!(2([

)!64(log
648

)(255

0
∏

=

⋅×
>′

i
iXE

K
K

nmH

 For now we use this approximation, and later we use
Chernoff bounds [13] to show that with high probability the
actual bound will be very close to this one, so this is indeed
a good approximation. What we have done is to simplify
the problem of computing)(mH ′ to giving a lower bound
using the conditional entropy, conditioning on the second
(harder) probabilistic factor.
 All that remains is to compute)2550()(≤≤ iXE i

. Let

iX be the cardinality of the group with pad byte value i.
Consider 32K random variables)1320(−≤≤ KiYi

 satisfying

≠=
==

=
00
01

valuebytepadagivesidif
valuebytepadagivesidif

Yi
.

Therefore,

)1320(
2
1)1(Pr

8
−≤≤== KiYi

due to the randomness of K ′ . Then,

)1320(
2
1)(8 −≤≤= KiYE i

. We also have

)3(
132

0
0 ∑

−

=
=

K

i
iYX

and from the linearity of expectation, we have

∑
−

=
===

132

0
80 128

2
32)()(

K

i
i

KYEXE

Because key K ′ is uniformly random, then from symmetry,
we have

)2550(128)(≤≤= iXE i
.

 From all the above, we can compute the lower bound of
)(mH ′ :

256255

0

)!256(
)!64(log

648))!(2(

)!64(log
648

)(K
K

n

XE

K
K

nmH

i
i

⋅
×

=
⋅×

>′

∏
=

We can use Stirling’s Formula [13] to compute)!64log(K
and !256log . Finally we get the lower bound value:

nmH 9974.0)(>′ .
 Recall that from (1) to (2) we used an approximation.
We can use Chernoff bounds, union bound [13] (which
basically says)(Pr)(Pr)(Pr BABorA +≤), and the constraint

∑
=

=
255

0
32

i
i KX

 to show that with high probability (1) indeed is

very close to (2). We omit the details due to space
constraints. They are in the full version of the paper.
 The lower bound result (0.9974n) indicates that)(mH ′ is
very close to n , or in other words, m′ is very close to a
uniformly random bit string. This gives us great confidence
in the security of r-FCE according to the INFO-CPA-DB
and Real-Or-Random definitions. However, the missing
entropy might be a concern for an application that requires
strict security. We leave the problem of analyzing the effect
of the leak as future work.
 We can also obtain a general lower bound of entropy as a
function of page size P and key size |K|, which indicates
that a bigger page size or key size implies more security,
but higher overhead. The details are in the full version.
 From the security analysis of an order preserving
encryption scheme and FCE, we can see that to show
something is secure, we give a “simulation script” or
strategy for player G. To disprove the security of some
scheme, we give a strategy for player A.

5.3 Connection Between FCE and r-FCE
 As we mentioned earlier, r-FCE uses ideal random
permutations. So we have to use cryptographic techniques
to realize it. We have introduced the FCE scheme in
Section 3.2.2. Most cryptographic techniques are based on
the “computational indistinguishability” [7] framework.
Informally, it means that given “reasonable” resources

(e.g., probabilistic polynomial time), one cannot distinguish
between two distributions. We use “ BA ≈ ” to denote that
distribution A is “computationally indistinguishable” from
distribution B.

 As we show in Figure 4 (omitting the proofs here), r-
FCE uses a random permutation return value mod |K| (as
the d values to probe into the key). This is computationally
indistinguishable from a random function family whose
function has the same domain as the permutation, but has
the range of {0,…,|K|-1} (provided that the permutation
size is a multiple of |K|). In turn, this random function
family is computationally indistinguishable from a
pseudorandom function family (with the same domain and
range). In the final step of Figure 4, the FCE scheme uses a
k-wise independent function family.
 Hoory et al. in [10] discuss the motivation for
understanding the relationship between k-wise
independence and pseudo-randomness. They present an
educated conjecture that 4-wise independence suffices to
achieve cryptographic pseudo-randomness. FCE builds on
this by using a 4-wise independent function family. We
choose a rather natural and efficient construction of a 4-
wise independent function family: random polynomials of
degree k-1 (where k=4) as described in [12]:

dcxbxaxxp +++= 23)(
where]1,0[,,,, −∈ Pxdcba .
 Clearly a higher “k” value in the k-wise independent
function results in more security, but higher cost.
 In summary, we end up with an FCE scheme that is
computationally indistinguishable from r-FCE, which we
have proved to be information theoretically secure.
Therefore, we combine the concepts of information
theoretic security and computational security.
 We can analyze the security of some other encryption
schemes using our security measure. It is not hard to show
that the ideal (and impractical) schemes of One-Time-Pad
and the CTR scheme using a random function in [3] are
both (n, n) secure, and DES is (56, n) secure. We omit the
analysis due to space constraints. While our analysis in
Section 5.2 seems to suggest that r-FCE is more secure than

r-FCE: Random permutation mod m (family)

 Random function family

Pseudo-random function family

FCE: k-wise independent function family

Figure 4: From “ideal” to “realization”, a road connected
 by “computational indistinguishability”.

a block cipher (e.g., DES), FCE, unlike r-FCE, uses a block
cipher to encrypt 8 bytes per page to obtain the a, b, c, d
values. Thus the security of FCE is bounded above by the
security of the (subroutine) block cipher.

6. Indexing with FCE
 In this section, we describe indexing on FCE encrypted
data. We will be exclusively talking about widely used tree
indexing (e.g., B+ trees), although FCE is also applicable to
hash indexing, etc. Each page of the B+ tree will be laid out
as usual on disk, except that each page will have a 64-bit
seed at the top and parts of the page will be encrypted using
FCE.

For an internal node of a B+ tree, we only encrypt the
key values. We leave pointers (to other index nodes) in the
clear. For a leaf node of a B+ tree, we encrypt both the key
values and the record IDs. We need to encrypt record IDs,
because otherwise from the leaf nodes, the order of the
records could be inferred (which is exactly the problem
with OPES). Efficient comparison between key values is
the main challenge of indexing encrypted data. Therefore,
we focus on how this works under FCE. Typically we are
concerned with searching for a plaintext key value in the
encrypted B+ tree, as this is what we need to do in
processing a query. The comparison we do is between a
plaintext and a ciphertext value, which, as we discussed in
Section 3.2.2, is not much different from comparing two
ciphertext values. As usual, the tree traversal starts from the
root, and uses our special comparison method. Recall that
we have the Early Stopping (ES) mechanism for
comparisons. Observe that ES is more effective as the
search is closer to the root of the B+ tree (upper levels),
since it is more likely that the comparison is between two
values with a big difference. As the search approaches the
leaf level, key values approach the target value, and more
byte comparisons are needed. Note that classical index key
compression methods (on the plaintext key values), when
applied, still work as usual, and in fact help ES, as
redundant leading bytes are likely to be compressed, which
further saves the CPU cost for decryption.

Unless the whole table is encrypted, a clustered index is
in general not feasible with an encrypted column. This is
because the order of the ciphertext values would be
revealed by means of association with other columns
otherwise (the same reason as needing to encrypt record
IDs at leaf nodes). This is not specific to FCE and is
universal for any encryption method. As a consequence, a
sparse index is also not feasible in general.

With another classical encryption method, such as DES,
B+ tree indexing is still possible in principle. The
differences are:
• It has bigger encryption blocks (e.g., 8 bytes for DES),

hence a tree traversal may decrypt more than needed.

• Its minimum unit of decryption is larger (e.g., 8 bytes
for DES), so one has to perform more decryption all
along the search path.

• The decryption has more overhead than FCE.

As a result, it is less efficient to build an index with
classical encryption methods. The performance comparison
with indexing using DES is further conducted in the next
section.

7. Experiments
We have mentioned that security has to be shown by

analysis/proof and demonstrated it for FCE in Section 5. In
this section, we study the following performance issues
through experiments:
(1) How much overhead does FCE decryption/encryption

have in the database context?
(2) How much does the Early Stopping mechanism help

the index search?
(3) FCE has a small encryption block of one byte,

compared to eight bytes of, say, DES. Combined with
Early Stopping, what performance impact does this
have on various kinds of queries (e.g., whether or not
the index is covering for a query)?

7.1 Setup
 We have implemented the FCE scheme, and B+ tree
indexing on FCE encrypted columns, as well as DES
encrypted columns. We extended the code to support DES
and FCE encryption in C-Store on Debian Linux. We use
the crypto library in OpenSSL 0.9.8b for DES. We use
DES as the underlying block cipher of FCE, which is used
to encrypt the 8-byte seed on each page. We have also
implemented sort merge JOIN, which was not available in
C-Store before. The algorithms were implemented in C++.
The experiments were run on a Linux workstation with an
AMD Athlon-64 2Ghz processor, 512 MB memory and a
Samsung HD160JJ disk.

7.2 Overhead of FCE
Our first experiment compares the retrieval overhead of

FCE with DES and unencrypted data. In this experiment,
we select a single integer-valued column from a database.
More precisely, we sequentially scan all the 64KB data
pages, each containing 8K encrypted 8-byte <column
value, recordID> pairs. All FCE runs include the cost of
generating a, b, c, and d values for each page with DES.
The file cache was warm in these experiments.

Figure 5 shows the retrieval cost per tuple. The FCE-1
line shows what happens when we only decrypt the column
value, but not the record ID (since we are selecting a single
column). With DES, in this case, we need to decrypt both
the column values and the record IDs, as the DES block
size (8 bytes) is larger than the column value size. (Some
block ciphers require even bigger block sizes.) Therefore,
in Figure 5 DES is decrypting twice as much ciphertext as

FCE-1. To compare DES and FCE when both decrypt the
same amount of data, we included runs where FCE
decrypts the record IDs as well. This is shown by the FCE-
2 line in Figure 5, which is slightly faster than DES. For
both FCE and DES, the encryption cost is about the same
as decryption, so we don’t include those measurements
here.

For an arbitrary data type, the difference in performance
between DES and FCE for sequential scans will fall
somewhere between the relative performance of DES and
FCE-1 or DES and FCE-2. The reason is that we need to
decrypt a different amount of extra ciphertext depending on
the size of a data value, especially if it is a variable size
data type.

DES has been around for almost 30 years, and we
believe that its OpenSSL implementation has been
carefully tuned. Our implementation of FCE is not highly
tuned, but is already outperforming DES. There is a good
chance that with tuning, FCE can be even faster. This can
also be seen from the cycle count comparison on the
TMS320C6211 processor, in Section 3.2.2.

7.3 Indexing with FCE for Range Queries
In this section, we look at the performance of a simple

SELECT query that has a predicate on the encrypted
column: SELECT COUNT(*) FROM t1 WHERE c1>?
AND c1<?, where c1 and c2 are an integer-valued
columns. The query plan uses B+ indexes to find the record
IDs that satisfy the range restrictions. The first step is to
traverse the index to find the smallest value that satisfies
the range restriction, then visit each subsequent value in the
leaf nodes until it finds the smallest value that does not
satisfy the range restriction. The count of the number of
satisfying records is accumulated as the leaves are
traversed. The data pages themselves are not visited, and
the record IDs do not need to be decrypted.

Figure 6 shows the performance of this query under
various data sizes, but fixed selectivity (25%). We can see
that with DES encrypted columns, even though an index
can be built (with more complex code changes), it is not as
efficient as an FCE-based index, since an index search has
to decrypt 8-byte DES blocks on the B+ tree search path.
On the other hand, comparisons during an FCE index
search are efficient for three reasons:

• FCE has lower decryption overhead.
• FCE does not need to encrypt and decrypt pointers

in internal nodes, whereas DES may have to, due to
the 8-byte block size.

• Early Stopping (ES) happens during comparisons.

To evaluate how much savings ES contributes, we
measure the cost with both ES disabled and enabled (FCE-
nES and FCE-ES1, respectively, in Figure 6). Observe that
the effectiveness of ES depends on the value distribution of
the column. If the column has mostly small integer values
(say, all less than 216, for FCE-ES1), then ES is less

effective than when the column values are uniformly
distributed in the range of [0, 231] (FCE-ES2). Note that for
some data types, such as character strings, it is less likely to
have many common, redundant prefix bits between values
and ES is more effective.

7.4 Variations of Queries
The next set of experiments investigates the

performance impact of having to fully decrypt the indexed
column at leaf nodes for a query. (In the previous COUNT
query, we may not fully decrypt it due to Early Stopping.)
There are at least two cases for a query:
• The indexes are covering (i.e., only indexed columns

appear in the query, thus there is no need to decrypt
record IDs or read the base tables). Therefore only the
keys need to be decrypted in the leaf nodes.

• The indexes are non-covering, therefore both the keys
and record IDs in an index need to be decrypted.

Example queries corresponding to these two cases are
SELECT c1 from t1 where c1>? AND c1<?, and
SELECT c1, c2 from t1 where c1>? AND c1<?,
respectively, where integer-valued c2 is not encrypted and
the index is on the encrypted integer-valued column c1. In
Figure 7, the lines corresponding to these two queries are
labeled FCE-cover and FCE-nc, respectively. We also
compare them with DES encryption and with the COUNT
query of Section 7.3, which is shown as FCE-count in
Figure 7; the index is covering in this case. In all cases, we
exclude the cost of retrieving data from the base tables, as
that cost is independent of the encryption scheme.

Due to its 8-byte block unit of decryption, DES always
decrypts the keys and record IDs in the leaf nodes, and
hence the DES cost is the same for both queries. Observe
that these small variations of queries cause a performance
difference for FCE. Due to Early Stopping, FCE-count,
which only does comparisons, is faster than FCE-cover,
which decrypts all of the key bytes at the leaves. In turn,
FCE-cover is faster than FCE-nc because FCE has a small
encryption block size (1 byte) and decrypts only as needed
(FCE-cover does not decrypt the record IDs in the leaves).
In all of the cases, FCE is more efficient than DES.

 Figure 5: Tuple retrieval cost.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

100K 500K 1M 5M 10M 20M

of tuples retrieved

Ti
m

e
pe

r t
up

le
 (m

ic
ro

se
co

nd
s)

Plaintext FCE-1 DES FCE-2

8. Related Work
 The work of [8] (Goldwasser and Micali) and [3]
(Bellare et al.) studied the formal notions of security for
encryption. Our information theoretic measure is based on
the Real-Or-Random (ROR) definition against chosen-
plaintext attack (CPA) in [3].
 [1, 9, 15, 17] are similar to our work in that they
typically propose a new scheme of encryption in such a
way that efficient query processing on encrypted data is
possible. Although there are similarities with our work in
[17], their goal is that an untrusted server cannot learn
anything about the plaintext, but still can perform search,
which is only equality search. We have a different threat
model, and our goal is to support fast queries in a DBMS,
in particular, to use indices on ciphertext. The idea in [9] is
to map encrypted values into buckets for early filtering
without decrypting the value. The result of the rewritten
query contains false hits that must be removed in a post-
processing step. We have discussed its security problem in
Section 1, and the performance and security problems are
also discussed in [1, 11]. [1] proposes an order preserving
encryption scheme. Although ideal for comparison, it has
inherent security problems that we have discussed at
length.

9. Conclusions
 Encrypting sensitive data in a DBMS becomes more and
more crucial for protecting it from being misused by
intruders who bypass conventional access control

mechanisms and have direct access to the database files.
One must study the security of a new scheme in a
systematic way. In this paper, we proposed the FCE
database encryption scheme and demonstrated its security
and efficiency for databases. We discussed indexing issues
with FCE and experimentally evaluated the overhead and
performance.

10. Acknowledgments & References
 This work was supported by the NSF, under the grants
IIS-0086057 and IIS-0325838, and a gift from Vertica
Systems, Inc.
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving

encryption for numeric data. ACM SIGMOD 2004 June 13-18, 2004,
Paris, France.

[2] G. Bebek. Anti-tamper database research: Inference control
techniques. Technical Report EECS 433 Final Report, Case
Western Reserve University, November 2002.

[3] M. Bellare, A. Desai, E. Jokipii, P. Rogaway. A concrete security
treatment of symmetric encryption. In Proceedings of the 38th
Symposium on Foundations of Computer Science, IEEE, 1997.

[4] H. Choi. TMS320C6211 Architecture Overview.
http://cnx.org/content/m10872/latest/.

[5] T. M. Cover and J. A. Thomas. Elements of Information Theory. A
Wiley-Interscience Publication, 1991.

[6] DES. Data Encryption Standard. FIPS PUB 46, Federal Information
Processing Standards Publication, 1977.

[7] O. Goldreich. Foundations of Cryptography. Cambridge University
Press, 2003.

[8] S. Goldwasser and S. Micali. Probabilistic Encryption. In J. of
Computer and System Sciences, Vol. 28, April 1984, pp. 270-299.

[9] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL
over encrypted data in the database-service-provider model. In Proc.
of the ACM SIGMOD Conf. on Management of Data,
Madison,Wisconsin, June 2002.

[10] S. Hoory, A. Magen, S. Myers and C. Rackoff. Simple permutations
mix well. The 31st International Colloquium on Automata,
Languages and Programming (ICALP), Lecture Notes in Computer
Science 3142, Springer, 2004, pp. 770–781.

[11] M. Kantarcioglu and C. Clifton. Security issues in querying encrypted
data. The 19th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security. August 7-10, 2005, Storrs, Connecticut.

[12] E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions
of k-wise (almost) independent permutations. In APPROX-
RANDOM, pages 354–365, 2005.

[13] M. Mitzenmacher, E. Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005.

[14] Oracle Corporation. Database Encryption in Oracle 8i, August 2000.
[15] G. Ozsoyoglu, D. Singer, and S. Chung. Anti-tamper databases:

Querying encrypted databases. In Proc. of the 17th Annual IFIP WG
11.3 Working Conference on Database and Applications Security,
Estes Park, Colorado, August 2003.

[16] R.S. Preissig. Data Encryption Standard (DES) Implementation on
the TMS320C6000. In Texas Instruments Application Report,
SPRA702, November, 2000.

[17] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for
searches on encrypted data. In IEEE Symp. on Security and Privacy,
Oakland, California, 2000.

[18] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M.
Ferreira, E. Lau, A. Lin, S. Madden, E. O'Neil, P. O'Neil, A. Rasin,
N. Tran and S. Zdonik. C-Store: A Column Oriented DBMS. In
VLDB 2005, Norway.

[19] http://db.csail.mit.edu/projects/cstore/.
[20] TMS320C6211 Cache Analysis. In Texas Instruments Application

Report, SPRA472, September, 1998.

0

1

2

3
4

5

6

7

4M 8M 12M 16M 20M

of qualified records (25% selectivity)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DES
FCE-count
FCE-cover
FCE-nc

Figure 7: Performance of slightly different queries under
DES and FCE.

Figure 6: Performance of a range query utilizing an index
built under different encryption schemes.

0

1

2

3

4

5

6

7

0 4M 8M 12M 16M 20M

of qualified records (25% selectivity)

Q
ue

ry
 ru

nn
in

g
tim

e
(s

ec
on

ds
)

Plaintext
FCE-nES
DES
FCE-ES1
FCE-ES2

