
Art Gallery Positioning System

Kaveh Boghraty

May 17, 2007

1 Introduction

The Art Gallery Positioning System is part of
a larger project called Sonic Gallery1. Although
this tracking system was built around the re-
quirements of Sonic Gallery, the methods that
are used can be adapted to a wide variety of sce-
narios. Before a detailed description of the sys-
tem, a little information about its development
context is needed.

1.1 Sonic Gallery

The vision of the Sonic Gallery project con-
sists of an art gallery that uses location-
dependent music to enhance a person’s under-
standing and enjoyment of the visual works of art
displayed in the gallery. Visitors of the gallery
are provided with a small Pocket PC with head-
phones, and upon approaching a painting, a cor-
responding piece of music gradually immerses
them in a state of mind that is more charac-
teristic of the theme of the artwork.

Among other factors, the implementation of
this vision depends on the capability of simulta-
neously estimating the position of several peo-
ple within a room. Despite the successful im-
plementation of other indoor tracking systems,
such as Cricket2, a less costly route involving
network cameras was considered by the Rhode
Island School of Design (RISD). However, de-

spite the successful development of several meth-
ods for tracking human movement using cam-
eras, there is a shortage of methods that can
track several people simultaneously and distinc-
tively through one set of cameras.

1.2 Stereo Camera Triangulation

With the appropriate calibration, two cam-
eras placed next to each other with a significant
amount of gap and facing the same way can pro-
vide enough information to calculate the missing
coordinate of an object (depth) relative to the
2D images provided. For this project the ma-
jor challenge is to get the cameras to each locate
the 2D coordinates of the same target point. By
maximizing the gap between the cameras with-
out losing too much field-of-view we can mini-
mize the amount of error in the depth estimate
caused by the inaccuracies of 2D tracking.

1. Master Project by Ha Tran - http://
www.cs.brown.edu/publications/theses/masters/
2007/tran.pdf

2. MIT’s indoor location system
http://cricket.csail.mit.edu/

1

1.3 Goal

To demonstrate that the above method can
potentially be used as a solution to the demands
of the Sonic Gallery project, this project must re-
sult in the successful tracking of subjects though
a single pair of cameras. Provided one pair
of cameras can track the location of a subject
within its field of view, the expansion of the
tracking environment through the addition of ex-
tra sets of cameras is a trivial process.

1.4 Approach

After experimenting with a few different track-
ing methods, the most successful and by far the
fastest of these consisted in background subtrac-
tion followed by color detection. Both stages in-
volve the use of a threshold value that is very cru-
cial in isolating the target without ruling it out
as background. Among the unsuccessful routes
explored are shape detection using image deriva-
tives and eigenvectors.

2 Equipment

2.1 Calibration Toolbox

This package by Caltech students, called Cam-
era Calibration Toolbox for Matlab3, provides
not only a relatively straightforward program for

calibrating stereo cameras after placement, but
also a wide range of matlab functions that facil-
itate interaction with the cameras. The calibra-
tion process makes use of a checkerboard posi-
tioned a many different angles in front of both
cameras.

2.2 Setup

The Art Gallery Positioning System consists
of four major categories connected by the wire-
less network: the cameras, the locator program,
the receiver program, and the Pocket PCs (not
available for final demo). Here is a simple dia-
gram illustrating the network links:

3. Courtesy of Caltech Vision Department,
www.vision.caltech.edu/bouguetj/

2

Here is an overview of the equipment used in the
final demonstration.

2.3 Cameras

The specific model of the two cameras used in
the tracking is D-Links DCS-900W. This model
can be accessed by Ethernet as well as 802.11b
(Wireless). For this project, the wireless inter-
face was used. The settings were adjusted to
provide the maximum resolution of 640x480 pix-

els.

2.4 Wireless Router

The 802.11b router that connected all compo-
nents was Apples AirPort Express Base Station.
Since the network did not need to be connected
to the Internet, no cables were used in the setup
of this project. The AirPort router was plugged
directly into the nearest outlet and setup wire-
lessly.

2.5 Laptops

The locator program (Matlab) ran on a Ap-
ple PowerBook G4, while the receiver program
(Java) ran on a Apple Intel MacBook Pro.

3

2.6 PocketPC

Unfortunately there were no working Pocket-
PCs available for the last demo. Instead, I mod-
ified the receiver program so that it displayed
a simple diagram showing the position of the
people being tracked in relation to the cameras.
This diagram is updated upon the receipt of each
set of coordinates from the locator program.

2.7 Labeled Headphones

The color label used to distinguish the various
people in the gallery is mounted on the band
of the headphones used to hear the PocketPC
audio.

3 The Algorithm

The central engine of this project is the one
used to find the 3D coordinates of a subject.
This process involves several stages with inde-
pendent algorithms. To get an idea of the entire
process we can track a single pair of frames from
the time they are captured from the camera to
the 3D coordinates that result from the process-
ing of the frames.

3.1 Calibration Process

This calibration is not to be confused with the
stereo calibration discussed above. Before the
main loop is started the program needs a pair of
images from the positioned cameras without any
people in the field of view. These will be used
to rule out background information from every
frame once the tracking is begun.

4

3.2 Background Subtraction

Here is a typical frame as downloaded:

Background subtraction is a very efficient way
of reducing the chance of contamination from un-
wanted objects with the same color of the target
label. In this part, the calibration frames stored
before the tracking are subtracted from the new
frames. If the new frames contain any new ob-
jects, these will stand out in the resulting differ-
ence of images. Since introducing a new object
in a scene also slightly changes the lighting in
the rest of the room, a threshold is used to al-
low some tolerance in the difference values. If
the difference value of a pixel is higher than the
threshold, that pixel is considered for the color
detection process. The following image is the
result of subtracting the background from the
above frame (converted to grayscale):

There is no safe rule of thumb for the threshold
value, besides determination by trial. The value
of this argument is very important. If too small
of a value is chosen, the chances of contamination
from the background are substantial. If the value
is too big, the pixels of the target label can be
unintentionally ruled out.

3.3 Color Detection

The pixels that survived the background sub-
traction are organized into a list, and their x and
y coordinates are saved. Each pixel has 3 values,
one for each of the RGB colors. These can be
treated as a set of 3D coordinates, so that the
3D distance between this pixel’s color and the
target color can be calculated.

A different threshold is used to determine
which pixels are close enough to the target to
be considered for the Center of Mass. This time,
pixel distance values greater than the threshold
are disposed of, leaving pixels with the colors
closest to what we are trying to detect. Here is
the same frame after the color detection stage:

5

The border was added for display in this pa-
per. Although this example shows a successful
localization of the red headphone label, you can
also see that a substantial portion of the label
was removed in the background subtraction pro-
cess. This result hints that the difference thresh-
old value is a bit too large (leading to the re-
moval of more than just background information
).

3.4 Center of Mass

If the threshold values for the background sub-
traction and color distance are not too far off
track, at this point only the pixels correspond-
ing to the label surface in the frames should be
left. The center of mass is calculated by aver-
aging all the x and y coordinates into one set,
which is then passed to the next stage.

3.5 Triangulation

At this point we have one set of 2D coordi-
nates from each camera, corresponding to the
position of the target label. We can now use the
Camera Calibration Toolbox for Matlab to ob-
tain a set of 3D coordinates. The coordinates

returned by the triangulation function are not
always intuitive. For each stereo calibration, the
3D origin that the coordinates are based on is
different. It is, however, fairly straightforward to
figure out the origin by running a few controlled
trials. The coordinates can now be transmitted
to the receiver program.

4 Limitations

Although this tracking method is fast and re-
quires fairly inexpensive equipment, it also has
some major drawbacks when compared to sys-
tems using actual sensors. Below are some of
the limitations that became frustratingly clear
throughout the project:

4.1 Subject Number

When using colors to distinguish multiple peo-
ple within the same environment the maximum
target number is very limited. Since a surface’s
color can vary in tone and brightness depending
on its position with respect to light, a certain
degree of flexibility must be allowed in the color
detection process of the tracking algorithm. This
means that in order to successfully distinguish
various colors, they have to be distant enough on
the color spectrum so their detection ranges do
not overlap. Moreover, depending on the setup
location certain colors should be avoided because
they are too common in the environment.

4.2 Subject Labeling

In order for the cameras to have a reasonable
field of view, they need to be fairly distant from
the subjects. Consequently, the size of the color
labels used to track the subjects needs to be large

6

enough so that it can be detected from that dis-
tance. A large color label usually requires un-
comfortable or unwanted extra clothing (hats)
or accessories (large headphones). This may dis-
courage people from making use of the tracking
system.

4.3 Accuracy

There are numerous potential sources of in-
accuracy in this method. Here are some of the
most important ones:

• Items other than labels that match label
color range can lead to an incorrect center
of mass calculation.

• Line of vision from camera to label can be
blocked by people or objects.

• Direct light source can cause the same la-
bel surface to produce a wide range of color
values depending on position and angle with
respect to light.

• A large label surface area can cause a pair
of cameras to focus on different points on
the same label and result in reduced trian-
gulation accuracy.

Being familiar with the sources of inaccuracy
can help adjust the environment to improve the
odds. For example, a room’s light source can
be sometimes adjusted to create more ambient
light and less spotlight. Image difference thresh-
old values, as well as label sizes, can be fine tuned
for specific conditions.

5 Conclusion

Although there is no way to significantly in-
crease the limit of people that can be simultane-

ously tracked within an art gallery, the other ma-
jor limiting factors can be minimized by tweak-
ing the setup parameters (camera positions,
light source, ...) to the system’s advantage.
In other words, this tracking system could be
successfully implemented as part of the Sonic
Gallery project with a small number of people.
This would be an inexpensive way to get an idea
about the appeal of Sonic Gallery’s main concept
to various types of people, which would help de-
termine weather it is worth it to further expand
the scale of the project.

References

[1] J.H. ter Bekke, The Cricket
Location-Support system, Boston,
MA, August 2000.

[2] Nissanka B. Priyantha, Anit
Chakraborty, Hari Balakrish-
nan, Thinking Forth, a language
and philosophy for solving problems,
Prentice Hall, ISBN 0-13-917568-7,
1984.

[3] Klaus Strobl, Wolfgang Sepp, Ste-
fan Fuchs, Cristian Paredes, Klaus
Arbter,Camera Calibration Toolbox
for Matlab, Pasadena, CA

[4] Sturm and Maybank,On Plane-
Based Camera Calibration: A
General Algorithm, Singularities,
Applications, Reading, RG6 6AY,
United Kingdom, 1999

7

Appendices

A Appendix A: Matlab code
for locator

A.1 locator.m

A.2 locate color.m

8

% =
% locator.m
% Kaveh Boghraty
% =

clear al l;

% =
% Please set the program parameters here
% =

% IP Address for camera 1 (left)
cam1_address = ’10.0.1.31’;

% IP Address for camera 2 (right)
cam2_address = ’10.0.1.32’;

% Directory where locator files are run from
main_dir = ’~/Desktop/locator/’;

% Difference treshold: if pixel value difference between
% calibration frame and current frame is smaller than this,
% the pixel is ingnored for color detection
imdiff_cutoff = 0;

% Color distance treshold: if 3D distance between target
% color and pixel color is grater than this value, pixel is
% not considered for center of mass
colordist_cutoff = 40;

% Debug on/off: set this to 1 if you want debug info,
% including diff and color distance images to be displayed
imdebug = 0;

% Set this to 1 if you want to send coordinates to a server
% of choice
server_connect = 0;

% Server IP and port
hostname = ’10.0.1.2’;
port = 2000;

% =

cd(main_dir);

% Setup and initialize camera
javaaddpath ’./java/’;
addpath ’./TOOLBOX_calib/’;
import CamView;

cv1 = CamView(cam1_address, 80);
cv2 = CamView(cam2_address, 80);
cv1.start();
cv2.start();

% Wait for cameras to come online
% Pause duration may need to be adjusted based on network
pause(5);

% Setup and open connection to server

i f(server_connect)
 socket = tcpip(hostname, port);
 fopen(socket);
end

% Load calibration files
caldir = ’./calibration/’;
cal = load([caldir ’Calib_Results_stereo.mat’]);

% load images in source folder
sourcepath = ’./colors/’;
colors = loadImagesRGB(sourcepath);
h_size = size(colors);
him1 = reshape(hats(2,:,:,:), h_size(2), h_size(3), h_size(4));
red = reshape(mean(mean(him1)), 1, 1, 3);

% Load background calibration frames. Make sure there no temporary objects
% or people in view
calim1 = frame(cv1);
calim2 = frame(cv2);

out = ’0;0;0;’;

while(true)
 pause(.25);
 % Receive frames from cameras
 fim1 = frame(cv1);
 fim2 = frame(cv2);
 % Subtract background
 diffim1 = imabsdiff(rgb2gray(fim1), rgb2gray(calim1));
 diffim1(find(diffim1 < imdiff_cutoff)) = 0;
 diffim2 = imabsdiff(rgb2gray(fim2), rgb2gray(calim2));
 diffim2(find(diffim2 < imdiff_cutoff)) = 0;
 % Find target in new frames
 [y1,x1, distmat1] = locate_color(fim1, calim1, red, tile, imdiff_cutoff, colordist_cutoff);
 [y2,x2, distmat2] = locate_color(fim2, calim2, red, tile, imdiff_cutoff, colordist_cutoff);

 % If target could not be located 0 is returned
 i f(y1 == 0 || y2 == 0)

 NAval = sprintf(’%d;%d;%d;\r\n’, [0;0;0]);
 % Send coordinates to server
 i f(server_connect)
 fprintf(socket, ’%s’, NAval);
 end
 % Print coordinates
 i f(imdebug)
 fprintf(’%s’, NAval);
 end

 i f(imdebug)
 subplot(2,3,1)
 imagesc(fim1);
 subplot(2,3,4)
 imagesc(fim2);
 subplot(2,3,2)
 colormap gray
 imagesc(diffim1);
 subplot(2,3,5)
 imagesc(diffim2);
 subplot(2,3,3)

 imagesc(distmat1);
 subplot(2,3,6)
 imagesc(distmat2);
 drawnow;
 end

 else
 % Triangulation happens here
 [XL,XR] = stereo_triangulation([x2;y2], [x1;y1], cal.om, cal.T, cal.fc_left, cal.cc_left, cal.kc_left, cal.
alpha_c_left, cal.fc_right, cal.cc_right, cal.kc_right, cal.alpha_c_right);

 i f(imdebug)
 subplot(2,3,1)
 imagesc(fim1);
 hold on;
 rectangle(’Position’, [x1!10,y1!10,20,20], ...
 ’Curvature’, [0,0], ’EdgeColor’, ’red’);
 subplot(2,3,4)
 imagesc(fim2);
 hold on;
 rectangle(’Position’, [x2!10,y2!10,20,20], ...
 ’Curvature’, [0,0], ’EdgeColor’, ’red’);
 colormap gray
 subplot(2,3,2)
 imagesc(diffim1);
 subplot(2,3,5)
 imagesc(diffim2);
 subplot(2,3,3)
 imagesc(distmat1);
 subplot(2,3,6)
 imagesc(distmat2);
 drawnow;
 end

 % Construct output
 out = sprintf(’%d;%d;%d;\r\n’, (int16(XL)));
 % Send coordinates to server
 i f(server_connect)
 fprintf(socket, ’%s’, out);
 end
 % Print coordinates
 i f(imdebug)
 fprintf(’%s’, out);
 end
 end
end

function [y,x, distmat] = locate_color(fim, cim, color, tile, diff_tresh, dist_tresh)

% store image dimensions
imsize = size(fim);

% expand destination color to size of image
colormat = repmat(color, [imsize(1), imsize(2)]);
% compute difference matrix of color and image
diffmat = double(fim) ! double(colormat);
% compute distance matrix between image and color
distmat = ((diffmat(:,:,1).^2) + (diffmat(:,:,2).^2) + (diffmat(:,:,3).^2)).^(1/2);

% use background image to narrow matches
diffim = imabsdiff(rgb2gray(fim), rgb2gray(cim));
indeces = find(diffim < diff_tresh);

% discard values outside diff match
distmat(indeces) = max(max(distmat));

% get all pixels with values close to destination color
[y_vals, x_vals] = find(distmat < dist_tresh);

% for return image, remove all out!of!range pixels
distmat(find(distmat > dist_tresh)) = max(max(distmat));

% make sure we have a match
i f(length(y_vals) == 0)
 x = 0;
 y = 0;
 disp ’No match’;
else
 y = mean(y_vals);
 x = mean(x_vals);
end

