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Abstract 
Networked information systems require strong security 

guarantees because of the new threats that they face. 
Various forms of encryption have been proposed to deal 
with this problem. In a database system, there are often two 
contradictory goals: security of the encryption and fast 
performance of queries. There have been a number of 
proposals of database encryption schemes to facilitate 
queries on encrypted columns. Order-preserving 
encryption techniques are well-suited for databases since 
they support a simple, and efficient way to build indices.  
However, as we will show, they are insecure under 
straightforward attack scenarios. 

We propose a new light-weight database encryption 
scheme (called FCE) for column stores in data warehouses 
with trusted servers. The low decryption overhead of FCE 
makes comparisons of ciphertexts and hence indexing 
operations very fast. Since it is hard to use classical 
security definitions in cryptography to prove the security of 
any existing symmetric encryption scheme, we propose a 
relaxed measure of security, called INFO-CPA-DB. INFO-
CPA-DB is based on a well-established security definition 
in cryptography and relaxes it using information theoretic 
concepts. Using INFO-CPA-DB, we give strong evidence 
that FCE is as secure as any underlying block cipher (yet 
more efficient than using the block cipher itself). Using the 
same security measure we also show the inherent insecurity 
of any order preserving encryption scheme under 
straightforward attack scenarios. We discuss indexing 
techniques based on FCE as well. 
 

1. Introduction 
Typically a DBMS provides two ways to achieve 

security: access control and data encryption. Of the two, 
access control is a relatively older way to protect sensitive 
data. However, access control by itself is not sufficient. An 
adversary who gains access to the database files can access 
sensitive data, thus, bypassing the access control 
mechanism. As a result, it is necessary to encrypt data in 
the DBMS. 
    Encryption is well studied in cryptography. However, 
when used in a DBMS, the traditional security definitions 
and properties of classical encryption schemes have a 
considerable performance impact on queries on encrypted 
data. First, standard definitions of security in cryptography 
[7,8,3] do not allow ciphertext values to reveal any 
information about the plaintext values, including the 
relative order information between their corresponding 

plaintexts. This implies that even comparisons have to go 
through decryption first. Second, encryption and decryption 
of existing cryptographic schemes have high CPU cost. 
Analogous to disk I/O, even though the speed of modern 
symmetric encryption schemes is improving, it remains 
costly for the database CPU. Therefore, data encryption 
significantly slows down query processing. For example, 
evaluating predicates that reference an encrypted column 
would generally require an expensive decryption step. 
    DBMS-specific encryption schemes that perform well 
for queries, but that preserve security are, thus, very 
desirable. One state-of-the-art technique is order-preserving 
encryption (e.g., OPES [1]). Such a scheme supports direct 
comparison of ciphertexts, which allows us to build indices 
in support of range queries. However, as we will show, 
such schemes are inherently not secure under 
straightforward attack scenarios. 
    In this paper, we propose an efficient light-weight 
database encryption scheme (called FCE), in which 
comparisons can be done with partial decryption (Early 
Stopping). FCE uses any block cipher to encrypt only a few 
bytes of random seeds in each page of the database, and 
uses lighter-weight computation to encrypt the actual data 
in a page. The low overhead of FCE enables efficient 
comparison and, therefore, efficient indexing on the 
ciphertext. We present evidence regarding the security of 
this scheme. 
    There have been a few proposals of “homegrown” 
encryption schemes for database systems for the purpose of 
fast search [1,2,9,15].  But how secure are these schemes?  
We stress that the importance of security cannot be under-
estimated, because after all, “hiding” the information of 
data is the goal of using any encryption to begin with 
(otherwise the usage of it would not exist). 
    Let us look at a specific example. Suppose a mortgage 
company uses a customer table with schema Customer 
(name, age, address, loan type, net assets). Assume that 
only net assets is sensitive. So it is more efficient to encrypt 
only sensitive columns while leaving other columns in the 
clear. This way, fetching results of a non-sensitive column, 
say age, does not require decryption. For example, Oracle 
[14] provides column-level encryption. In this paper we 
assume this usage scenario. Consider using any order 
preserving encryption scheme (e.g., [1]) to encrypt net 
assets while leaving other columns in the clear. Then, an 
adversary who has access to the database files can discover 
the relative order of the net assets values between two 
customers identified by other attributes. This phenomenon 
of “insecurity” of newly proposed database encryption 



schemes is fairly common. The “bucketing” approach of 
[9] reveals value range correlation between columns. For 
example, an adversary could discover that the records that 
have values in the same bucket on one column are very 
likely to have values in the same bucket on another column. 
Column value distributions can also be revealed as pointed 
out by [1].  Similarly, column value distributions can be 
revealed by other schemes such as summation of random 
numbers [2], or by polynomial functions [15]. 
    The security of a database encryption scheme must be 
examined more carefully. Unfortunately it is hard to prove 
the security of any symmetric encryption scheme used in 
databases today using the established security definitions in 
cryptography [7,8,3] (public key encryption schemes, 
which are provably secure, are slower and generally not 
used in databases). In light of this fact, we propose a 
relaxed measure of security based on the Real-Or-Random 
definition [3] in cryptography. The relaxation uses the 
concept of “entropy”, and gives strong evidence that FCE is 
as secure as any block cipher that it uses for encrypting the 
random seeds (a few bytes) in each page header in the 
database. We also show the insecurity of any order 
preserving encryption scheme using this same measure. As 
any other new scheme, besides the theoretical analysis, the 
security of FCE needs to stand the scrutiny of cryptanalysts 
as well as the test of time. But those are beyond the scope 
of this paper. 
    FCE is specifically tailored to database systems in the 
following ways: 
• Comparison is fast, which facilitates the search of 

indices. 
• We show its security using INFO-CPA-DB, a security 

measure defined in the database context. 
• Secret random functions are stored at the database 

page level, which corresponds to the unit of I/O. 

    The rest of the paper is organized as follows.  We first 
discuss the threat model in Section 2.  Section 3 presents 
our new database encryption scheme: FCE.  We also show 
a variant of it, r-FCE, which will be used for analysis.  
Section 4 discusses our security measure.  In Section 5, we 
provide a detailed analysis of the security of any order-
preserving scheme, and of FCE.  Then, in Section 6, we 
discuss how indexing works with FCE. Section 7 gives our 
experimental performance results. We present related work 
in Section 8 and summarize the paper in Section 9. 

2.    Threat Model 
    We separate the issue of the security of the 
communication channel between client and DBMS server, 
and the issue of the security of the on-disk data [1], i.e., 
data security in the storage system of the server (“divide 
and conquer” approach).  We assume the database software 
is trusted, in particular, the adversary does not have access 
to the values in the memory of the database software, and 
the database software is trusted to decrypt column values to 

evaluate predicates on encrypted columns (otherwise 
efficient processing by the server on encrypted data is not 
possible anyway).  See Figure 1 for the system model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    In this work, we specifically aim at encryption to ensure 
the security of on-disk data. We leave open the security of 
the communication between the client and server as a 
separate orthogonal issue, which can be protected by a 
traditional symmetric key encryption scheme if needed. 
Our threat model and protection goal are also considered by 
[1], which is not a surprise, as both consider efficient 
processing of encrypted data by the server. 

3.     The New Encryption Scheme 
3.1   C-Store: A Column Oriented DBMS 
    We will analyze the usage of the newly proposed 
encryption scheme in the context of an open-source 
column-oriented DBMS called C-Store [19]. C-Store is a 
read-optimized relational DBMS. The most salient 
differences between C-Store and a traditional “row-store” 
system are that C-Store organizes data by column rather 
than by row, and that it makes heavy use of sorting and 
compression [18]. 

3.2   Fast Comparison Encryption (FCE) 
3.2.1   r-FCE Algorithms 

    We first consider a version of FCE based on random 
permutations, hence the name r-FCE. C-Store stores the 
values of a column together in a set of pages. Suppose we 
somehow associate with each (encrypted) data page a truly 
random permutation whose size is the same as the page size 
(in bytes). Let the page size be P bytes (for C-Store, 
P=64KB). Thus each page (of the encrypted column) is 
associated with one of the P! random permutations. To 
represent the random permutation, at least log(P!) random 
bits are needed. When P=64K, using Stirling’s formula 
[13], we can compute that each page needs 

954037)!64(log2 ≈K  random bits to represent the permutation. 
This is unrealistic. Hence, r-FCE is an idealized version. 
But we use r-FCE just as an intermediate scheme, purely 

Trusted DBMS Server 

Sensitive Data 
Encrypted On 
Disk 

Communication may be 
protected 

Figure 1: Divide and conquer approach for DBMS security. 
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for the purpose of information theoretic analysis. In section 
3.2.2, we’ll give an actual FCE scheme that uses k-wise 
independent functions, and we’ll argue that it is 
computationally indistinguishable [7] from r-FCE. 
    r-FCE is a symmetric key encryption scheme for a 
DBMS. As in C-Store, we assume we are encrypting a 
whole page of data values of some column. Let’s denote 
the key by K, and its bit-length by |K|. A typical value is 
32Kb (“K” here following a number denotes a unit of 
“1024”, not to be confused with the secret key “K”. It 
should be clear from the context). The key generation 
algorithm is simply to generate a random |K| bit number. 
We next describe the encryption algorithm for a page of 
plaintext values. 

Encryption Algorithm 

Input: encryption key K (one key for the entire database), a 
page of plaintext values (P bytes), and a random 
permutation (function) associated with the page (one for 
each page) },..,1{},..,1{: PPperm → . 
Output: a page of ciphertext values. 

We consider and encrypt each byte of the page separately: 

,1 PtoiFor =  

(1) Let ||mod)( Kipermdi =  which is clearly in the range 
of [0, |K|-1].   

 
 
 
 
 
 
 
 
 
 

(2) Then the ciphertext byte ic  of the plaintext byte ib  of 
the page is simply the bitwise XOR of byte ib  and the 
byte starting from the id ’th bit of K (See Figure 2).  If 

id  falls on the last 7 bits of K, wrap around and use 
both the ending bits and the starting bits of K to form a 
pad byte.  For example, if 2|| −= Kd i , then the pad 
byte is the last two bits of K concatenated with the first 
6 bits of K. 

Example:  Let’s say we are encrypting the 30th byte of a 
page, and the plaintext byte value is 00101110 in binary.  
As in C-Store, let |K|=32768, and  P=65536.  In step (1) of 
the encryption algorithm, the 30th byte gets a random 
permutation value 32768mod)30(permd i = , where perm is 
the random permutation associated with the page. Suppose 

33466)30( =perm , so 69832768mod33466 ==id . Next, 

in step (2) of the algorithm, we find the byte value starting 
from the 698th bit of the key K.  Assume the byte (in K) is 
10011010.  Then the ciphertext byte is simply the XOR of 
this key byte and the plaintext byte: 

101101000010111010011010 =⊕ .                           

    The decryption algorithm is the reverse of the 
encryption. The details are omitted, as it is fairly easy to 
derive. 

3.2.2   The FCE Algorithms for C-Store 

    The only difference between FCE and r-FCE is that in 
FCE, we replace the random permutation perm  associated 
with each page by a “secret” k-wise independent function 
[12] (informally, it means any k points of the function are 
completely independent). Specifically, we can use a 4-wise 
independent function family (i.e., k=4; we’ll explain the 
reason in Section 5) in step (1) of the encryption algorithm. 
We use a rather natural and efficient construction of a 4-
wise independent function family, namely, random 
polynomials of degree k-1 (where k=4) as described in 
[12]: 

dcxbxaxxp +++= 23)(  
where ]1,0[,,,, −∈ Pxdcba . 
    We now describe the implementation in C-Store where 
the page size is 64KB (hence the domain ]12,0[ 16 − ), and 

152|| =K  (hence 152mod  in FCE algorithms). We need one 
such (secret) random polynomial per page, which means 
we need four (secret) random values dcba ,,,  per page, 
totaling 64 bits. Therefore, we can store a random 64-bit 
seed at the page header (for a 64KB page, a 64-bit seed is 
certainly acceptable1), and use a block cipher (say DES) to 
get a 64-bit actual (secret) seed from the original seed, and 
split it to get dcba ,,, . We will use the same block cipher 
key (e.g., a 64-bit DES key) for every page of the database, 
and a different seed for each page of the database.  The key 
of the block cipher and the encryption key K described 
above together form the secret key of FCE. 
    Observe that in step (1) of the encryption algorithm, the 
function )(xp  is applied on each byte position of the page, 
which means the set of input values ( ]12,0[ 16 − ) are the 
same across pages. We therefore can pre-compute 3x  and 

2x  values for each byte position, and use them universally 
for any page. Thus an evaluation of the random polynomial 
function simply involves 3 multiplications and additions 
and is very efficient. For example, this is fewer than 10 
CPU cycles per encrypted byte on TMS320C6211 [4, 20], 
considering both computation and possible cache miss cost. 
The detailed analysis is in the full version of the paper, due 
to space constraints. In contrast, a DES implementation on 
the same processor needs 30 to 50 cycles per byte [16]. 

                                                
1 Note that we can increase the number of random bits for more security. 
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    The comparison of two ciphertext values starts from the 
most significant byte (assuming this can be known from the 
value type) and proceeds byte by byte from left to right. It 
is essentially an Early Stopping (ES) partial decryption of 
the two ciphertext values. The procedure stops as soon as a 
byte difference is found. This is feasible with FCE because 
encryption is done byte by byte, whereas in other block 
ciphers (e.g., DES) it is done in a unit of 8 bytes or more. 
    FCE uses a block cipher as a subroutine to encrypt only a 
small number of bytes per page. The encryption of the 
remainder of the data on the page is very light-weight. In 
FCE, comparing two ciphertext values and comparing a 
ciphertext with a plaintext value are very similar, as both 
work in the same manner starting from the most significant 
byte. As a result, joining two FCE encrypted columns and 
joining an encrypted with a non-encrypted column will 
work similarly. We’ll discuss in Section 5.1 that this is not 
the case with OPES. 

C-Store is read-optimized and targets data warehousing 
applications [18]. In such a system, an UPDATE is rare and 
is of less concern. Updates are applied in batch, rather than 
incrementally. During batch updates, a fresh random seed is 
generated for a page that uses FCE, to ensure security. 

4.  The Security Measure 

    It would be best to prove the security of our scheme 
according to an established definition. Unfortunately, the 
fact is that no symmetric encryption scheme is provably 
secure in that regard. We therefore propose a relaxation of 
an existing security definition in cryptography, the so-
called Real-Or-Random definition [3]. The relaxation gives 
a formal security measure of an encryption scheme. We use 
entropy, which is a basic concept in information theory [5] 
that gives a universal measure of randomness. The entropy 
in bits of a discrete random variable X is given by 
 ∑ ==−=

x
xXxXXH )Pr(log)Pr()( 2

 

where the summation is over all values x in the range of  X. 
We assume the threat model defined in Section 2 and that 
encryption is specified per attribute. Observe that a 
column-wise storage is most friendly to such selective 
encryption. Nonetheless, this definition can be easily 
extended for cases that must encrypt every column of the 
table. 

We first describe the intuition behind the security 
measure. An encryption scheme is secure if the adversary 
cannot distinguish the ciphertexts of any two (equal length) 
messages (i.e., plaintext values). In turn, the scheme is 
secure if the adversary cannot tell apart the ciphertext of 
any Real message and that of an equal-length Random 
message (By transitivity, one cannot tell apart the 
ciphertext of any two real messages). Namely, this is 
exactly what the Real-Or-Random definition requires. To 
capture the notion of “any” message, we simply let the 
adversary (to her advantage) arbitrarily choose any 
message. The more power we give to the adversary (and if 

we can still demonstrate certain security conditions are 
met), the more secure the system is. Such a notion in a 
security measure is termed “Chosen Plaintext Attack” 
(CPA) [7,3]. In our security measure (INFO-CPA-DB), we 
add a player (Guard of the cryptosystem) into the game. 
The Guard has to come up with random messages, which 
under a legally generated key, encrypt to the exact same 
ciphertext of the messages that the adversary has chosen. 
Consequently, not knowing which key is actually used, but 
just seeing the ciphertext, no one can tell whether it was 
from a real message or from random garbage. The security 
measure leaves space for certain “imperfections” of the 
cryptosystem by measuring the entropy of the (supposedly) 
random string that the Guard comes up with. The closer it 
is to the maximum entropy, the more random it is, and 
hence, the more secure the scheme is. In other words, we 
use “entropy” as a metric that measures how far the system 
is from being “perfectly secure”. See Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 

Definition 1 [INFO-CPA-DB] Let ),,( DSE εκ=  be a 
symmetric encryption scheme used for a DBMS (the three 
parameters are key generation, encryption, and decryption 
algorithms respectively). A relational table T that has 
sensitive information includes two columns: ID, which is 
the primary key, and MSG, which is encrypted. Consider a 
game between player A (Adversary) and player G (Guard 
of the cryptosystem). 

(1) First, the key generation algorithm is run for A and A 
gets key K. To her own advantage, A arbitrarily 
generates q  records for the table T (i.e., A chooses q  
ID values and MSG plaintext values 
( ))1(, qimid ii ≤≤ ). A encrypts the MSG values using 
her key K, and the table data is stored on disk. Let 

nm
q

i
i =∑

=1
||  and ),( Kmencc ii = . The database files (but 

not K) are passed to G. 
(2) G, without knowing K, tries to come up with a 

“simulation script” that would create the exact same 
database files: G needs to run the key generation 
algorithm to get K ′ , and come up with a sequence of 
“random” messages )1( qimi ≤≤′  such that |||| ii mm =′  

       m  
Player A
(Adversary) 

       c  

       m′  

Generate K; Encrypt 

Generate K’; Encrypt Player G 
(Guard) 

Judge: How close is this to 
a random string? 

Figure 3: A mental game between A & G in INFO-CPA-DB 
definition. 



and ),( Kmencc ii ′′=  for all qi ≤≤1 . In other words, 
using K ′  to encrypt the random messages, together 
with the same ID values used by A must produce the 
exact same files that A passes to G. Let 

qmmmm ′′′=′ ...21 (where is bit-string 
concatenation). 

(3) The success of G (and the security of SE) is measured 
by how close m′  is to a uniformly random n bit string, 
specifically, how close )(mH ′  is to n.  Then we say that 
SE is )),(( nmH ′  secure. Clearly, the most secure 
scheme would be (n, n) secure.                                

    Using entropy, INFO-CPA-DB relaxes the Real-Or-
Random definition, and is a continuous measure of security. 
We note a caveat here that the exact relationship between 
the amount of entropy and the amount of resources 
necessary to break the scheme is unknown, and is left as 
future work. 

5. Analysis of Order Preserving Encryption 
Schemes and of FCE 

5.1  Analysis of Any Order Preserving Scheme 
    Under an order-preserving encryption scheme, ciphertext 
values preserve the order relationship of the corresponding 
plaintext values. It is ideal for query performance since 
comparisons can operate directly on ciphertext, saving the 
cost of expensive decryptions. A state-of-the-art order-
preserving encryption scheme is OPES [1]. As expected, B-
tree indices can be built and used on encrypted columns as 
well. However, as we will show, any order preserving 
encryption scheme is inherently not secure under the 
common usage scenario that only a subset of the columns is 
encrypted, which is our assumed usage model. 
    Intuitively, any order-preserving scheme reveals the 
order of column values between records. This information 
may be quite significant. We have seen an example in 
Section 1. Further, if the adversary somehow knows one or 
more plaintext values of the column, he or she can narrow 
down the possible range of other values. Thus, order-
preserving schemes are prone to inference attacks. To be 
concrete, in our example if we know Alice and Charles 
bracket Betty, and we have side information about the 
assets of Alice and Charles ($1M and $1.1M), then we have 
a good estimate for Betty’s assets. [1] uses “percentile 
exposure” as the security measure. However, that only tells 
if the scheme hides the column value distribution (which an 
adversary might already know to begin with). Security via 
encryption must hide much more than that. 

Now we formally analyze the security of order-
preserving encryption schemes using our information 
theoretic security measure. Recall that the idea of our 
definition is to give the adversary (player A) advantage and 
freedom to choose an arbitrary set of plaintext, and the 
player G (Guard of the cryptosystem) needs to respond 

with a set of “random” message that (under some key) 
encrypts to the same ciphertext. Intuitively, this definition 
rules out the security of any order-preserving scheme, 
because if the adversary chooses two values 21 mm < , then 
their ciphertext must satisfy 21 cc < . And whatever 
“random” messages ),( 21 rr  the Guard comes up with must 
satisfy 21 rr < , which makes 21 rr  as a whole not random. 
Theorem 1 that follows is based on this observation and 
says that there is a set of messages (which the adversary 
may choose) that leaves the Guard nothing but one choice 
of plaintext that is the same as the adversary’s, and hence is 
not at all random. So the entropy is 0, and the order 
preserving encryption is insecure. 

Theorem 1:  Consider the INFO-CPA-DB definition of 
security for an order preserving encryption scheme. In the 
game, there exists a strategy for player A, such that 
whatever player G’s strategy is, it holds that 0)( =′mH . 

Proof:  Let us give such a strategy for player A. We simply 
let plaintext be fixed-length bit strings, of length l bits. We 
can thus represent the plaintext domain as [0, 12 −l ], in that 
order, i.e., 12...210 −<<<< l . Note that A has the freedom 
to choose l  such that l2  is a reasonable number and A can 
fill in the table with this many records. A’s strategy is to fill 
the table with l2  records, where the MSG column values 
are distinct and in increasing order (as the ID column). 
    Now, because the encryption is order preserving, the 
ciphertext values must also be distinct and in increasing 
order. Player G, given the ciphertext, has to create a 
simulation script and come up with “random” MSG values 

)21( l
i im ≤≤′  with the same length ( l bit), which can 

encrypt to the same set of ciphertexts with G’s key K ′ . 
Again due to the order-preserving property, it must be that 

lmmmm 2321 ... ′<<′<′<′ . Clearly, due to the plaintext 
domain, it must be that )21(1 l

i iim ≤≤−=′ . In other words, 
there’s only one possibility for )21( l

i im ≤≤′ . Therefore, 

0)( =′mH .                                                                      

    Theorem 1 verifies our observation that any order 
preserving scheme is inherently insecure. Put another way, 
the INFO-CPA-DB definition protects us from attacks 
based on the order-preserving property of the encryption. 
    OPES assumes that the adversary does not have prior 
information about the value distribution. But in reality, 
many applications may have a column of sensitive data 
whose distribution is well known by the adversary, or 
whose distribution can be easily guessed (e.g., if there are 
only a limited number of probable distributions). Therefore, 
OPES cannot be used in these cases. On the other hand, it 
should be noted that once plaintext values are encrypted, 
unlike FCE, OPES can be used in an untrusted server 
environment, where decryption is not an option. 



    Further, OPES requires that the distribution is well 
known to the database (e.g., when a large amount of data 
already exists), before the key can be generated and 
encryption can happen. If data updates change the 
distribution, this process has to be repeated. For 
applications, a lot of times the column data’s distribution is 
unpredictable before encryption is required, and may 
change over time. A complete recoding costs too much. 

Also, consider the JOIN operation on two OPES 
encrypted columns of two tables. Most likely, the two 
columns do not have the same distribution, which means 
they are not directly comparable.  Conversion from one 
side to the other must be carried out which involves 
expensive decryptions and/or encryptions. 
    Overall, the most severe problem with any order 
preserving encryption scheme is not its usage limitations, 
but the inherent security problem. 

5.2   Security Analysis of r-FCE 
    We now show that r-FCE is indeed secure. In the game 
defined by INFO-CPA-DB, player A is the adversary, and 
we play the part of the player G (Guard).  A picks a 
sequence of plaintext messages (and ID’s) totaling n bits, 
then encrypts them using her key K under r-FCE.  The 
resulting files on disk are handed to G.  G now needs to 
create the simulation script.  Our strategy for G is to simply 
call the key generation algorithm to generate a key K ′ , 
decrypt the ciphertext values on disk using K ′  (note that 
the ciphertext values were encrypted using A’s key K).  
During the decryption, a fresh random permutation for each 
page (and hence “d” values for each ciphertext byte) is 
obtained as in the encryption in r-FCE.  Let the resulting 
plaintext values be m′ . Now we try to obtain a lower bound 
of )(mH ′ , the entropy of m′ . 
    To compute the entropy of m′ , we first need to 
understand the random factors that determine the different 
outcomes of m′ .  In the game of the INFO-CPA-DB 
definition, A passes to G a sequence of ciphertext values, 
which we denote as c .  G applies a randomized decryption 
algorithm to c .  So, c  is fixed.  There are two 
probabilistic factors that determine the value of m′ : 
• The random permutations for each page, which derive 

the bit offsets into the key for decryption of each byte. 
• The key K ′ , which determines what bits are actually 

XOR’ed with c  to get m′ . 

    We first consider the effect of the random permutations. 
Suppose a random K ′  (the second random factor) is fixed.  
The process of decrypting each byte of c  uses some 
random d value (determined by the permutation) to get 8 
bits from K ′  and XOR’s them with the byte of c . Two d 
values may result in the same sequence of 8 bits for the 
XOR.  We put the 32K d values (1 to 32K) into 25628 =  
groups, such that each group corresponds to a distinct 
sequence of 8 bits (let’s call it a “pad byte” from now on).  

We consider random variables )2550( ≤≤ iX i
 that are the 

cardinalities of each group. We want to compute the 
number of unique assignments of pad bytes for a 64KB 
page. This is the same as the number of ways to write 256 
numbers 2550 ≤≤ i , 

iX2  times respectively, on a board that 
can hold 64K numbers. So the number of unique 
assignments in a page (resulting in unique m′  values) is 
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unique assignments, each with equal probability (note that 
the equal probability property will greatly simplify the 
computation of entropy), resulting in unique m′  values.  
Now we compute a lower bound of )(mH ′ . Resorting to 
conditional entropy [5], we have: 
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    For now we use this approximation, and later we use 
Chernoff bounds [13] to show that with high probability the 
actual bound will be very close to this one, so this is indeed 
a good approximation. What we have done is to simplify 
the problem of computing )(mH ′  to giving a lower bound 
using the conditional entropy, conditioning on the second 
(harder) probabilistic factor. 
    All that remains is to compute )2550()( ≤≤ iXE i

.  Let 

iX be the cardinality of the group with pad byte value i.  
Consider 32K random variables )1320( −≤≤ KiYi
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due to the randomness of K ′ .  Then, 
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Because key K ′  is uniformly random, then from symmetry, 
we have 

)2550(128)( ≤≤= iXE i
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    From all the above, we can compute the lower bound of 
)(mH ′ : 
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We can use Stirling’s Formula [13] to compute )!64log( K  
and !256log . Finally we get the lower bound value: 

nmH 9974.0)( >′ . 
    Recall that from (1) to (2) we used an approximation.  
We can use Chernoff bounds, union bound [13] (which 
basically says )(Pr)(Pr)(Pr BABorA +≤ ), and the constraint 
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 to show that with high probability (1) indeed is 

very close to (2). We omit the details due to space 
constraints. They are in the full version of the paper. 
    The lower bound result (0.9974n) indicates that )(mH ′  is 
very close to n , or in other words, m′  is very close to a 
uniformly random bit string. This gives us great confidence 
in the security of r-FCE according to the INFO-CPA-DB 
and Real-Or-Random definitions. However, the missing 
entropy might be a concern for an application that requires 
strict security. We leave the problem of analyzing the effect 
of the leak as future work. 
    We can also obtain a general lower bound of entropy as a 
function of page size P and key size |K|, which indicates 
that a bigger page size or key size implies more security, 
but higher overhead. The details are in the full version. 
    From the security analysis of an order preserving 
encryption scheme and FCE, we can see that to show 
something is secure, we give a “simulation script” or 
strategy for player G.  To disprove the security of some 
scheme, we give a strategy for player A. 

5.3    Connection Between FCE and r-FCE 
    As we mentioned earlier, r-FCE uses ideal random 
permutations. So we have to use cryptographic techniques 
to realize it. We have introduced the FCE scheme in 
Section 3.2.2. Most cryptographic techniques are based on 
the “computational indistinguishability” [7] framework. 
Informally, it means that given “reasonable” resources 

(e.g., probabilistic polynomial time), one cannot distinguish 
between two distributions. We use “ BA ≈ ” to denote that 
distribution A is “computationally indistinguishable” from 
distribution B. 
 

 

 

 

 

 

 

 

 

 

    As we show in Figure 4 (omitting the proofs here), r-
FCE uses a random permutation return value mod |K| (as 
the d values to probe into the key).  This is computationally 
indistinguishable from a random function family whose 
function has the same domain as the permutation, but has 
the range of {0,…,|K|-1} (provided that the permutation 
size is a multiple of |K|). In turn, this random function 
family is computationally indistinguishable from a 
pseudorandom function family (with the same domain and 
range). In the final step of Figure 4, the FCE scheme uses a 
k-wise independent function family. 
    Hoory et al. in [10] discuss the motivation for 
understanding the relationship between k-wise 
independence and pseudo-randomness. They present an 
educated conjecture that 4-wise independence suffices to 
achieve cryptographic pseudo-randomness. FCE builds on 
this by using a 4-wise independent function family. We 
choose a rather natural and efficient construction of a 4-
wise independent function family: random polynomials of 
degree k-1 (where k=4) as described in [12]: 

dcxbxaxxp +++= 23)(  
where ]1,0[,,,, −∈ Pxdcba . 
    Clearly a higher “k” value in the k-wise independent 
function results in more security, but higher cost. 
    In summary, we end up with an FCE scheme that is 
computationally indistinguishable from r-FCE, which we 
have proved to be information theoretically secure.  
Therefore, we combine the concepts of information 
theoretic security and computational security. 
    We can analyze the security of some other encryption 
schemes using our security measure. It is not hard to show 
that the ideal (and impractical) schemes of One-Time-Pad 
and the CTR scheme using a random function in [3] are 
both (n, n) secure, and DES is (56, n) secure. We omit the 
analysis due to space constraints. While our analysis in 
Section 5.2 seems to suggest that r-FCE is more secure than 

r-FCE:   Random permutation mod m (family) 

   Random function family 

Pseudo-random function family 

FCE:   k-wise independent function family 

Figure 4: From “ideal” to “realization”, a road connected 
                 by “computational indistinguishability”. 



a block cipher (e.g., DES), FCE, unlike r-FCE, uses a block 
cipher to encrypt 8 bytes per page to obtain the a, b, c, d 
values. Thus the security of FCE is bounded above by the 
security of the (subroutine) block cipher. 

6. Indexing with FCE 
    In this section, we describe indexing on FCE encrypted 
data. We will be exclusively talking about widely used tree 
indexing (e.g., B+ trees), although FCE is also applicable to 
hash indexing, etc. Each page of the B+ tree will be laid out 
as usual on disk, except that each page will have a 64-bit 
seed at the top and parts of the page will be encrypted using 
FCE. 

For an internal node of a B+ tree, we only encrypt the 
key values. We leave pointers (to other index nodes) in the 
clear. For a leaf node of a B+ tree, we encrypt both the key 
values and the record IDs. We need to encrypt record IDs, 
because otherwise from the leaf nodes, the order of the 
records could be inferred (which is exactly the problem 
with OPES). Efficient comparison between key values is 
the main challenge of indexing encrypted data. Therefore, 
we focus on how this works under FCE. Typically we are 
concerned with searching for a plaintext key value in the 
encrypted B+ tree, as this is what we need to do in 
processing a query. The comparison we do is between a 
plaintext and a ciphertext value, which, as we discussed in 
Section 3.2.2, is not much different from comparing two 
ciphertext values. As usual, the tree traversal starts from the 
root, and uses our special comparison method. Recall that 
we have the Early Stopping (ES) mechanism for 
comparisons. Observe that ES is more effective as the 
search is closer to the root of the B+ tree (upper levels), 
since it is more likely that the comparison is between two 
values with a big difference. As the search approaches the 
leaf level, key values approach the target value, and more 
byte comparisons are needed. Note that classical index key 
compression methods (on the plaintext key values), when 
applied, still work as usual, and in fact help ES, as 
redundant leading bytes are likely to be compressed, which 
further saves the CPU cost for decryption. 

Unless the whole table is encrypted, a clustered index is 
in general not feasible with an encrypted column. This is 
because the order of the ciphertext values would be 
revealed by means of association with other columns 
otherwise (the same reason as needing to encrypt record 
IDs at leaf nodes). This is not specific to FCE and is 
universal for any encryption method. As a consequence, a 
sparse index is also not feasible in general. 

With another classical encryption method, such as DES, 
B+ tree indexing is still possible in principle. The 
differences are: 
• It has bigger encryption blocks (e.g., 8 bytes for DES), 

hence a tree traversal may decrypt more than needed. 

• Its minimum unit of decryption is larger (e.g., 8 bytes 
for DES), so one has to perform more decryption all 
along the search path. 

• The decryption has more overhead than FCE. 

As a result, it is less efficient to build an index with 
classical encryption methods. The performance comparison 
with indexing using DES is further conducted in the next 
section. 

7.    Experiments 
We have mentioned that security has to be shown by 

analysis/proof and demonstrated it for FCE in Section 5. In 
this section, we study the following performance issues 
through experiments: 
(1) How much overhead does FCE decryption/encryption 

have in the database context? 
(2) How much does the Early Stopping mechanism help 

the index search? 
(3) FCE has a small encryption block of one byte, 

compared to eight bytes of, say, DES. Combined with 
Early Stopping, what performance impact does this 
have on various kinds of queries (e.g., whether or not 
the index is covering for a query)? 

7.1   Setup 
    We have implemented the FCE scheme, and B+ tree 
indexing on FCE encrypted columns, as well as DES 
encrypted columns. We extended the code to support DES 
and FCE encryption in C-Store on Debian Linux. We use 
the crypto library in OpenSSL 0.9.8b for DES. We use 
DES as the underlying block cipher of FCE, which is used 
to encrypt the 8-byte seed on each page. We have also 
implemented sort merge JOIN, which was not available in 
C-Store before. The algorithms were implemented in C++.  
The experiments were run on a Linux workstation with an 
AMD Athlon-64 2Ghz processor, 512 MB memory and a 
Samsung HD160JJ disk. 

7.2   Overhead of FCE 
Our first experiment compares the retrieval overhead of 

FCE with DES and unencrypted data. In this experiment, 
we select a single integer-valued column from a database.  
More precisely, we sequentially scan all the 64KB data 
pages, each containing 8K encrypted 8-byte <column 
value, recordID> pairs. All FCE runs include the cost of 
generating a, b, c, and d values for each page with DES. 
The file cache was warm in these experiments. 

Figure 5 shows the retrieval cost per tuple. The FCE-1 
line shows what happens when we only decrypt the column 
value, but not the record ID (since we are selecting a single 
column). With DES, in this case, we need to decrypt both 
the column values and the record IDs, as the DES block 
size (8 bytes) is larger than the column value size. (Some 
block ciphers require even bigger block sizes.) Therefore, 
in Figure 5 DES is decrypting twice as much ciphertext as 



FCE-1. To compare DES and FCE when both decrypt the 
same amount of data, we included runs where FCE 
decrypts the record IDs as well. This is shown by the FCE-
2 line in Figure 5, which is slightly faster than DES. For 
both FCE and DES, the encryption cost is about the same 
as decryption, so we don’t include those measurements 
here. 

For an arbitrary data type, the difference in performance 
between DES and FCE for sequential scans will fall 
somewhere between the relative performance of DES and 
FCE-1 or DES and FCE-2. The reason is that we need to 
decrypt a different amount of extra ciphertext depending on 
the size of a data value, especially if it is a variable size 
data type.  

DES has been around for almost 30 years, and we 
believe that its OpenSSL implementation has been 
carefully tuned.  Our implementation of FCE is not highly 
tuned, but is already outperforming DES. There is a good 
chance that with tuning, FCE can be even faster. This can 
also be seen from the cycle count comparison on the 
TMS320C6211 processor, in Section 3.2.2. 

7.3   Indexing with FCE for Range Queries 
In this section, we look at the performance of a simple 

SELECT query that has a predicate on the encrypted 
column: SELECT COUNT(*) FROM t1 WHERE c1>? 
AND c1<?, where c1 and c2 are an integer-valued 
columns. The query plan uses B+ indexes to find the record 
IDs that satisfy the range restrictions. The first step is to 
traverse the index to find the smallest value that satisfies 
the range restriction, then visit each subsequent value in the 
leaf nodes until it finds the smallest value that does not 
satisfy the range restriction. The count of the number of 
satisfying records is accumulated as the leaves are 
traversed.  The data pages themselves are not visited, and 
the record IDs do not need to be decrypted.  

Figure 6 shows the performance of this query under 
various data sizes, but fixed selectivity (25%).  We can see 
that with DES encrypted columns, even though an index 
can be built (with more complex code changes), it is not as 
efficient as an FCE-based index, since an index search has 
to decrypt 8-byte DES blocks on the B+ tree search path. 
On the other hand, comparisons during an FCE index 
search are efficient for three reasons: 

• FCE has lower decryption overhead. 
• FCE does not need to encrypt and decrypt pointers 

in internal nodes, whereas DES may have to, due to 
the 8-byte block size. 

• Early Stopping (ES) happens during comparisons. 

To evaluate how much savings ES contributes, we 
measure the cost with both ES disabled and enabled (FCE-
nES and FCE-ES1, respectively, in Figure 6). Observe that 
the effectiveness of ES depends on the value distribution of 
the column. If the column has mostly small integer values 
(say, all less than 216, for FCE-ES1), then ES is less 

effective than when the column values are uniformly 
distributed in the range of [0, 231] (FCE-ES2). Note that for 
some data types, such as character strings, it is less likely to 
have many common, redundant prefix bits between values 
and ES is more effective. 

7.4   Variations of Queries 
The next set of experiments investigates the 

performance impact of having to fully decrypt the indexed 
column at leaf nodes for a query. (In the previous COUNT 
query, we may not fully decrypt it due to Early Stopping.) 
There are at least two cases for a query: 
• The indexes are covering (i.e., only indexed columns 

appear in the query, thus there is no need to decrypt 
record IDs or read the base tables).  Therefore only the 
keys need to be decrypted in the leaf nodes. 

• The indexes are non-covering, therefore both the keys 
and record IDs in an index need to be decrypted. 

Example queries corresponding to these two cases are 
SELECT c1 from t1 where c1>? AND c1<?, and 
SELECT c1, c2 from t1 where c1>? AND c1<?, 
respectively, where integer-valued c2 is not encrypted and 
the index is on the encrypted integer-valued column c1. In 
Figure 7, the lines corresponding to these two queries are 
labeled FCE-cover and FCE-nc, respectively. We also 
compare them with DES encryption and with the COUNT 
query of Section 7.3, which is shown as FCE-count in 
Figure 7; the index is covering in this case. In all cases, we 
exclude the cost of retrieving data from the base tables, as 
that cost is independent of the encryption scheme.  

Due to its 8-byte block unit of decryption, DES always 
decrypts the keys and record IDs in the leaf nodes, and 
hence the DES cost is the same for both queries. Observe 
that these small variations of queries cause a performance 
difference for FCE. Due to Early Stopping, FCE-count, 
which only does comparisons, is faster than FCE-cover, 
which decrypts all of the key bytes at the leaves. In turn, 
FCE-cover is faster than FCE-nc because FCE has a small 
encryption block size (1 byte) and decrypts only as needed 
(FCE-cover does not decrypt the record IDs in the leaves). 
In all of the cases, FCE is more efficient than DES. 
 
 

 

 

 

 

 

 

 

 Figure 5: Tuple retrieval cost. 
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8. Related Work 
    The work of [8] (Goldwasser and Micali) and [3] 
(Bellare et al.) studied the formal notions of security for 
encryption. Our information theoretic measure is based on 
the Real-Or-Random (ROR) definition against chosen-
plaintext attack (CPA) in [3]. 
    [1, 9, 15, 17] are similar to our work in that they 
typically propose a new scheme of encryption in such a 
way that efficient query processing on encrypted data is 
possible. Although there are similarities with our work in 
[17], their goal is that an untrusted server cannot learn 
anything about the plaintext, but still can perform search, 
which is only equality search. We have a different threat 
model, and our goal is to support fast queries in a DBMS, 
in particular, to use indices on ciphertext. The idea in [9] is 
to map encrypted values into buckets for early filtering 
without decrypting the value. The result of the rewritten 
query contains false hits that must be removed in a post-
processing step.  We have discussed its security problem in 
Section 1, and the performance and security problems are 
also discussed in [1, 11]. [1] proposes an order preserving 
encryption scheme. Although ideal for comparison, it has 
inherent security problems that we have discussed at 
length. 

9.    Conclusions 
    Encrypting sensitive data in a DBMS becomes more and 
more crucial for protecting it from being misused by 
intruders who bypass conventional access control 

mechanisms and have direct access to the database files. 
One must study the security of a new scheme in a 
systematic way. In this paper, we proposed the FCE 
database encryption scheme and demonstrated its security 
and efficiency for databases. We discussed indexing issues 
with FCE and experimentally evaluated the overhead and 
performance. 
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Figure 7:  Performance of slightly different queries under 
DES and FCE. 

Figure 6:  Performance of a range query utilizing an index    
built under different encryption schemes. 
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