
A Marginal Revenue Approach to Bidding in
TAC SCM

John Donaldson
jwd@cs.brown.edu

December 17, 2006

Abstract

We describe two strategies for bidding on customer RFQs in the
Supply Chain Management Trading Agent Competition. The first
strategy, used by Botticelli in previous years, is to model and solve
the problem as integer linear program. The second strategy is a greedy
algorithm where customer demand is scheduled according to the pre-
dicted marginal profit. Both strategies have been implemented in the
Botticelli agent. We consider the problem of bidding on today’s RFQs
with and without knowledge of the future customer demand. Simula-
tion results for various demand scenarios are presented.

1 Introduction
Bidding in response to customer demand is a central function of an agent operating
in the context of a dynamic supply chain. The Trading Agent Competition in Supply
Chain Management (TAC SCM) offers a simulated environment for the evaluation of
competitive bidding strategies. Agents in the TAC SCM game face three simultaneous
and interrelated problems. First, the problem of procurement, where by agents have
to purchase the components required for assembling finished computers. Second, the
problem of competitive bidding in reponse to changing customer demand for finished
computers. Finally, the problem of scheduling production of various computers across
limited factory capacity.

Although we focus on the solution to the bidding problem, it should be clear that
the optimal solution to each problem depends on the soltuion to the other problems. For
example, a naive profit-maximizing agent wishes to win many orders at high prices, so
its seems wise to bid on all available RFQs. On the other hand, winning more orders
than can be produced with available factory capacity will result in penalties and sub-
optimal revenue. Further, a robust agent needs to consider the availability and cost of
components when formulating bids. For the purposes of this paper we are generally
concerned with the problem of bidding and scheduling in so far as it solved in route to

1

solving our bidding problem. Procurement is not considered. Our simulation environ-
ment provides an infinite supply of every component at no cost.

2 Description of the Bidding Problem
The TAC SCM bidding problem takes the form of a reverse auction where sellers com-
pete to provide the lowest bids in response to customer RFQs. Each customer RFQ is a
request for a fixed number of a particular type of computers delivered within a specified
number of days with a reserve price. The agent’s problem then is to submit a mapping
from the current day’s RFQs to bids.

In order to determine a profit-maximizing mapping of RFQs to bids, an agent needs
a model of the probability that a particular bid at a particular price is converted into
an order. For each Stock Keeping Unit (SKU), the TAC SCM server provides the
previous day’s maximum and minimum prices of computers sold. Botticelli combines
this information with its own bids, to fit a linear offer-acceptance cdf. Other more
complex models of offer acceptance are also possible.

For the purposes the simulations presented in this paper, we assumee the model
is known to the agent and perfect, that is the actual probability that an agent recieves
an order in response to a bid is exactly that predicted by the agents own model. Put
simply, the simulator and the agent share the same model.

The TAC SCM game takes place over 220 simulated days. An agent may wish
to consider not only today’s RFQs and today’s production capacity, but several days
of predicted future demand and production capacity. In the actual TAC SCM game,
customer demand is drawn from a Poisson distribution. The mean of the Poisson dis-
tribution is adjusted each day by a trend. The trend itself is in turn adjusted by a
bounded random walk. Again, there are methods for reaching an estimate of future
customer demand in the TAC SCM game. For the purposes of this paper we assume
future customer demand is fully and perfectly known.

2.1 Formal Description of the Bidding Problem
An agent wishes to submit bid on a subset of the current day’s RFQs that maximizes
the total expected revenue. Formally,

max
∑

i

P (Ri =1|b) ∗ bi

where i indexes the RFQs, b is the bid amount, and P (R) is the probability of re-
ceiving an order for a particular bid.

All orders must completed before due date, to assure this is possible, our agent will
bid such that the expected number of cycles in at or below our factory capacity. For-
mally,

2

∑
i

P (Ri =1|b) ∗ cycles(R) ≤ FactoryCapacity

where i,P (R),b are as above and cycles(R) is a function that takes an RFQ and
returns the required number of factory cycles required to convert that RFQ to the re-
quested number of finished computers.

Bids are additionally subject to several obvious technical restrictions such as a only
a single bid is allowed for each RFQ or no bid above the customer’s reserve. We do
not itemize those constraints here, but they are required elements of a complete ILP
solution.

2.2 An Integer Linear Program Approach
Since 2003, Botticelli has used a single-day integer linear programing approach to
solving the bidding and scheduling problems. The objective function maximizes both
the revenue from fulfilling current orders before they expire and the expected revenue
from RFQs. We divide our possible bids uniformly from 0(no bid) to 99% (a bid low-
enough that our modeler returns a 99% chance of winning the order) Formally,

max
∑

j

Oj ∗ oj +
∑

i

∑
m

P (Ri,m =1|bi,m) ∗ bi,m

where O is a zero-one variable indicating if the jth order is filled before due-date, oj is
the revenue available for filling that order, and R, i, and b apply to RFQs as above and
m indexs the number of discrete bid values considered.
Our agent seeks to maximize this objective function subject to several constraints. First,
for each SKU, the combination of available inventory and production must meet or
exceed the the total quantity of orders fulfilled. Formally,∑

j

Os,j ∗ qj ≤ Ys + Is

where s indexes the 16 different SKUs, j indexes orders within a particular product
type, Os,j is a zero-one indicator variable as described above, qj is the quantity of an
order, Ys is the total production of a particular SKU, and Is is the start of day inventory
for a particular SKU.

Finally, production cannot exceeed factory capacity on any day. Formally,∑
s

Ys ∗ cycles(s) ≤ FactoryCapacity

where Ys is the number of units of production of a particular SKU and cycles(s) is
a function that accepts a SKU and returns the number of factory cycles required to.

3

We can easily extend both of these constraints to a multiday bidding situation. The
RFQs in our planning window will now include both actual customer RFQs sent by the
TAC SCM server and modeled future customer demand. Extended to multiple days the
objective function becomes

max
∑

d
∑

j

Od,j ∗ oj +
∑

d

∑
i

+P (Ri =1|bi) ∗ bd,i

The production sufficiency constraint becomes∑
d

∑
j

Os,d,j ∗ qj ≤
∑

d

Yd,s + I0,s

Again, production cannot exceeed factory capacity on any day.∑
s

Yd,s ∗ cycles(s) ≤ FactoryCapacity

Although this ILP produces a valid production schedule and bidding solution, it
does not provide for component procurement. Procurement is handled via a heuristic
that seeks to combine long and short term procurement strategies to maintain com-
ponent levels sufficient for the current level of production. Regardless, the ILP must
also encode component constraints. Our agent cannot produce a computer for which it
has not already obtained the required components. We do not itemize component con-
straints here. Similarily, we leave out several technical constraints mentioned above
such as the requirement to submit at most a single bid for each RFQ.

The number of variables in the ILP grows as we increase the number of days in the
schedule, which adds additional RFQs to consider and requires reasoning about mul-
tiple possible scheduling days. Increasing the granularity of bid prices also increases
the number of variables for the ILP to consider. Empirically, given the 15 seconds al-
lowed by TAC SCM rules, our ILP in CPLEX 10 on a dual-core AMD System with
2G of memory fails to find solutions for a 5-day scheduling window with 160 RFQs to
address each day evaluating bids at a 5% granularity.

2.3 A Marginal Profit Approach
In a competitive marketplace with identical products, the only opportunity for an seller
to increase market share is to reduce price. If a single unit of a product sells for $10,
the marginal profit for selling that product, relative to no sale at all, is $10. Because
of the inverse relationship between price and demand, a lower price is required to sell
additional units. If two units sell for $9 each, this yields $18 in total revenue and a
marginal revenue of $8 relative to the sale of a single unit at the higher price. Applied
to the TAC SCM environment, this means an agent that wants to sell additional units
of a particular SKU by increasing its market share needs to lower its offering price.

4

Given this pricing dynamic, the offer-acceptance model described previously will
slope downward from high-priced, low market share bids to lower-priced, higher mar-
ket share bids. We now describe an greedy algorithm that uses this market-structure
assumption to solve the bidding and scheduling problems. Our algorithm has five major
steps:

• Calculate demand by combining the current days and any future modeled RFQs
into a measure of total demand per SKU.

• For each SKU, generate an ordered list of marginal price entries. Each list item
contains i) a bid percentage ii) quantity of total demand corresponding to the bid
percentage iii) the marginal profit per cycle implied by the price corresponding
to this entry.

• Handle orders either by fulfilling from finished computer inventory or schedul-
ing production if components are available.

• Fill factory capacity for as many days demand as were included in step 1 by in-
crementally scheduling the next best marginal profit from the lists constructed in
step 2.

• Determine the bids for the current day’s RFQs by applying the bid from the final
scheduled incremenental quantity for each RFQ’s SKU.

Step One: Demand Calculation

The first step in the algorithm is to determine the total number of computers that the
algorithm will be considering bids for. In a single day implementation of the algorithm,
this is only the actual current day’s RFQs sent by the TAC SCM Server. In a mutliday
version of the algorithm, the algorithm will include both the current day’s real RFQs
and any predicted future demand. Regardless, the step ends with a count of the total
number of computers of each SKU avaiable for bidding. This list will be used to deter-
mine the quantities corresponding to various bid percentages selected in step four.

Step Two: Generating Bid-Percentage Lists

Using the offer acceptance model for each SKU, the algorithm exhaustively generates
a list of bid percentages based on a pre-specifed bid increment typically 1% or 5%.
These percentages are then supplemented with the corresponding quantity associated
with the bid percentage, which is calculated by multipling the bid percentage by the
quantity calculated in step 1. Finally, each percentage is associated with a bid price.
The algorithm combines the price, quantity, and cycles required for the current SKU to

5

calculate the marginal profit.

Step Three: Handle Orders

Before dealing with RFQs, the algorithm handles outstanding orders. Any orders that
can be filled from inventory are immediately delivered. Orders that cannot be fulfilled
from inventory, but for which we have components on hand, are scheduled in the fac-
tory ahead of any other production work.

Step Four: Fill Factory Capacity

The algorithm begins with a nearly unscheduled factory. Only those cycles used by
orders not filled from inventory are assigned. The algorithm searches across all 16
SKUs for the most profitable SKU to produce. The bid percentage list for that SKU is
incremented and the corresponding number of cycles are deducted from the available
factory capacity. The algorithm repeats looking across all SKUs for the next most prof-
itable marginal quantity to schedule. Eventually, the entire factory capacity is filled or
we reach a point where increasing the quantity of any SKU future results in negative
marginal profit. At this point, step four terminates and we have a factory schedule. If
we are running a single day version of the algorithm the scheduled quantities are them-
selves the factory schedule. If we are running a multi-day version of the algorithm, we
schedule the day’s 2000 factory cycles in the same proportions as they larger capacity
used in this step.

Step Five: Assign bids

Finally, to assign bids to the current day’s RFQs, the algorithm iterates over each RFQ
looking up the current bid percentage the tables above for the corresponding SKU.

2.4 On the theoretical optimality of the Marginal Profit Approach
The TAC SCM scheduling problem can be viewed as a knapsack problem, where the
value of an order or RFQ is the equivalent of the value of the item to be placed in the
knapsack, the number of cycles to produce an order is equivalent to weight, and the
total factory capacity is equivalent to the fixed capacity of the knapsack. If we assume
all orders are of uniform and identical size of one cycle, the scheduling problem is a
continuous knapsack problem. In this case, the marginal profit scheduling algorithm
produces an optimal solution to this problem. At each step, the algorithm selects the
most profitable cycle to add to the factory continuing until the factory is full. The result
is an optimal allocation of factory cycles.

2.5 On the actual non-optimality of the Marginal Profit Approach
In fact, the computers in TAC SCM vary in size from four to seven cycles. This means
the scheduling problem is a knapsack problem, but is not continuous. In particular, it

6

is possible to select a most profitable computer that will leave the algorithm with an
number of unschedulable cycles. This means a greedy algorithm cannot always find an
optimal solution to scenarios which the ILP can handle.

Furthermore, although we would typically expect a smaller increment percentage to
more find a more profitable bidding solution, this ordering issue can cause an instance
of the marginal pricing algorithm running with 5% step size to lose to an algorithm
with 1% step size. Consider for example a simplified version of TAC SCM with only
2 products and a 120 cycle factory capaciy. Under this scenarios we have SKU 1
requiring four cycles and SKU 2 requiring five cycles to produce. Assume that prices
for SKU 1 start around 1800 and run to 950, prices for SKU 2 start lower and run to
approximately the same lower value.
After 100 cycles, both are bidding entirely on SKU 1.

Table 1: 1% increment.
SKU Bid % Cycles Allocated
1 25% 100
2 0% 0

Table 2: 5% increment.
SKU Bid % Cycles Allocated
SKU 1 Bid: 25% 100
SKU 2 Bid: 0% 100

If after bidding for 25% of the market, the first SKU is still the most attractive
product on a marginal revenue basis, the 5% step algorithm will bid an addtional 5%
on SKU 1 and complete it’s schedule.

Table 3: 5% increment 120 Cycles allocated.
SKU Bid % Cycles Allocated
1 30% 120
2 0% 0

Similarly the 1% algorithm will bid for an additional 1% of SKU 1. Further imag-
ine that after allocating 28% to SKU 1, the marginal price for additional production of
SKU 1 is below the revenue that can be achieved for delivering the first unit of SKU 2.
The 1% algorithm will now switch from SKU 1 to SKU 2, leaving it bid as shown in
table 4.

At this point the 1% algorithm has finished and although it allocated the most prof-
itable computer at every stage, it is left with a non-optimal total solution. Furthermore

7

Table 4: 1% increment 117 Cycles allocated.
SKU Bid % Cycles Allocated
1 28% 112
2 1% 5

it has lost, on a revenue basis, to the 5% algorithm which was able to fill the entire 120
cycles.

3 Simulation Results
We now show a comparision of the ILP approach using 1% and 5% price discretization
to the marginal revenue approach under 1% and 5% demand increment. The simula-
tions are conducted in a mock server environment with infinite free component inven-
tory, known offer-acceptance probabilities, and known future customer demand. The
agent in the simulation participates alone so there is no competition for customer orders
from other agents.

3.1 Two Day Games
We first consider the relative performance of the ILP bidder and the marginal bidder in
a two-day game with totally uniform customer demand and no prediction. Each agent
recieves 160 RFQs per day, 10 for each SKU, each of quantity ten. The offer accep-
tance curve for all products is identical. Only the current day’s RFQs are considered
when solving the bidding and scheduling problems. The game lasts only two days. The
test agent bids and builds based on the first day’s RFQs and delivers on day two.

Because the offer acceptance curves are identical, the marginal bidder bids most
aggressively on SKU 1 and SKU 9 which require only four cycles to build. It doesn’t
bid at all on SKU 8 or SKU 16 which require seven cycles to build.

Table 5: 1% Marginal Bidder.
SKU Avg Bid SKU Avg Bid
1 0.5600 2 0.3500
3 0.3500 4 0.1400
5 0.3500 6 0.1400
7 0.1400 8 0.0000
9 0.5500 10 0.3500
11 0.3500 12 0.1400
13 0.3500 14 0.1400
15 0.1400 16 0.0000

8

The 5% marginal bidder arrives at a similar bid distribution and an identical aver-
age overall bid (0.2895), although it is constrained to bids which are multiples of 5%
of available demand.

Table 6: 5% Marginal Bidder.
SKU Avg Bid SKU Avg Bid
1 0.5500 2 0.3500
3 0.3500 4 0.1500
5 0.3500 6 0.1500
7 0.1500 8 0.0000
9 0.5500 10 0.3500
11 0.3500 12 0.1500
13 0.3500 14 0.1500
15 0.1000 16 0.0000

The 1% and 5% ILPs achieve similar bid distributions. Note that the 5% ILP is not
restricted to bidding the same price for all the RFQs of a particular SKU, so it is able
to bid non-multiples of 5%.

Table 7: 1% ILP Bidder.
SKU Avg Bid SKU Avg Bid
1 0.5500 2 0.3500
3 0.3500 4 0.1400
5 0.3500 6 0.1400
7 0.1400 8 0.0000
9 0.5500 10 0.3500
11 0.3500 12 0.1400
13 0.3500 14 0.1400
15 0.1500 16 0.0000

In table 9 we present revenues for 10 trials of the 2-day simulations.

3.2 High Low Demand
We now compare both single and multiday versions of the algorithm under varying
demand scenarios. The multiday version of the algorithm has a view of future demand
so it can bid more selectively than the single day algorithm. For example, the multiday
algorithm can sometimes use factory capacity for orders that will be bid on and deliv-
ered in future days.
In this test we consider a stylized demand scenario where RFQs arrive only on even
days. The multiday version of the algorithm sees the entire game’s demand and can

9

Table 8: 5% ILP Bidder.
SKU Avg Bid SKU Avg Bid
1 0.5500 2 0.3500
3 0.3500 4 0.1500
5 0.3500 6 0.1400
7 0.1400 8 0.0000
9 0.5500 10 0.3500
11 0.3500 12 0.1400
13 0.3500 14 0.1400
15 0.1400 16 0.0000

Table 9: 2-day revenue under uniform demand.
Agent Revenue Standard Deviation
ILP 1% 547,568.00 32,048.66
ILP 5% 549,840.00 35,138.94
Marginal 1% 547,160.00 32,059.22
Marginal 5% 545,440.00 32,419.03

adjust accordingly. It raises its bid percentages on the even days such that it gener-
ates enough orders to keep the factory busy during the odd days. Table 11 shows the
revenue improvement under this high-low demand scenerio for both multiday bidders.
The single day algorithms use an average bid of 12.37% and 13.22% where as the
mutliday algorithm bids 14.23% and 15.09%. These higher bids are, in turn, reflected
in high factory utilization. The single day algorithms use 1,436 and 1,274 cycles per
day for 1% and 5% step sizes. The single day standard deviations are over 650 cycles
reflecting the fact that the factory is nearly idle on days when their is no new customer
demand. The mutliday algorithms use 1,979 and 1,978 cycles with std deviation of less
than 15 cycles.

Table 10: 10-day revenue under high-low demand.
Agent Revenue Standard Deviation
Marginal 1% 5,021,448.00 162,182.59
Marginal 5% 4,462,260.00 190,423.33
Marginal 1% Multiday 6,958,755.20 54,227.53
Marginal 5% Multiday 6,973,236.00 55,545.34

These charts depict the average bid value for each day. The scale on both charts is
identical. The second chart depicts the mutliday algorithm bidding for slightly more

10

of the market on even days.

3.3 Increasing Demand
A more realistic demand scenario is a gentle change in demand. Below we consider
the revenue performance of the single and multiday algorthims fro a variety of steadily
increasing demand profiles. We describe each scenario in terms of the number of RFQs
available to the agent on the first day and the number of additional RFQs that arrive on
each following day. Revenue advantages still accrue to the agents with the ability to
lookahead to future demand, but not as dramatically as in the high-low tests.

4 Conclusions and Future Work
We haved described a marginal revenue based method for bidding on customer demand
in the TAC SCM environment. The algorithm’s revenue performance is competitive
with an integer linear programming approach, but is significantly faster. Furthermore,
as we add additional days of prediction to the algorithm, the ILPs performance rapidly

11

Table 11: 10-day revenue under increasing demand.
First Day RFQs Daily Increase Agent Revenue Standard Deviation
100 10 Marginal 1% 6,218,825.60 59,579.99
100 10 Marginal 5% 6,186,788.00 62,014.56
100 10 Marginal 1% Multiday 6,365,508.00 62,990.82
100 10 Marginal 5% Mutliday 6,273,548.00 73,256.09
100 40 Marginal 1% 6,715,347.20 124,244.02
100 40 Marginal 5% 6,709,392.00 127,109.77
100 40 Marginal 1% Multiday 6,702,052.80 225,101.84
100 40 Marginal 5% Multiday 6,609,364.00 241,709.62
170 10 Marginal 1% 6,549,108.00 103,730.76
170 10 Marginal 5% 6,556,680.00 65,731.30
170 10 Marginal 1% Multiday 6,780,241.60 113,083.23
170 10 Marginal 5% Multiday 6,713,612.00 122,418.02
170 40 Marginal 1% 6,976,202.40 85,918.75
170 40 Marginal 5% 6,971,820.00 81,588.17
170 40 Marginal 1% Multiday 7,108,596.80 134,681.71
170 40 Marginal 5% Multiday 7,008,548.00 139,667.26

degrades. Under our formulation, each additional day of RFQs increases the number of
variables in the ILP. The marginal revenue algorithm is able to profitably incorporate
information about future demand.

It remains to be seen if the algorithm can be extended to the procurement problem.

12

