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Abstract

This work is concerned with the applicability of mutual information as
a measure of relevance in neural coding. We give a detailed overview of
common approaches to the application of information-theoretic mea-
sures in neuroscience. In order to create an environment that allows for
the analysis of mutual information, we generate synthetic spike trains
based on stimulus models that are easy to describe but sufficiently
powerful to be relevant in practice.

Different methods to extract a random variable suitable for the esti-
mation of mutual information from spike trains are discussed and their
shortcomings illuminated. We go on and demonstrate the sensitivity
of mutual information to an inappropriate choice of parameters in the
extraction of the random variable and show how the temporal charac-
teristics of the stimulus have to be factored in. Finally, we illustrate
the detrimental effects on certain estimators of mutual information
that occur if insufficient amounts of data are available.
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1 Introduction

1.1 Motivation

Ever since the technology for electrophysiological single-cell and population

recordings has become available, two major questions have been the center of

attention in the research community. The first one is related to the problem

what qualities of a given stimulus are encoded by neurons in a certain brain

area or population. An answer to this question does not explain how these

stimulus qualities are encoded by action potentials and this issue constitutes

the second big problem.

To give an example for this distinction: There is significant evidence

that neurons in motor cortex encode intended movement direction. Sepa-

rate from this observation, the current opinion seems to tend towards a rate

code (vs. temporal code). Unfortunately, it is extremely hard to devise an

experimental setup which allows for a clear-cut separation of the encoded

stimulus quality and the coding method. It seems as if certain assump-

tions have to be made about the latter aspect before the first one can be

illuminated.

To circumvent this problem, we try to develop a concept of “relevance”,

i.e., the presence or absence of a functional relationship between a stimu-

lus and a neural signal with a minimum of assumptions about the encoded

stimulus quality or the neural code. For this purpose, we generate synthetic

data from a simplified neural model that allows us to define the relationship

between stimulus and neural signal and impose restrictions as necessary.
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This controlled environment provides the means for an evaluation of various

methods and detailed analysis of their ability to discover functional relation-

ships. In this thesis, we propose mutual information as a measure that can

fulfill the requirements stated above and that we are going to evaluate in

a variety of settings and highlight problems faced by the experimenter who

wants to use it.

Information theory provides a set of tools for the analysis of neural sig-

nals that has gained wide acclaim and popularity in neuroscience. Based on

the intuitive idea that the brain transmits and processes information, it is

intuitive to make use of a concept that was developed for the more technical

setting of information transmission on analog and digital channels. For-

tunately, the notion of information that we are going to use is sufficiently

general and can be reduced to the idea that information transmission equals

reduction of uncertainty.

1.2 Goals of this work

In this thesis, we are going to discuss approaches to the use of mutual

information in the setting of neuroscientific experiments. Information theory

provides a broad set of methods and the success of its application depends

heavily on an adequate data representation. The major contribution of

this work is a careful assessment of all processing steps in the controlled

environment provided by the availability of synthetic data. Our results

demonstrate how sensitive mutual information is to certain parameters that

determine the transformation of neural spike trains into discrete random
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variables, e.g., the window size used for the estimation of instantaneous

firing rates in particular.

We diverge from the path taken in previous studies that assume an ex-

traordinarily controlled and homogeneous stimulus presentation protocol,

but rather aim for the greatest generality and wide most applicability. In

particular, this means that we use dynamic stimuli with probabilistic pre-

sentation intervals and without any intertrial intervals. The complications

posed by this paradigm are severe but are exactly the ones faced by re-

searchers in the field of brain computer interfaces. Even simple stimuli,

such as the binary stimulus we are going to introduce later, transpire as

interesting and insightful to study. We extend this model and consider a

more general class of stimuli drawn from a discrete set. Our results shed

light on the relationship of the temporal characteristics of the stimulus and

optimal parameters to use for the extraction of the random variable from

the spike train.

Finally, we analyze the amount of data required to obtain reliable esti-

mates of mutual information. It is well known that insufficient amounts of

data severely distort estimates of information-theoretic quantities. For this

reason, we explain the mechanism that causes the upward bias in estimates

and empirically study the effect on synthetic datasets.
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2 Background

2.1 Role of the motor cortex for motion control and planning

The brain areas most heavily involved with motor control are Brodmann

areas 4 and 6. Area 4, located between the frontal and prefrontal sulcus, is

referred to as primary motor cortex (M1). Anterior to M1 sits area 6 that en-

compasses premotor cortex and the supplementary motor area (SMA) [16].

Mapping the functional organization of primary motor cortex goes back to

Figure 1: Brodmann area 4 (M1), located anterior to the central sulcus, is
highlighted in red. Shown in green are premotor cortex and SMA, anatom-
ically Brodmann area 6.

the 1950s, when Penfield and Rasmussen systematically studied the soma-

totopic representation of the human body [38]. Their findings and those of

similar studies led to the well-known homunculus of human somatotopy that

describes how limbs are laid out on the motor cortex. More recent studies

corroborated somatotopy in M1 for major body divisions, such as the arm,

face, or leg but indicate that the homunculus model is an oversimplification

on the smaller scale of individual digits, for example [42]. But nonetheless,

somatotopic organization facilitates the development of neural prosthetics

4



because the approximate position of relevant areas is known a priori.

The motor cortex is active in a variety of tasks, voluntary limb move-

ment being the most obvious one. If this was the only scenario that elicits

M1 activity, efforts to develop arm and hand prostheses were thwarted im-

mediately. Fortunately, a series of neuroimaging studies in the mid- and

late 1990s revealed that imagined movements cause significant activation of

primary motor cortex, premotor cortex and SMA. One hypothesis relates ac-

tivity during imagined movements to the similarity of imagining movements

and planning movements [29]. A more detailed analysis of the variables

encoded in M1 follows in the next section.

2.2 Coded variables in primary motor cortex

After the importance of Brodmann areas 4 and 6 for skeletomotor control

had been discovered, diverging theories about the control variables encoded

in motor cortex evolved. Electrophysiological recordings from single neurons

in awake and behaving primates in a particular experimental setup — the

center-out task — have revealed that certain directional properties are dom-

inant in primary motor cortex. In the center-out task, a monkey grasps a

manipulandum and moves it from the center position to one of eight equidis-

tant target locations with an angular distance of 45° [17]. It was shown that

responses of the bigger part of M1 neurons vary as a function of target

location and thus direction of the intended movement. Consequently, the

notion of directional tuning, similar to orientation tuning in visual cortex

and other sensory areas, was introduced. It can be observed that neurons
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typically respond maximally to a certain movement direction and to a lesser

degree if the movement direction diverts from the preferred one.

In order to quantify directional tuning, an experimentalist will elicit

arm movements or wait for voluntary movements and record neural activity

to determine whether a neuron is involved in the control of the limb under

scrutiny. After this basic relationship has been established, neural recordings

from a number of trials for each of the eight target locations are subjected

to a statistical test (e.g., F-test) to determine whether there is a significant

relationship between movement direction and neural signal. In many cases,

neurons which exhibit directional tuning can also be characterized by their

preferred direction which elicits the maximum response [18]. A tuning curve

can then be fitted to the data via regression to interpolate neural response

properties over a continuous range of directions. Sinusoidal curves, which

have a small number of free parameters, are commonly used and provide a

good fit of the data [17, 43].

The observation that neurons in M1 are broadly tuned in general implies

that information about movement direction might be gained by looking at

cell populations instead of single cells [18]. Support for this hypothesis is

provided by the significant variation in unit responses from trial to trial

under the same stimulus conditions [28]. Precluding more complex inter-

actions between neurons of a population, averaging the response of several

units is a viable mechanism to reduce noise at the very least. The amount of

information that can be gained if an incremental number of neurons is taken

into account, depends on the correlation structure and is still under heavy
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discussion. Hopefully, a rigorous application of the techniques in Section 3

will help to resolve the controversy.

Many different strategies for the decoding of population responses can

be imagined. Georgopoulos et al. propose to model cell activity as the

sum of a baseline firing rate and the cosine between preferred direction and

movement direction of a particular instance. A decoding scheme to infer

the movement direction from the population activity is devised. It is postu-

lated that a vectorial linear combination of preferred directions, weighted by

each neuron’s response relative to baseline, closely approximates movement

direction [18].

The directionally tuned neural response in M1 populations can be ob-

served tens of milliseconds before the actual movement onset [31]. Geor-

gopoulos et al. demonstrate that arm movement lags approximately 160ms

behind the neural signal and that three-dimensional arm trajectories can be

decoded from the neural response at sufficient precision [44]. It is only logi-

cal to extend the idea of tuning to the spatiotemporal domain, i.e., evaluate

to what extent a neuron’s activity correlates with some directional hand

path parameter, e.g., velocity in a certain direction. Paninski et al. devised

the spatiotemporal tuning curve as a way to represent this property in a

compact form [36].

Given the complexity of the motor control problem, it is hard to imag-

ine that a population of neurons which are solely tuned for the intended

movement direction can constitute a neural substrate that is apt for the

task. Furthermore, the limited motion range and stereotypedness of the
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center-out task — which served as the primary investigative tool — are

good reasons not to endorse this point of view. And indeed, many studies

have emphasized that other variables like limb position, velocity, force and

acceleration are encoded by M1 neurons.

Those neurons which are tuned for movement direction will also exhibit

a tuning for hand velocity direction in the center-out task, as all movements

deviate only slightly from straight lines. For the same reasons, it is hard

to devise an experimental setup which allows for a clear separation of limb

velocity from limb position (cf. [36]). However, given that muscle spindles

provide information about limb position, the hypothesis that position is the

variable encoded in M1 is not a far-fetched one. Wise and Tanji found

that about half of the neurons they studied in M1 exhibit an activity level

that reflects static foot position. Limbs were also displaced by external force

application in the form of ramps and it was discovered that neurons in caudal

and rostral M1 respond to ramp displacement and static displacement [58].

It follows that not only static limb posture is represented in M1 but also the

dynamic properties of this variable. Still, there are drawbacks when limb

position is used as the primary coded variable for control purposes. External

forces may deflect the hand or foot trajectory from the intended one. Before

this control error is reflected by the limb’s position, acceleration has to

be integrated twice over a certain time window. The ensuing delay could

decrease performance and introduce instabilities into the control system.

By contrasting neural response properties in the center-out task with

those in an isometric task, Sergio and Kalaska strengthened the idea of
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directional tuning in M1 neurons, but they also found a pronounced rela-

tionship between hand force and neural activity [46]. Coding hand force in

the motor cortex is a suggestive idea because the effectors in motor control

are muscles. It follows that one should expect to find neurons which encode

the force exerted by a particular muscle in motor cortex. The latter repre-

sents a coding scheme based on a more intrinsic view of the motor system,

while coding of hand path and directional velocity are extrinsic parameters.

No clear evidence in favor of either of the two paradigms was found in a

study by Kakei. On the contrary, the authors claim that two distinct popu-

lations appear to exist in the primary motor cortex that separately encode

variables that live in the intrinsic and extrinsic coordinate frames [23]. Such

a clear-cut discrimination is not supported by the findings in studies which

analyzed the effect of hand and arm orientation on cell discharge in M1 [45].

As microstimulation of neurons in both populations was able to elicit muscle

contractions at comparable thresholds and the time delay between neural

signal and movement onset was identical in both groups of neurons, the

hypothesis that these neurons represent different stages in the control hier-

archy has to be rejected [23]. While force is certainly a good representation

to allow for fast reaction to external disturbances, it can be speculated that

it may adopt badly to varying conditions (different loads, muscle fatigue)

and requires an intermediate control system to compensate for the intrinsic

non-linearities of the skeletomuscular apparatus.

In summary, the primary motor cortex eludes straight-forward paradigms

about the nature of the primary variable encoded — a property it shares
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with many other neural systems. Diligent investigations succeeded in re-

vealing an important basic principle in the form of directional tuning. But

from that point on, one has to accept that there is no simple system for

the highly complex task of motor control. As expected for a control system,

intended movement direction and limb velocity are heavily represented in

primary motor cortex. Limb position, in its static property of posture and

the dynamic component of displacement, as well as muscle force also appear

to be part of the equation. If one acknowledges that all aforementioned

variables are crucial for an efficient motor control system, it must not come

as a surprise that experimental data supports that each one is represented

to some degree in cortical motor areas.

A fundamental property of the motor system is the extremely high num-

ber of degrees of freedom to control. Additional complexity is introduced

by the infinite number of hand paths to perform a reaching movement from

position X to position Y . Given the inherent complexity and ambiguity in

control strategies for the musculoskeletal system, it has been proposed that

predefined patterns of muscle activation are used to simplify the control

problem. The function of the motor cortex reduces to a higher level control

of activation patterns that help to make the control problem more manage-

able and reduce the latency. While differing in the details, many studies

support a model in which the neural substrate storing activation patterns

is located in spinal modules and driven by unit burst generators [5, 25, 52].

It follows that signals in motor cortex might live in a space of significantly

lower dimensionality than expected if all degrees of freedom were treated in-
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dependently. D’Avella et al. have shown that EMG activity recorded from

the hind legs of bullfrogs executing kicking and jumping movements can be

modelled by a few time-varying activation patterns at high accuracy [7].

This impressive result underlines that advanced techniques for the quan-

tification of transmitted information or relevance can help to devise new

theories about the way motion is planned and encoded in primary motor

cortex.

2.3 Coding in the visual system

Of all cortical brain areas, those that are involved in the processing of visual

information have been studied the most intensely. First of all, primates —

and humans are no exception to that rule — are “visual animals”. An unex-

pected stimulus, a loud sound for example, will trigger a stereotyped reaction

in humans: a turn of the head that brings the source of the stimulus into

the visual field. Given the importance of visual input for human behavior,

it is not surprising that such enormous effort has been made to understand

the inner workings of the system that processes this kind of input. A second

factor makes the visual system attractive from the experimenter’s point of

view. It is very easy to present stimuli to the visual system, control ex-

perimental conditions and make them sufficiently reproducible. Modern eye

tracking systems allow for the precise measurement of gaze direction down

to one arc minute at high temporal resolution [8, 56], so the experimenter

can tell with certainty where the subject is looking. As neural recordings are

generally performed in experimental animals, the availability of species with
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a highly similar neural system can be essential for the generality and signif-

icance of any result obtained. In the case of the visual system, macaques

(macaca) are frequently chosen as experimental animals for this reason [54].

From the point of view of coding, the visual system is harder to grasp

than the motor system. Limb movement can be characterized by position,

velocity, acceleration or muscle force in miscellaneous coordinate systems

(polar or cartesian, various origins, etc.). Visual stimuli, however, live in an

exceptionally high-dimensional space and we lack an expressive language to

describe stimulus properties that go beyond basic attributes. Establishing

what stimulus attributes a neural system responds to, is intractable under

these circumstances. While we leave the problem of a parsimonious stimulus

description to others, the difficulties faced here demonstrate the necessity

of methods that characterize how relevant a neuron is for the coding of a

particular stimulus property and, vice versa, by what set of stimuli the neu-

ron is strongly driven. Before we proceed to techniques that can potentially

answer this question in Section 3, we will give a short overview of encoded

stimulus properties in the visual cortex.

The most low level cortical area that processes visual information is pri-

mary visual cortex V1, cytoarchitectonically Brodmann area 17 and often

called “striate cortex”. It receives input from the lateral geniculate nuclei

via the optic radiation and is organized retinotopically. Hubel and Wiesel

discovered that neurons in V1 are tuned for the orientation of lines presented

in their receptive field. There is one orientation that elicits the maximum

response, the preferred orientation, and the firing rate change observed for
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other orientations can be described by a tuning curve that is well approxi-

mated by a rectified cosine [41].

This discovery led to the famous “ice cube model” of orientation and

ocularity selectivity in primary visual cortex [20]. To adequately represent

a visual scene, many neurons have to encode the same stimulus quality for

a given region of the visual field but exhibit different tuning properties.

From V1 on to higher visual areas, a general trend can be observed.

Receptive fields get larger as input from more and more low level areas gets

integrated and the visual features represented become more complex. A

typical example that fits well into the hierarchical model of the visual sys-

tem is the middle-temporal area (MT) that plays an essential role in motion

perception. Receptive fields are, depending on their eccentricity, about 4°

to 25° in diameter and binocular, whereas neurons in V1 are monocular and

exhibit smaller receptive field sizes at equivalent eccentricities [13]. These

findings agree with the idea of MT being a higher level area for motion dis-

crimination that integrates input from low level areas and V1 in particular.

Albeit at different levels of the hierarchy, the concept of a tuning curve can

be applied equally well to area MT and striate cortex. Neurons in area

MT are tuned for motion direction, motion speed, binocular disparity and

object size but the tuning curve for motion direction is at least roughly si-

nusoidal [3]. Orientation and motion direction tuning shall only serve as

examples of coding strategies in the visual system, an exhaustive overview

for the about ten cortical areas involved in visual processing is beyond the

scope of this work.
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Let us take a step back and think about the major difficulties a re-

searcher faces in the visual system. Because of the high dimensionality of

visual scenes, the space to explore beyond the most simple stimuli, such as

lines of different orientations, sinusoidal gratings or random dot fields, is

huge. Nonetheless, the aforementioned stimuli were sufficient to gather an

impressive amount of knowledge about low level visual areas, foremost V1.

But further up in the hierarchy, a “Trial & Error” approach or reasoning

on the basis of connectivity are likely to fail and a more controlled method

for sampling the vast space of visual stimuli is called for. Leaving aside the

choice of an appropriate search strategy, the ability to quantify how much

information the neuron or population under study transmits about a par-

ticular stimulus is quintessential. It is the objective of this thesis to explore

strategies that are potentially suitable for the task and point out caveats in

their application.

2.4 Neural prosthetics

Based on a sufficient understanding of the neural code, one can hope to

develop techniques that interface man-made technology with live neural tis-

sue. The most obvious application lies in the field of neuroprosthetics, a

field that aims at capacitating prostheses in such a way that they can be

naturally controlled by humans. Developing a suitable communication inter-

face is particularly challenging when the control signal cannot be extracted

from the peripheral nervous system. Among the techniques that can gather

input directly from the brain are electroencephalography (EEG), magne-
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toencephalography (MEG) and electrocorticography (ECoG) and multi-unit

recordings via implants. For complex control tasks, only ECoG and multi-

unit recordings promise sufficient spatial and temporal resolution. It has

been recently demonstrated that data acquired form a multi-electrode ar-

ray implanted in the motor cortex of a tetraplegic patient is sufficient for

the rudimentary control of a robotic arm [19]. The development of a rele-

vance measure is of high importance for the analysis of the neural code, a

prerequisite for successful decoding efforts in neuroprostheses.

Once neuroprostheses leave the purely experimental clinical environment

and have to be ready for everyday use, computational resources and power

consumption will entail additional constraints. A multi-electrode array, like

the one used by Hochberg et al., can easily pick up signals from 80 to 100

neurons [19]. Spike detection, spike sorting and decoding of nearly 100 neu-

rons could be well beyond the means of a practical mobile implementation.

An efficient measure of relevance could reduce the computational challenge.

During an initial setup period, the prosthesis user could go through a set

of imagined movements in order to determine the degree of relevance for

efficient decoding of every unit. Based on this data, a feature selection

scheme can select a significantly shrunk set of neurons with minimal impact

on decoding accuracy.

2.5 Applications of a relevance measure

We will now give an overview of potential applications of mutual information

as a relevance measure.
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Encoded stimulus property: The review of current opinions about vari-

ables encoded in the motor cortex (Section 2.3) and the visual system (Sec-

tion 2.2) has shown that impressive progress has been made, sufficient for

coarse control of rudimentary artificial limbs. Notwithstanding these promis-

ing results, it has become apparent that the search for a single coding vari-

able is probably futile and that it can be challenging to disambiguate the

influences of different kinematic quantities, e.g. position, velocity and ac-

celeration, in experiments. In the visual system, the major challenge is

understanding the encoding of complex stimuli in high level visual areas.

This calls for the application of well-understood tools that can analyze

whether the recorded neural signal is efficient at encoding the behavioral

variable and transmits large amounts of information or not. Limb kinematics

are highly dynamic variables and a putative relevance measure must be able

to cope with this property. For this reason, we study mutual information in

the context of stimulus models with different degrees of temporal complexity.

Coding schemes: Invariably tied to the encoded stimulus property is the

method of encoding a given variable. We hope that a relevance measure

can support research that aims at shedding light on this question. If suit-

able mechanisms for the conversion of spike trains into a random variable

are available, mutual information is basically unrestricted with respect to

the coding paradigm to be evaluated. In the framework of rate coding,

for example, an estimator of the instantaneous firing rate can provide this

functionality (cf. Section 3.4), while the temporal coding scheme [14, 10]

would call for a representation that preserves precise timing information of

16



the spike train.

Selection of optimally informative neural subpopulations: Advanced

electrophysiological recording techniques have put researchers in a position

where they can record from more than hundred neurons simultaneously [19].

The amount of data poses computational demands and high power require-

ments in embedded applications for neuroprostheses. Consequently, it is

beneficial to minimize the number of neurons that are necessary for good

control over the prosthetic device. As already mentioned in Section 2.4, a

feature selection scheme based on mutual information could prove essential

for the solution of the problem and identify small neural subpopulations

that are yet informative.

The selection of optimally informative neural subpopulations can also

help to gain insight into the computational architecture of the brain. Con-

sider the case of a challenging visual discrimination task. Let us assume

that it is possible to record from the sensory area that has been shown to

provide sensory evidence on which the subject’s decision is based (as done

in [48, 39]). If the coding scheme of the sensory area is understood to a high

degree, the subject’s decision can be predicted from the neural signal. In

area MT, neurons are sensitive to the direction of motion [3] and in a mo-

tion discrimination task, the signal from many recorded units can be turned

into a hypothetical decision. The performance of this decision process —

the neurometric performance — can subsequently be compared to the be-

havioral performance of the subject [33]. It is evident that the neurometric

performance will correlate with the number of neurons that contribute to

17



the computation. If a subset of neurons can be identified that has been

maximized with respect to the information it transmits about the stimulus

and exhibits the same (neurometric) performance as the subject, the size of

this set is an indicator for the number of input neurons used in the relevant

decision making area in the brain.
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3 Techniques

3.1 Principles of information theory and mutual information

When Claude Elwood Shannon published the journal article “A Mathemat-

ical Theory of Communication” [50], it was not clear that he was about

to lay the foundation of a new framework which allows for the analysis of

information transmission over analog and digital channels. The concepts in-

troduced by Shannon rely exclusively on the statistical properties of random

variables to quantify the information content of a signal. Entropy covers the

“surprise” that is inherent in the distribution of a random variable X. To

calculate the entropy H(X) for a discrete random variable, the discrete dis-

tribution must be known.

H(X) = −
∑
x∈X

p(x) log p(x) (3.1)

Even though entropy is dimensionless, it is typically annotated with “bits”

if the logarithm is to base 2, or “nats” for the natural logarithm loge.

This definition of entropy has some intuitive properties: A random vari-

able which takes only one value, for example, will have an entropy of zero.

If a random variable is defined over a set of two equiprobable elements, then

it will have an entropy of 1 bit. The same number of bits is required for an

optimal encoding of the random variable [6].

In our application, discrete distributions occur more often than contin-

uous distributions. For the sake of completeness, note that the sum over

the distribution support can be replaced by an integral to define differential
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entropy for continuous variables [6]:

Hdiff = −
∫ ∞

−∞
p(x) log2 p(x)dx (3.2)

Extending our focus from one variable to two or more variables leads

us to quantities that are well-suited to describe information transmission.

One can ask the question how much knowledge about a random variable X

can be obtained simply by knowing the value of another random variable

Y . Or to use the notion of entropy as introduced above, by how much does

knowledge of Y reduce the entropy of X. The mutual information I(X;Y )

of random variables X and Y can be calculated in different ways, either

directly from the joint distribution (X;Y ) and the marginals X and Y , or

expressed as the difference of entropies:

I(X;Y ) = H(X)−H(X|Y ) (3.3)

I(X;Y ) = H(Y )−H(Y |X) (3.4)

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3.5)

I(X;Y ) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(3.6)

Mutual information can be interpreted as a measure of dependence between

random variables. Statistically independent variables will have a mutual

information of 0, because in this case it holds that p(x, y) = p(x)p(y) and

consequently log p(x,y)
p(x)p(y) = log 1 = 0 for all x ∈ X, y ∈ Y .

While the Pearson correlation coefficient, the standard quantity to mea-

sure dependence, can uncover linear relationships between scalar variables,
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mutual information can detect more general dependencies between variables

and extends to the multi-dimensional case. Any deviation from indepen-

dence, which, if fulfilled, guarantees that p(x, y) can be written as a product

distribution, will contribute to the sum in equation (3.6). More formally,

mutual information is the Kullback-Leibler divergence between the joint dis-

tribution (X;Y ) and the product distribution of X and Y .

I(X;Y ) = DKL(X||Y ) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(3.7)

A neuroscientist studying a sensory system might be interested in the

amount of information that can be extracted from the neural signal N about

a specific stimulus S. Measures of information can give insight into the pre-

dictive power of the neuronal population under study. A similar paradigm

can be developed for motor areas of the brain. The only difference is that,

in the motor system, the neural signal does not reflect the reaction to the

stimulus but a control signal that exerts a causal influence on motor output.

For the sake of simplicity, we will refer to the behavioral variable as “stim-

ulus” without implying causation. The discussion will be equally applicable

to sensory and motor paradigms.

3.2 Different mutual information paradigms in experimental

setups

In the previous section, information theory was introduced as a general

technique with a wide range of applications. The quantities entropy and
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mutual information can be calculated from two discrete random variables

X and Y . This section is devoted to establishing a connection between

information theory and its application to neuroscience.

Instead of X and Y , we will use variable S for the stimulus and N for

the neural signal. The meaning of the stimulus depends heavily on the

experimental setup. In the visual system, S could describe a parameter

like contrast [51], direction of motion [32], or a category index (e.g., when

faces are to be discriminated from houses and other objects [55]). When

motor control is studied, S will be a limb velocity in space or a joint angle,

but could also represent position or acceleration. In any case, it must be

possible to map the stimulus to a discrete set of values. The case where S

is continuous will not be covered in this thesis, but we are going discuss a

model that approximates a continuous stimulus by a discrete set of stimulus

values in Section 4.6.

The neural signal N must represent the activity of the neural system

under study in some way. In Section 3.4, common choices for N will be

discussed in greater detail. To give some intuition, N will typically be the

instantaneous firing rate of one neuron or a group of neurons, or it can be a

high-dimensional vector that conveys precise timing information about spike

trains.

A heavily used experimental setup in the study of sensory systems is

based on the repeated presentation of stimuli drawn from a set S. When

a stimulus s ∈ S is presented to the subject, the neural response within a

fixed time interval [0, T ] is recorded and then represented numerically by
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some means of quantification, binning (Section 3.4), for example. For the

sake of clarity, note that S is a set of stimuli and S a random variable.

In most cases, S will be defined over S, i.e., S : S → R, but it is not

necessarily the case and S could potentially be defined over some other set

that is related to S.

A first paradigm in the application of information theory was developed

by Strong et al. and subsequently used in the study of H1 neurons in the

fly visual system [53]. The entropy H(N) of the neural signal and the

conditional entropy H(N |S) are estimated from the data. As H(N |S) is

a measure of the uncertainty about the neural signal that remains if the

stimulus is known, it is characterized as neural noise. A look at the following

expansion

I(N ;S) = H(N)−H(N |S) = H(N)−
∑
s∈S

p(S = s) ·H(N |S = s) (3.8)

reveals that one can interpret I(N ;S) as the average information transmit-

ted over all stimulus conditions. As Borst and Theunissen point out, this

approach does not allow for the identification of stimulus conditions under

which the neural system transmits particularly high amounts of informa-

tion [4]. The same authors also emphasize that reliable estimates of I(N ;S)

can only be gathered from very large data sets, as no assumptions are made

about the probability distributions from which entropies and mutual infor-

mation are estimated. While the latter is certainly true, it is not clear that

better estimates can be obtained if the distributions are assumed to be of a

certain type. A lack of well-founded arguments about what distribution to
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use often leads experimenters to choose the normal distribution. Without

doubt, the amount of information required to estimate mean and variance (in

the one-dimensional case) is magnitudes smaller than in the unconstrained

case, but violations of normality will have detrimental effects on estimates

of information-theoretic measures.

In spite of the aforementioned caveat, we will describe the “spectral”

method that relies on assumptions about properties of the neural response.

More specifically, amplitudes of the neural signal in the frequency domain

are assumed to be Gaussian. Spike trains naturally live in the time domain

and can be viewed as point processes such that only the times of spike oc-

currences are relevant. But one can also subscribe to the perspective that

the timing of spikes relative to each other and relative to the stimulus is the

more expressive quantity. For this purpose, the spike train is converted into

the frequency domain via Fourier transform, the result of which are distribu-

tions of signals at a discrete set of frequencies. The essential assumption of

the spectral method states that the distribution at each frequency is Gaus-

sian [4]. Because mean and standard deviation are sufficient statistics of

the normal distribution, only two parameters have to be estimated from the

data at each frequency value. Compared to the direct method, the amounts

of data required for reliable estimates is expected to be significantly smaller.

Apart from that, the spectral and direct approaches are identical and the

basis for similar conclusions. In Section 3.5, the spectral method will resur-

face because properties of the normal distribution make it a suitable choice

for the derivation of an upper bound on mutual information.
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The third method aims at the derivation of mutual information values

for each stimulus condition. Potentially, this more fine-grained analysis tool

can provide insight into stimulus properties that are coded for by the neural

system under study. Rewriting Equation (3.6) as

I(X;Y ) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

= (3.9)

=
∑
x∈X

p(x)∑
y∈Y

p(y|x) log
p(x, y)
p(x)p(y)

 (3.10)

reveals that an information value can be extracted for each x ∈ X [4]:

I(x;Y ) =
∑
y∈Y

p(y|x) log
p(x, y)
p(x)p(y)

(3.11)

The resulting information value for each x ∈ X quantifies the reduction

in uncertainty about x if Y can be observed. Borst and Theunissen point

out that the breakdown into information values for each stimulus condition

suggests an alternative to traditional tuning curves. Instead of plotting the

neural response as a function of the stimulus, a stimulus-information curve

can visually represent the discriminability of different stimulus conditions

by the neural signal.

3.3 Techniques for MI estimation

Several techniques have evolved for the calculation of mutual information.

If both variables X and Y are discrete, the joint distribution (X,Y ) will also

be discrete, and in that case, equation (3.6) already dictates the method to
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calculate I(X;Y ):

I(X;Y ) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(3.12)

If Maximum Likelihood estimates of the probabilities p(x), p(y) and p(x, y)

are used, this approach is typically referred to as the “plug-in estimate” or

the “näıve method” [34]1. To obtain ML estimates of a discrete distribution,

the relative frequencies of all pairs (x, y) ∈ X × Y are extracted from the

data and treated as if they were the true probabilities.

In cases where the distributions of variables X and Y are continuous,

binning can be used to approximate the true density functions by a discrete

distribution. Subsequent steps in the estimation of mutual information will

be based on the discrete estimate. The major shortcoming of histogram

based methods is the arbitrary placement of bin boundaries that makes the

estimate very sensitive to slight shifts of a few data points. To maximize the

amount of structure in the data that is taken into account for the density

estimate, one can resort to kernel density estimates. This class of estima-

tors creates continuous distributions from a finite number of data points by

spatially smoothing out every observation and locally summing their contri-

butions. Graphically, the smoothing operation can be visualized as replacing

every data point by a spread out blob of probability mass. If N iid obser-

vations x1, . . . , xN , a kernel function K(·) and a bandwidth h are given, the
1The term “plug-in estimate” is often used in the context of entropy and mutual infor-

mation interchangeably. So whenever MI is estimated directly from equations (3.6), (3.3)
or (3.5) via ML estimates, it is of “plug-in” type.
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kernel density

f̂h(x) =
1
Nh

N∑
i=1

K

(
x− xi

h

)
(3.13)

is a consistent estimate of the true density function [37]. The kernel function

K(·) determines the shape of the “bump” and the bandwidth how much it

is spread out in space. A common choice for K(·) is the Gaussian kernel

KGauss =
1

(2π)
D
2 |Σ|

1
2

· exp
(
−1

2
x>Σ−1x

)
(3.14)

with mean zero and covariance matrix Σ. In the one-dimensional case,

only the ratio of the Gaussian kernel’s variance and the bandwidth h has

to be determined, but the multidimensional case poses more challenges.

The covariance matrix Σ has many degrees of freedom that describe the

distribution’s orientation in space. To reduce the number of parameters,

multidimensional kernels are typically chosen to be product distributions

and Σ consequently a diagonal matrix. Estimation of h is aimed at the

minimization of the Asymptotic Mean Integrated Squared Error. For a more

detailed explanation of kernel density estimation (KDE), we refer to [37]

and [11].

The approximate density function derived above can then be plugged

into equations for differential entropy and mutual information. It has to

be emphasized that kernel density estimates are geared towards continuous

distributions and are not suited for discrete distributions because spreading

out data points changes the entropy of the random variable.

Initially designed for classification problems, a specialized class of kernels
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was developed for discrete distributions by Aitchison et al. [1]. The so called

integer kernels spread out probability mass, in a similar fashion as kernels

for continuous settings do, but obey the discrete nature of the distribution.

Integer kernels guarantee that no probability mass will be distributed onto

values that are not in the discrete support set.

We define a discrete support set X = {x1, . . . , xN} and assume that a

valid discrete distribution is already given such that 0 ≤ p(xi) ≤ 1, ∀i ∈

{1, . . . , N} and
∑N

i=1 p(xi) = 1. Following the method in [49], we define the

kernel kh(x, xi) that determines what fraction of the probability mass p(xi)

at point xi is spread out to some other x ∈ X:

kh(x, xi) =
h‖x−xi‖2∑N

j=1 h
‖xi−xj‖2

(3.15)

As before, h is a bandwidth parameter that is typically chosen by some

heuristic. As proposed in [49], one can concentrate the probability mass

of the point xi on its immediate proximity by setting h = 0.05
1

σ2(X) where

σ(X) is the standard deviation of the observations X. It follows that 90% of

the probability mass will remain within one standard deviation of xi. Given

the distribution p(x) and the kernel, a new distribution

p̂(x) =
N∑

i=1

(
p(xi) ·

h‖x−xi‖2∑N
j=1 h

‖xi−xj‖2

)
(3.16)

can be obtained. If we assume that p(x) is a discrete distribution directly

obtained from the data, it must be justified why p̂(x) should provide a bet-

ter representation of the neural signal than p(x). One argument is that
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applying the kernel is equivalent to a smoothing operation of the distribu-

tion that respects the discrete support set. Smoothing the distribution can

express uncertainty in the measurements. If the number of spikes emitted

by a neuron is summed over a time window (cf. Section 3.4 for a description

of binning), it can be reasonable to spread out the probability mass of an

observation fi ∈ N. A slight shift of the window could have changed the ob-

servation to (fi+1) or (fi−1) and significantly alter the distribution because

of the integrality of observed spike counts. Smoothing the distribution can

express this phenomenon and thus result in a more natural representation

of the response profile.

In the context of information processing, applying the smoothing op-

erator is comparable to the transformation of a random variable. The in-

formation processing theorem dictates that I(N ;S) ≥ I(f(N);S) for any

function f(·) [6]. The mutual information of the stimulus and the neural

signal is thus expected to decrease or remain constant if p̂(x) instead of p(x)

is chosen to characterize the response of the neural system. An evaluation of

integer kernels within the framework of our synthetic datasets is presented

in Section 5.5.

Kernel density estimation is a general technique to estimate probability

distributions from a finite amount of data and not specific to the estimation

of entropy or mutual information. An approach that completely circum-

vents the estimation of probability distributions is based on nearest-neighbor

methods. Kraskov et al. developed a technique that estimates mutual in-

formation from continuous distributions and rests on the observation that
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the distance of a point to its k-nearest neighbor in the joint distribution in

relation to the same distance in the marginal distributions p(x) and p(y)

allows for reliable, unbiased estimates of mutual information [27].

If we make N joint observations of two random variables X and Y that

can also be represented in the joint space Z = (X,Y ) and both X and Y

are metric spaces2, we define the metric

‖z‖∞ = max (‖x‖, ‖y‖) ∀z = (x, y) ∈ Z (3.17)

on Z. Now let ε(i)
2 denote the distance between zi and its k-nearest neighbor.

Similarly, εx(i)
2 and εy(i)

2 are the distances between the same two points in

the projected spaces X and Y . It follows that ε(i)
2 = max

(
εx(i)

2 ,
εy(i)

2

)
. Then

we count the number of points closer than ε(i)
2 , measured in X and Y :

nx(i) =
∣∣∣∣{j : ‖xi − xj‖ <

ε(i)
2
, i 6= j

}∣∣∣∣ (3.18)

ny(i) =
∣∣∣∣{j : ‖yi − yj‖ <

ε(i)
2
, i 6= j

}∣∣∣∣ (3.19)

An estimator for the mutual information of X and Y is given by

I(X;Y ) = ψ(k)− 1
N

(
N∑

i=1

ψ(nx(i) + 1) + ψ(ny(i) + 1)

)
+ ψ(N), (3.20)

where ψ(x) is the digamma function [27]. Kraskov et al. demonstrate

that the estimator is unbiased and converges rapidly for small sample sizes.
2As random variables are actually functions, we clarify that the space they map into

shall be metric, i.e., for a random variable X : Ω → R it holds that ‖ · ‖ is a metric on R
and on Rn, respectively, for an n-dimensional random variable
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The nearest-neighbor method can be readily extended to higher-dimensional

spaces and has been shown to exhibit similarly positive properties as in the

scalar case. For the application to neuroscience, the requirement that X and

Y must be continuous random variables is often not satisfied, e.g., in the

case where stimuli are drawn from a finite set. If one or both of the random

variables X and Y are discrete, the nearest-neighbor method breaks down

because the nearest neighbor will often have distance 0. Many methods to

represent the neural signal will also result in the random variable N being

discrete. For this reason, Victor et al. choose to project the neural signal

into a continuous space via Legendre polynomials [57].

If exactly one of the variables is continuous, without loss of generality

we choose N , the alternative formulation of mutual information as

I(N ;S) = H(N)−H(N |S) = H(N)−
∑
s∈S

p(S = s) ·H(N |S = s) (3.21)

gives rise to a second nearest-neighbor estimator. Going back to works by

Kozachenko et al., entropy can be estimated by [57, 26]

H(X) =
1
N

N∑
i=1

log2

ε(i)
2

+ log2 (2(N − 1)) +
γ

ln(2)
. (3.22)

As above, ε(i)
2 denotes the distance of xi from its nearest neighbor3 in X.

The major drawback of the expansion in Equation 3.21, as identified by

Kraskov et al. [27], is the erratic error accumulation of multiple entropy

3In the method by Kraskov et al., ε(i)
2

measured the distance to the k-nearest neighbor
for some k ≥ 1, k ∈ N. Kozachenko’s estimator of entropy can also be extended in this
way.
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estimators. There is no guarantee that errors in entropy estimates will cancel

out in a favorable way and yield a small error in the mutual information

estimate. Kraskov et al.’s direct estimator (Equation 3.20) is less prone to

error accumulation and should be preferred whenever possible.

3.4 Choice of random variables in neuroscientific settings

So far, we have discussed techniques for the estimation of mutual informa-

tion between two variables X and Y , without ascribing a specific meaning

to them. Experimental paradigms for the use of mutual information were

considered in section 3.2 without detailing the representation of the stimulus

S and the neural signal N .

One situation commonly encountered in the study of sensory systems

is that of a discrete set of stimuli S = {s1, s2, . . . , s|S|} being repeatedly

presented to a subject (cf. Section 3.2). A time window T is defined —

either identical to the stimulus presentation interval or arbitrarily chosen —

in which the response of the neural system is recorded. The data obtained

that way can be naturally split into one discrete component, the number of

spikes that occurred in the time window, and one continuous component for

the precise time of every spike. Most experimenters adhere to the technique

of binning spikes in order to transform the data into a more manageable

representation without losing too much information. After splitting the time

window [0, T ] (relative to stimulus onset) into bins of size b, the number of

spikes that fall within the limits of a given bin are counted and represented

as a vector
(
n1, n2, . . . , ndT

b
e

)
or a matrix if multiple neurons are analyzed.
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If the bin size is chosen sufficiently small, no more than one spike will occur

in any given bin due to the refractory period of neurons. It follows that this

vector or matrix is one possible discrete and high-dimensional representation

of the neural signal [53]. Part of the information content of the neural signal

is lost due to binning and the magnitude can be expressed as a function of

the bin size b [57]. Recall the definition of differential entropy:

Hdiff = −
∫ ∞

−∞
p(x) log2 p(x)dx (3.23)

Now one can look at the discretized version of this distribution and calculate

the entropy [40]:

Hdisc(b) ≈ −
∑

i

bp(xi) log2 bp(xi) ≈ − log2 b−
∑

i

bp(xi) log2 p(xi) (3.24)

≈ − log2 b−
∫ ∞

−∞
p(x) log2 p(x)dx = Hdiff − log2 b

Note that this derivation was performed for entropy and not mutual infor-

mation. However, as b approaches zero, the discretized mutual information

Idisc(N ;S) converges to the true mutual information I(N ;S) [40].

A shortcoming of binning approaches is the arbitrary and hard to justify

position of bin boundaries. Jitter of a few microseconds can move a spike

from one bin to an adjacent one. An intuitive solution to this problem is the

application of a sliding window which smoothes out the effects of bin posi-

tioning. The number of spikes that fall in the window of length w is counted

and transformed into an estimate of the instantaneous firing rate by division

by w. Then, the window is shifted by an offset s and the procedure repeated.
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Binning is a special case of the sliding window method where w equals s,

but more frequently, s� w is chosen. Overlap of adjacent windows induces

dependence between consecutive observations of the random variable and

it has to be established that no bias is introduced into mutual information

estimates. Accepting that no additional information about the stimulus can

be introduced by having convolution windows overlap is easy. On the other

hand, a potential decrease of the estimated mutual information cannot be

dismissed and is in fact quite likely. In Section 5, the magnitude of this

effect will be examined, but we will state here that we found the decrease

in mutual information negligible.

If the window size w is smaller than the stimulus period T , the ran-

dom variable of the neural signal is observed multiple times for a single

stimulus presentation. The assumption about the neural code imposed by

treating these multiple observations equally, is that neural responses are

stationary within the time window [0, T ]. In the framework of rate coding,

such a restriction is of limited consequence, even though the well-known

phenomenon of adaptation [24] already entails noticeable deviation from

the assumption. Even more precarious are the implications for the tempo-

ral coding paradigm [14, 10]. If one embraces the idea that precise timing

of single spikes is a means of information transfer in neural systems, then

sliding windows are certainly an inappropriate analysis tool.

Small bin sizes of a few milliseconds ensure that the neural signal is bi-

nary and provide sufficient precision to capture the timing of single spikes.

A random variable of dimensionality dT
b e can be defined by concatenating
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dT
b e adjacent bins into a vector. It can be argued that of all approaches

discussed so far, this one will cover the most information and should be

considered exclusively. But the amounts of data required for reliable esti-

mates of mutual information are prohibitive in the case of multi-dimensional

representations of the stimulus variable.

Victor developed a method which aims at circumventing the informa-

tion loss incurred by binning. His strategy is based on the aforementioned

dual nature of neural responses as a discrete number of spikes and a contin-

uous component which represents the exact timing information [57]. This

property can be put to use for the calculation of mutual information in a

two-stage approach.

I(N ;S) = Icount(N ;S) + Itiming(N ;S) = (3.25)

= Icount(N ;S) +
∞∑

n=1

p (d(x) = n) I(n)
timing(N ;S)

Icount(N ;S) denotes the mutual information of the stimulus and the neural

signal if the stimulus is represented solely by the number of spikes that

occurred in a trial. If the precise timing in a spike train transmits additional

information, it will be reflected by a non-zero contribution Itiming(N ;S).

A further expansion of Itiming(N ;S) in the second line of Equation 3.25

conditions the timing information on d(x), the number of spikes emitted in

the trial. So I(n)
timing(N ;S) stands for the mutual information of stimulus and

neural signal, restricted to trials in which n spikes occurred.

Traditional methods are used for the estimation of Icount(N,S) (cf. Sec-
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tion 3.3). It is noteworthy that all neural responses are stratified into dif-

ferent categories based on the number of spikes emitted during the stimulus

presentation. One consequence is that neural responses are now represented

in spaces of different dimensionality and evade a straight-forward method

for MI calculation. For this reason, all spike trains with n spikes are embed-

ded into an Euclidean space of dimension r = min(n,D) for some maximum

dimensionality D. To homogenize the mapping and maximize the unifor-

mity of spike trains in the time domain, all spike times are transformed via

a monotonic map

τj = −1 + 2
j − 1

2

M
. (3.26)

Legendre polynomials map every spike train into a continuous space of di-

mensionality r. Then ch(xj) is the h-th coordinate in the codomain and Ph

the h-th Legendre polynomial.

ch(xj) =
√

2h+ 1
n∑

k=1

Ph(τk) (3.27)

The h-th Legendre polynomial is defined as

Ph(z) =
1

2πi

∮
(1− 2tz + t2)−

1
2 t−h−1dt (3.28)

and is orthogonal to any Pj for j 6= h on the interval [−1, 1] [15]. Now

that the neural response is represented in a continuous space, the nearest-

neighbor entropy estimator in Equation 3.22 can be plugged into Equa-

tion 3.25 after rewriting I
(n)
timing(N,S) as the difference of two entropies

(cf. Equation 3.21). We are not going to derive the extension to higher-
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dimensional spaces necessitated by neural populations. The method intro-

duced by Victor is inherently limited by the representation of the neural

signal as a fixed-length vector of spike counts or firing rates. A representa-

tion of this type is appropriate if different stimuli are presented sequentially

for a fixed amount of time T . But it does not adapt well to more dynamic

experimental conditions in which the stimulus changes rapidly.

3.5 Bounds on mutual information

As huge amounts of data are required to obtain reliable estimates of the prob-

ability distributions p(S;N) and particularly p(N |S), many experimenters

have abandoned attempts to directly calculate mutual information and in-

stead reverted to constructing lower and upper bounds on mutual informa-

tion.

The data processing theorem in equation (3.29) states that no transfor-

mation of the observations Y can add information about X [6].

I(X;Y ) ≥ I(X; f(Y )) (3.29)

It follows that I(X; f(Y )) will be a lower bound on the mutual information

I(X;Y ). Choosing a single random function f(·) will probably not yield a

tight bound. But as maxf(·) I(X; f(Y )) ≤ I(X;Y ) is a direct consequence of

equation (3.29), it is possible to tighten the bound. Under the assumption

that f(·) is differentiable, gradient descent is one method to achieve the

desired maximization [21].
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It is precarious to counter insufficient amounts of data by resorting to

the application of mutual information bounds. Even after the maximization

of f(·), it is not possible to make any guarantees about the gap between

the actual information and the bound or estimate its magnitude. Besides

the convenient property of differentiability, there exists little guidance for

an appropriate choice of f(·), neither the dimensionality of its codomain nor

the type of function. Linear filters are easy to compute, well understood

and are thus a good option to explore initially.

Bounding mutual information from above typically makes assumptions

about the stimulus distribution or properties of the neural signal. Rozell et

al. point out that the validity of these assumptions tends to be question-

able and demonstrate that violations of the imposed restrictions can lead to

heavily erroneous results [40]. Based on equation (3.3), one might suspect

that H(X) is a simple upper bound for I(X;Y ). If X and Y are continu-

ous random variables, the proposed bound can be rejected immediately, as

differential entropy (cf equation (3.2)) can be negative [6]. For the common

situation where data is binned and X and Y are discrete random variables,

it holds that Hdisc(X) ≥ 0 (as defined in Equation (3.24)) and Hdisc(X)

is indeed an upper bound for Idisc(X;Y ). More important though, is the

fact that Hdisc(X) does not bound I(X;Y ), the mutual information of the

continuous variables, from above [40].

Different paradigms for the use of mutual information in neuroscien-

tific experiments were discussed in Section 3.2. Among them, the spectral

method lends itself to the derivation of an upper bound on mutual infor-
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mation. Recall that the neural signal can be Fourier transformed into the

frequency domain and that the distribution at each frequency is assumed

to be normal. It is known that, among all probability distributions with

mean µ and standard deviation σ, the normal distribution N (µ, σ2) has the

maximum entropy [6]. Correspondingly, a frequency spectrum that is as-

sumed to be normally distributed at each frequency bin has a total entropy

greater or equal than any other spectrum with identical mean and standard

deviation values at each frequency bin. The mutual information value cal-

culated via the spectral paradigm bounds the true mutual information from

above [4].

Another Gaussian bound predicates on the hypothesis that the stimulus

is normally distributed. Likewise, the neural response is expected to be the

result of an additive Gaussian noise process independent of the stimulus [40].

After fitting normal distributions to the stimulus and the neural signal, un-

conditioned and conditioned entropies of the neural signal can be calculated

and plugged into the formula for mutual information (Equation (3.3)). The

same arguments as above show that the resulting value is an upper bound on

mutual information. Obviously, it is hard to justify such restrictive assump-

tions as normality of both stimulus and neural signal and few experiments

in practice will ever give rise to a dataset where they hold. Rozell at al.

give an account of the shortcomings of bounds on mutual information and

provide empirical evidence to confute their validity [40].

The restrictive and questionable integrity of bounding schemes for mu-

tual information suffice to motivate the development of good estimators for
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mutual information. It also becomes evident that studying the proneness of

estimators to exhibit artifacts in small datasets and analyze convergence is

highly beneficial for a solid framework of information-theoretic methods in

neuroscientific applications.
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4 Generation of synthetic data

4.1 Model of spike generation

For the purpose of generating synthetic spike trains, the Poisson process

is one of the most widely used stochastic processes. There is evidence that

statistics of real neurons are well approximated by Poisson processes but also

exhibit some deviations [47, 9]. What makes the Poisson process interesting

is the fact that it is well understood. If some property or statistic cannot be

derived for the Poisson process, it is generally unlikely that it can be done

for any of the more realistic models of spike generation [22]. Point processes

can be characterized by their intensity which is identical to the firing rate

in the case of the Poisson process.

4.2 Bernoulli process approximation

In order to synthesize binned spike trains, the generation of spiking events

can be reduced to sampling from a Bernoulli distribution by simulating coin

flips. For a given firing rate r in spikes
second and bin size b, we calculate the

probability that the neuron under study generates one spike in a given bin:

Pfire = rb. For each bin, the presence of a spike is determined based on a

coin flip with the probability of success equal to Pfire.

Trivially, for a trial of length T , which we divide into M = T
b bins, we

expect a firing rate of

E(
n

T
) =

1
T
·E(n) =

1
T
·M · Pfire =

1
T
· T
b
· r · b = r
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4.3 Deviations from Poisson process statistics

The procedure described above will yield a spike train with Poisson process

statistics in the limit of b → 0. As b approaches zero, the number of bins

M diverges to infinity but M · Pfire = T
b · r · b = T · r remains constant.

This justifies the transition from the Bernoulli distribution to the Poisson

distribution. Consequently, the probability of n spikes to occur within period

T is given by

PT [n] =
(rT )n

n!
exp(−rT )

As the number of spikes that occur between time t0 and t0 + T follows a

Poisson distribution with constant rate r, the time series is a homogeneous

Poisson process.

For spike trains modeled by a Poisson process, all spike patterns with

a fixed number of spikes n within a time window T are generated with

equal probability. The binary output of the given spike train generation

mechanism apparently violates this condition as no more than one spike

can occur in any bin. As a result, it follows that the statistics of our model

deviate more significantly from a Poisson process for high firing rates (which

make multiple spikes in a single bin more likely) and large bins.

4.4 Sampling from the interspike interval distribution

By abolishing binning, the aforementioned issues can be circumvented. It is

a well known fact that waiting times between events follow an exponential
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distribution for a homogeneous Poisson process with rate r:

P [∆t = x] = r · exp(−rx)

Spike trains can be generated by sampling inter-spike intervals from this

distribution. It follows that the number of spikes assigned to a single bin

is not limited anymore. One can argue that this approach will yield spike

trains that follow the statistics of a Poisson process more closely because

the coin flip based method relies on the properties of the random number

generation over a small fraction of the unit interval.

As a drawback, nothing prevents two spikes from occurring within less

than one millisecond, an unrealistic value due to the refractory period of

biological neurons. Renewal processes, a generalization of the Poisson pro-

cess, give more control over the properties of inter-spike intervals and allow

for the incorporation of realistic refractoriness.

4.5 Binary stimulus

For the simplest and most approachable model, the stimulus S is taken from

the domain S = {0, 1}. For every neuron we define two firing rates f0 and f1.

Whenever the stimulus has value 0, firing rate f0 is used for spike generation

and f1 if the stimulus has value 1. Not all stimulus values have necessarily

the same likelihood of occurrence, so we define a probability P (S = 1) which

determines the likelihood of the stimulus taking value 1.

At the lowest complexity level, the stimulus will have value 0 for a du-
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ration of t0 and value 1 in segments of length t1 = P (S=1)·t0
P (S=0) . Obviously,

such a choice will cause the stimulus to be highly predictable (Figures 2(a)

and 2(b)).
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(a) Binary stimulus with constant
on/off durations (t0 = 600ms)
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(b) Binary stimulus based on renewal
process (t0 = 600ms and t0,min =
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(c) The trivial probability distribu-
tion for the simple binary stimulus
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(d) Probability distribution of the
time between changes of the stimu-
lus value. Theoretical distribution in
red and empirical histogram in blue.

Figure 2: The binary stimulus

To counter the effects of a highly determined stimulus time series, we add

an element of randomness into the stimulus choice at any given point in time.

As before, t0 is the average time of segments where the stimulus has value

0. Additionally, refractory periods t0,min < t0 and t1,min = P (S=1)·t0
P (S=0) < t1 for

the stimulus set minimum times where the stimulus value remains constant.
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To fully describe the temporal behavior of the stimulus, we define two

series of variables (tS0
1 , tS0

2 , . . . ) and (tS1
1 , tS1

2 , . . . ). Starting at time t = 0,

the stimulus will take value 0 for a duration of tS0
1 , change to value 1 and

keep it for tS1
1 , then switch back to 0 for a segment of length tS0

2 , and so on.

The durations of the stimulus segments are given by the following formula:

tS0
i = t0,min + di

with di ∼ Exp
(
t0 − t0,min

)
tS1
i = t1,min + ei

with ei ∼ Exp
(
t1 − t1,min

)

where

di ∼ Exp
(
t0 − t0,min

)
ei ∼ Exp

(
t1 − t1,min

)
and Exp(λ) is the exponential distribution with parameter λ and probability

density function fλ(x):

fλ(x) =

 λ · exp (−λx) for x ≥ 0

0 else
(4.1)

First, we guarantee that the stimulus value will not change before the re-

fractory period has expired. The remaining period is sampled from an ex-
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ponential distribution and it follows that the time series (tS0
i − t0,min)i∈N

constitutes a Poisson process with intensity t0 − t0,min, and analogously for

(tS1
i − t1,min)i∈N. The properties of the exponential distribution also cause

segment lengths to have standard deviations

σ0 = t0 − t0,min (4.2)

σ1 = t1 − t1,min. (4.3)

Figures 2(b) and 2(d) show an example stimulus generated via this procedure

and its distribution of the time between changes of the stimulus value. For

three arbitrarily defined neurons, spike trains were generated as described

in Section 4.4 for a short segment of the binary stimulus and plotted in

Figure 3.
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Figure 3: Raster plot of an example spike train generated from the binary
stimulus using the Poisson process. The firing rates (f0, f1) for the three
neurons were as follows: (30Hz, 35Hz); (20Hz, 45Hz) and (15Hz, 50Hz)
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4.6 n-valued stimulus

It is obvious that the binary stimulus model introduced in the previous

section is often not sufficient to cover the complexity of experimental setups

encountered in practice. For this reason, we extend the concept to an n-

valued stimulus and set S = {s1, . . . , sn} = {0, 1
n ,

2
n , . . . , 1}. In the limit of

n → ∞, a quasi-continuous spectrum of stimulus values can be achieved.

In practice, the distinction between a truly continuous random variable and

one that is defined over a fine-grained large set S can be negligible. To go

back to the example of studying movement representation in motor cortex,

the limiting factor is the resolution at which limb position can be reliably

measured.

However, the n-valued stimulus is still far from being applicable to a

setting where limb positions in a two- or three-dimensional space must be

represented because of the restrictions we enforce. Similar to the binary

stimulus, we define a firing rate fi for i = 1, . . . , n that defines how many

spikes per second a neuron fires when stimulus value si = i−1
n−1 is presented.

To go even further, we study the case of a linear relationship between stim-

ulus value and firing rate. Given a baseline firing rate f0 and a maximum

gain f∆, the neuron will emit f0 + i−1
n−1f∆ spikes on the average whenever

stimulus si is presented.

The larger the stimulus set and the higher the frequency of stimulus

change, the harder it becomes to obtain reliable firing rate estimates. At

some point, assumptions about the smoothness of the neuron’s response have

to be made, and the random variable for the neural signal might have to take
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firing rate history into account. Whether the smoothness constraint can be

justified or not will certainly depend on the neural system under scrutiny. In

the study of hand reaching, for example, it is a sound assumption that limb

positions won’t change in a non-continuous fashion. It has been shown that

neurons in motor cortex might not depend linearly on variables as position

or velocity but observed maps are always smooth and typically not highly

non-linear [35, 36].
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Figure 4: Raster plot of an example spike train generated from the n-valued
stimulus with t0 = 500ms and t0,min = 250ms. Baseline firing rates and
maximum gain (f0, f∆) for the three neurons were as follows: (5Hz, 10Hz);
(5Hz, 25Hz) and (5Hz, 40Hz).

For the purpose of simulation, the smoothness constraint translates to

the presentation of stimulus values in the predefined order (s1, s2, . . . , sn,

sn, sn−1, . . . , s1). If the temporal pattern was fixed too, then the stimu-

lus would be highly predictable and large sliding windows would extract an

artificially increased mutual information value. A method that was intro-

duced in Section 4.5 will reduce the predictability by randomizing the length
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of time segments in which the stimulus does not change. Stimulus change

events are modeled as a renewal process. On the average, each instance of a

stimulus si will be presented for the duration t0, but never for a shorter pe-

riod than t0,min. Figure 4 depicts an example stimulus and three spike trains.

For sufficiently long data segments, all stimulus values are equiprobable and

the entropy of the n-valued stimulus is log2 n bits.
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5 Results on synthetic data

5.1 Effects of window sizes in binning approaches on infor-

mation measures

This chapter aims at studying the effects of different window sizes on the

calculation of mutual information. In most experimental settings, it is im-

possible to derive appropriate bin and window sizes from theoretical princi-

ples. By contrast, we are in the exquisite situation of being able to control

stimulus properties and neural responses. We put this to use and systemati-

cally analyze the effect of various parameters on mutual information. As we

are able to generate experimental data in arbitrary quantities and use unbi-

ased estimators, all mutual information values have been obtained via fully

converged estimators and can be accepted as “ground truth”. Furthermore,

we attempt to establish bounds on the amount of data required for reliable

estimates depending on the estimator used.
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(a) The first and last window that is as-
sociated with this instance of the (S = 1)
condition. Window size w is 20ms (4 bins).
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(b) Contamination of a convolution win-
dow of length 40ms (8 bins) that is
counted as a joint event with the S = 1
condition but has more overlap with the
S = 0 condition.

Figure 5: Illustration of convolution windows used to obtain instantaneous
firing rate estimates. Bin size of 5ms, stimulus is drawn in blue, spikes in
red and convolution windows in black.
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(a) Firing rates: f0 = 0Hz/f1 = 30Hz
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(b) Firing rates: f0 = 15Hz/f1 = 30Hz
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(c) Firing rates: f0 = 30Hz/f1 = 30Hz
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(d) Firing rates: f0 = 30Hz/f1 = 30Hz
for a larger range of window sizes. The
neuron is not sensitive to the stimulus but
insufficient data causes a strong upward
bias in the plug-in estimator

Figure 6: Mutual information of firing rate and stimulus. Firing rate was
calculated from a window that only considered spikes in the past and was
shifted by its own length (no overlap). Dashed lines indicate standard devi-
ation σ0 = 300ms around t0 = 600ms.

In a first experiment, we generated spike trains from the binary stimulus

described in Section 4.5 and varied the neuron firing rates under stimulus

conditions S=0 and S=1. Parameters were fixed to P (S=0) = P (S=1) =

0.5; t0,min = 300ms and t0 = 600ms. Three exemplary plots are shown in

Figure 6, where the random variable of the neural signal was defined as the
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spike count in non-overlapping windows of varying lengths. The temporal

reference point of the sliding window was at its end such that the stimulus at

time t and the spike count in the time frame [(t−w); t] were counted as joint

events (illustrated in Figure 5(a)). To remove artifacts that are specific to

certain generated spike trains, we repeated all experiments 50 times and plot

mean curves. Some plots also feature error bars (e.g., Figures 6 and 7) but

they are typically small and reduce to a jagged contour around the curve.

A first cursory inspection of Figure 6 reveals that neither very short nor

very long windows convey large amounts of information about the stimu-

lus. The first observation is attributable to the lack of contrast between

different stimulus conditions in the case of short windows. Recall that

the stimulus is guaranteed to remain constant for a duration of t0,min in

S = 0 segments and t1,min in sections where the stimulus takes value 1. As

P (S=0) = P (S=1) = 0.5, it holds that t0,min = t1,min. To make use of this

property most efficiently, one would intuitively choose the window length w

approximately equal to t0,min = 300ms. That choice should prove optimal

in the sense of maximizing the number of spikes that go into the firing rate

estimate while providing decent coverage of the average stimulus presen-

tation interval. However, contaminations of the convolution window with

spikes that occurred during the other stimulus condition (cf. Figure 5(b))

undermine the hypothesis and ideal window lengths are found to be in the

range from 50ms to 200ms for the given parameters. In Figure 6, graphs

for different amounts of firing rate contrast f∆ = f1 − f0 between stimulus

conditions are shown.
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(a) Firing rates: 0Hz/30Hz

0 200 400 600 800 1000 1200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

One neuron [30.00 / 15.00 Hz]
overlapping; looking into the past

Time [ms]

M
I [

bi
ts

]

(b) Firing rates: 15Hz/30Hz
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(c) Firing rates: 30Hz/30Hz

Figure 7: Mutual information between firing rate and stimulus. Firing rate
was calculated from a window that only considered spikes in the past and was
shifted by 5ms. Error bars represent one standard deviation (only visible as
jagged contours around the curve).

A worrisome artifact is exhibited in Figure 6(c) and, more drastically,

in Figure 6(d). Even though the neuron does not respond to the stimulus

and has a firing rate of 30 Hz under both conditions, the plug-in estima-

tor extracts an increasing amount of information for larger windows. It is

necessary to clarify one detail of the experimental conditions at this point.

The hypothetical experimental session in this experiment lasted for 1000s,

independent from the window size. One consequence is that the amount of
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data available is inversely proportional to the window size. There are 10000

observations for a window of 100ms but only 250 observations for a four

second window. Figures 6(c) and 6(d) do not only show effects of different

window sizes but also artifacts attributable to insufficient amounts of data.

One side effect of using overlapping windows is that the number of ob-

servations is independent from the chosen window size4. This makes the

analysis of the relation between window size and estimated mutual infor-

mation possible, while limited data effects are suppressed. Results for this

scenario are shown in Figure 7. Now the estimation of mutual information

for the stimulus insensitive neuron in Figure 7(c) behaves as expected.
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Figure 8: Joint distribution of (S,N) sorted in lexicographical order and
hypothetical joint distribution under the assumption of independence for
1000s of data (250 observations for a 4s window).

On the other hand, it is instructive to illuminate reasons for the over-

estimation of mutual information when insufficient data is available. In the

extreme case of w = 4s, the number of observations drops to 250. As the slid-

ing window accumulates spikes, and hence discrete events, the distribution
4With the marginal exception of border effects at the beginning and end of a data set.
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over the instantaneous firing rate derived from the window will be discrete.

In Figure 8, the relative frequencies of all observed pairs (s, n) sorted in

lexicographical order are depicted. In addition, the distribution under the

assumption of independence is plotted. Note that mutual information is a

distance measure between the two distributions. There are many values n

such that (1, n) can be observed with non-zero frequency, but (0, n) is not

present at all, or vice versa. If we assume that (1, n) was observed once and

(0, n) never, then P ((S,N) = (1, n)) = 1
250 and P ((S,N)=(0, n)) = 0 in

the observed joint distribution. Given that P (S = 0) = P (S = 1) = 1
2 , it

follows that Pindep(S = 0) = Pindep(S = 1) = 1
500 for the hypothetical dis-

tribution under the assumption of independence. Then each value n that

fulfills the aforementioned condition will contribute

Isingleton =
1

250
· log2

(
1

250
1
2 ·

1
250

)
=

1
250

· log2 2 =
1

250
bits (5.1)

to the estimated mutual information.

A straightforward conclusion from the comparison of overlapping and

non-overlapping windows is that the former are always preferable. To pro-

vide more evidence for the advantages of this strategy, the differences be-

tween estimated mutual information values in the overlapping and the non-

overlapping case are plotted in Figure 9. The comparison is based on the

extracted mutual information peak value, i.e., the global maximum over all

window sizes within a reasonable range. In Figures 9(a), 9(b) and 9(c), neu-

ronal properties were varied. By contrast, stimulus properties were varied in

Figure 9(d). In all cases, the mutual information estimate does not depend
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on the window shifting method, i.e., shifting by a fixed value of 5ms or the

full window size to avoid any overlap.
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(c) Neuron with varying firing ratios be-
tween the two stimulus conditions (base
frequency of 30Hz)
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(d) Neuron with firing rates of
[10Hz/30Hz] for different values of
t0, t0,min is kept constant at 300ms.

Figure 9: Comparison of mutual information peak values obtained via the
plug-in estimator for non-overlapping and overlapping (by 5ms) sliding win-
dows.

5.2 Effects of neuronal properties

For consequent experiments, we exclusively used overlapping windows and

fixed the window shift to 5ms. In Figure 9, the effect of neuronal properties
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on mutual information is depicted. For Figure 9(a), the neuron’s firing rate

under the stimulus condition S=1 was set to f1 = f0 +5Hz and the baseline

firing rate f0 varied. Obviously, information content does not only depend

on ∆f = f1 − f0, but also on f0, as mutual information drops for increas-

ing baseline firing rates. One possible interpretation of this phenomenon

implicates the relative contrast between f1 and f0, i.e., f1

f0
, as the relevant

quantity for information transfer. Mutual information of stimulus and neu-

ral signal for 0 < f1

f0
≤ 2 is depicted in Figure 9(c). The shape of the curve

implies a roughly quadratic dependence of I(N ;S) on f1

f0
, but there is an

evident asymmetry, as I(N ;S) grows less rapidly for increasing values of

f1

f0
if f1

f0
> 0 than in the f1

f0
< 0 case. The same behavior is exhibited in

Figure 9(b), where the x-axis is parameterized differently, namely as the

absolute difference ∆f = f1 − f0.

5.3 Effects of stimulus properties

Properties of the stimulus also have an impact on mutual information es-

timates, an effect that can be attributed to two major sources. When the

presented stimuli change more rapidly, the presentation time of a single

stimulus decreases and so does the amount of time that a neural system can

spend encoding the stimulus. There are physiological constraints to neural

spiking activity, among them the minimum refractory period of approxi-

mately one millisecond, the binary and discrete nature of action potential

based information transfer, limited reliability of neurons and finite temporal

precision in the form of jitter [30, 2]. Behavioral evidence from psychophys-
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ical experiments supports the inverse relationship of stimulus presentation

time and subject performance in many different tasks, a very high-level in-

dicator of information content in the neural signal.

The second influence on MI estimates is exerted by the analysis technique

at hand. Even if a neural system has specialized in such a way as to transmit

information about highly dynamic stimuli (such as the auditory cortex, for

example, cf. [12]), devising methods to extract mutual information for dy-

namic stimuli is challenging. Estimates of instantaneous firing rates become

less reliable because sliding windows will span across spikes emitted during

different stimulus conditions. Reducing the window size, on the other hand,

will make firing rate estimates more granular and decrease contrast between

stimulus conditions. Figure 9(d) demonstrates how I(N ;S) increases as the

frequency of stimulus change becomes smaller and, equivalently, as t0 grows.

More detailed plots are shown in Figure 10 where the dependence of

I(N ;S) on neuronal and stimulus properties is illustrated for a few values

in each model. It is interesting to note how the peak of the MI curve in Fig-

ure 10(d) shifts towards smaller window sizes as the stimulus becomes more

dynamic, i.e., the value of t0 decreases. As explained above, the shift is to

be expected because window overlap effects reduce the amount of informa-

tion extracted if w is chosen too large. The dark blue curve for t0 = 350ms

drops to zero in the range around 350ms. For this parameter, the spike

count in windows paired with a stimulus value S=0 will, on the average, be

identical to the spike count in windows paired with a stimulus value S= 1

due to window overlap. It follows that the neural signal N does not re-
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Figure 10: Effect of the window size on mutual information for different
neuronal properties

duce uncertainty about the stimulus at all. But once w is increased beyond

350ms, I(S;N) begins to oscillate before it asymptotically approaches zero.

The oscillation is more pronounced in the dark blue curve with t0 = 350ms

than in any other curve shown in the plot. The length of segments in which

the stimulus value is kept constant, is modelled probabilistically (refer to

Section 4.5) and the standard deviation σ0 of the segment lengths is given

by Equation 4.2: σ0 = t0 − t0,min. It follows that σ0 takes a small value
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of 50ms if t0 = 350ms and t0,min = 300ms. Due to the high regularity of

the stimulus, another, albeit significantly lower, local maximum of mutual

information can be observed for window sizes around 520ms. The windows

from which instantaneous firing rates are calculated span more than one

stimulus presentation period in this case, but the ratio of spikes that were

emitted during the (S = 0) condition to those emitted during the (S = 1)

condition is still sufficient for some degree of discrimination. A similar oscil-

lating behavior can be observed for larger values of t0 if the window size w

is increased even beyond the range in Figure 10(d). The amplitude of sec-

ondary local maxima is smaller in relation to the amplitude of the primary

local maximum because of the higher standard deviation σ0, signifying the

reduced stimulus regularity.

We can conclude from these observations that it is of high importance

to match the window size for the estimation of instantaneous firing rates to

the temporal characteristics of the stimulus. This point is less of a concern

in highly controlled environments, e.g., when visual stimuli are presented for

fixed amounts of time with adequate intertrial intervals. In more challenging

experimental settings, when the sheer nature of the experiment precludes

such an approach, more care has to be taken in choosing the optimal window

size.

5.4 Effects of data set size

The fact that reliable estimates of mutual information depend on the avail-

ability of large amounts of data was mentioned in Section 3.5. Here we
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present examples how the upward bias in mutual information manifests it-

self in the case of the binary stimulus under different neuronal properties

and amounts of data available.
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(a) Neuron with f0 = 0Hz, f1 = 30Hz
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(b) Neuron with f0 = 10Hz, f1 = 30Hz
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(c) Neuron with f0 = 20Hz, f1 = 30Hz
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(d) Neuron with f0 = 30Hz, f1 = 30Hz

Figure 11: Different data set sizes for a binary stimulus (300ms, 600ms),
window shifted in 5ms intervals. Only MI peak value reported.

As before, spike trains were generated for t0 = 600ms and t0,min =

300ms. In order to obtain some kind of “ground truth”, we estimated mutual

information from a simulated experiment of about 20 minutes duration that

yields 2 · 105 observations of the joint distribution (N ;S). To evaluate how

the estimator behaves for smaller datasets, the experiment was artificially
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shortened in small steps, going down to a minimum of 5s. Estimated mutual

information values are plotted as a function of the dataset size in Figure 11.
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(a) Neuron with f0 = 0Hz, f1 = 30Hz
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(b) Neuron with f0 = 10Hz, f1 = 30Hz
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(c) Neuron with f0 = 20Hz, f1 = 30Hz
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(d) Neuron with f0 = 30Hz, f1 = 30Hz

Figure 12: Different data set sizes for a binary stimulus (300ms, 600ms),
window shifted in 5ms intervals.

The previous arbitrary assumption that 20 minutes of data should suf-

fice for an exact estimate appears to be justified and in most cases, the

estimators have converged at session lengths of 80s to 100s. Figure 11 also

provides evidence that the extracted peak MI value remains quite stable

even for extremely short sessions. This holds for experiments where the

contrast ∆f was sufficiently large, i.e., 20 Hz or 30 Hz. As discrimination

between the two stimulus condition becomes harder at lower contrasts of
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(a) Neuron with f0 = 0Hz, f1 = 30Hz
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(b) Neuron with f0 = 10Hz, f1 = 30Hz
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(c) Neuron with f0 = 20Hz, f1 = 30Hz
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(d) Neuron with f0 = 30Hz, f1 = 30Hz

Figure 13: Different data set sizes for the n-valued stimulus (n ∈ {4, 6, 8})
with a presentation interval of 750ms. Only MI peak value reported.

only 10 Hz or impossible at 0 Hz, insufficient data artifacts become more

noticeable. In Figures 11(c) and 11(d), a strong upward bias affects the

estimator if the number of observations drops below 5000 (25s session) or

20000 (100s session), respectively. The magnitude of this effect should not

be underestimated, the bias reaches values of up to 0.2 bits for the stimulus

insensitive neuron (f0 = 30 Hz, f1 = 30 Hz).

A more detailed dissection of the plug-in estimator’s behavior is pre-

sented in Figure 12 that also plots the estimated MI values as a function of
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the window size. One surprising observation is the fact that estimates based

on small window sizes are more resilient to small data sets than those based

on larger window sizes. More specifically, mutual information peak values,

typically extracted for 50ms ≤ w ≤ 200ms, are extraordinarily stable. As

w is increased well beyond the range that is relevant in practice for this

particular experimental setup, a strong upward bias is evident.

The n-valued stimulus model is expected to aggravate upward bias effects

relative to the binary stimulus. Even though the number of observations for

the marginal distribution p(N) of the neural signal is independent from the

cardinality of the stimulus set, conditional distributions p(N |S) are based on

fewer samples if n is greater than 1. Specifically for the case of the n-valued

stimulus, the number of observations of p(N |S) is inversely proportional

to n for each stimulus value. The expected behavior is well reflected by

Figure 13. Especially in comparison with Figure 12, it becomes clear that

the 100 second data segment is barely to sufficient for a convergence of the

plug-in estimator. Even the neuron with a high firing rate contrast of 30Hz

(Figure 13(a)) is severely afflicted by upward bias. The degenerate case in

Figure 13(d) exhibits a bias of approximately 0.1 bits for the full 100s data

segment even though the neuron is not responsive to the stimulus and has

not converged to the true value of 0 bits.

5.5 Use of integer kernels

In Section 3.3, kernel density estimation was discussed as a viable approach

to acquire estimates of the joint and marginal distributions required for the
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calculation of mutual information. It was also established that specialized

kernels are necessary if the distributions to be estimated are discrete. We

attempt to evaluate the adequacy of integer kernels (as defined in Equa-

tion (3.16)) for the estimation of mutual information within the framework

of artificially generated data based on a binary stimulus (Section 4.5).
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Figure 14: Comparison of MI values for the plug-in estimator and the plug-in
estimator after application of the integer kernel smoothing operator. Spike
trains generated for the binary stimulus with t0 = 600ms and t0,min =
300ms.

The results of this experiment are shown in Figure 14. As described in

Section 3.3, the kernel bandwidth h was chosen by a heuristic based on the

standard deviation of the random variable. Unfortunately, several negative

properties of the integer kernel density estimation method are observable in

the plots. While the curve of the traditional plug-in estimate as a function of

the window size is smooth, the curve for the integer kernel based estimator

exhibits several spikes of large magnitude. As a result, MI values derived

from IK estimates will suffer from a higher variance than plug-in estimates.

If the spiky/jagged segments are excluded, both estimators behave roughly

65



in the same way.

The use of integer kernels for the purpose of estimating information-

theoretic quantities certainly deserves more attention than granted in this

thesis. Though, within the limits of our model and data analysis framework,

it appears doubtful whether integer kernel density estimates offer advantages

over maximum likelihood estimates.

5.6 Results for the n-valued stimulus
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Figure 15: Mutual information for n-valued stimuli plotted for different
window lengths w and temporal characteristics of the stimulus.

The binary stimulus is a good tool to understand the dependence of

mutual information estimates on neuronal properties, stimulus properties

and the amount of data available. But few practical applications live in the

microcosm of single neurons that are studied in the context of two stimuli.
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In order to close the gap to continuous variables, such as quantities that

describe limb kinematics, we introduced the n-valued stimulus in Section 4.6.

Studying this type of stimulus is particularly interesting if the presentation

protocol is highly dynamic in the temporal domain. The behavior of mutual

information as a function of the window size is depicted in Figure 15. To

emphasize the role of the temporal dynamics of a stimulus, the average

presentation interval of the stimuli t0 was chosen from a set of values ranging

from 50ms to 1000ms. Likewise, the minimum presentation interval t0,min

was set to t0
2 so that the standard deviation of the presentation interval and

its mean have a ratio of 1.

The general shape of the curves is quite similar to that observed for the

binary stimulus (cf. Figure 10(d)). When stimuli are presented in less rapid

succession, the window size that extracts the mutual information peak value

increases. This is hardly surprising as larger windows allow for more reliable

estimates of the instantaneous firing rates. In other words, the variance of

the firing rate distribution conditioned on the stimulus decreases.

Recall that the entropy of the n-valued stimulus is log2 n bits5. Even

for relatively slow stimulus changes, the extracted peak MI value does not

even come close to the entropy value. In fact, the increase in mutual infor-

mation from the 4-valued stimulus (Figure 15(a)) to the 8-valued stimulus

(Figure 15(b)) is small in comparison to the stimulus entropy’s doubling.

Another pointed difference pertains to the optimal window size in relation

to the mean stimulus presentation interval t0. For n = 4, the window sizes
5This holds if stimulus values are equiprobable, a condition that is fulfilled by all

discussed experiments.
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that maximize mutual information are in the neighborhood of t0
2 as this

value appears to optimize the reliability of instantaneous firing rate esti-

mates without inducing too much contamination of the convolution window

for the spike count (as illustrated in Figure 5). A drastic change occurs

when n is increased to eight. Significantly larger windows now achieve the

optimal trade-off between contamination and firing rate estimation. One

can hypothesize that this shift is attributable to the decreased firing rate

difference between “adjacent stimuli”. In our example, the separation drops

from 10Hz to 30
7 Hz ≈ 4.3Hz as we go from n = 4 to n = 8.

5.7 Results for multiple neurons

Since the technology for simultaneous recordings form multiple cells has

become available, encoding of stimuli by populations of neurons has received

a lot of attention. Mutual information readily adapts to the analysis of

population data. A straight-forward choice for the random-variable is to

concatenate the random variable for each neuron into one large vector. It

follows that the random variable for the m-neuron case is m-dimensional.

We picked a single configuration from the experiments performed on the

n-valued stimulus with single neurons and examined the behavior of mutual

information as the number of neurons is increased.

Obviously, the change of mutual information will depend on the neural

properties in the population. In the name of simplicity, we confined our-

selves to the simplest case in which all neurons are identical. The n-valued

stimulus with parameters n = 4, an average presentation interval of 400ms

68



0 200 400 600 800 1000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Data segment length [s]

M
I [

bi
ts

]

 

 

n=1
n=2
n=3
n=4

Figure 16: Behavior of mutual information as a function of the window
size for up to four neurons. Model: 4-valued stimulus, average presentation
interval of 400ms, f0 = 10Hz, f∆ = 20Hz

and f0 = 10Hz, f∆ = 20Hz was picked for this experiment. In preliminary

experiments, it became clear that the amount of data has to be increased

significantly in order to guarantee full convergence of the plug-in estimator.

In Figure 16, the results for 1 ≤ m ≤ 4 neurons are depicted. As

expected, mutual information increases monotonically as a function of the

number of neurons. An interesting feature is the deceleration of information

growth. Going from one to two neurons adds more than 0.15 bits, while the

step from three to four neurons contributes less than 0.1 bits. It can also

be observed that the optimum window size for the extraction of the mutual

information peak value shifts markedly from 420ms for one neuron to 300ms

for four units. This behavior is a clear indication for the obvious fact that

firing rates can be estimated more easily from four identical neurons than

from only one. Finally, a peculiar increase of mutual information for large

window sizes around 1000ms is exhibited for bigger neural populations. This

behavior is not understood yet and requires further investigation.
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6 Conclusion

6.1 Summary

In the previous sections, we have introduced mutual information and justi-

fied its application in the field of neuroscience. Motivated by its widespread

use in many studies, we moved on to present the most widely employed

paradigms. Experiments performed on synthetic datasets provide evidence

that great care must be taken in the choice of the random variable that rep-

resents the neural signal. Two different mechanisms for the estimation of

instantaneous firing rates — overlapping and non-overlapping sliding win-

dows — were compared and the results give rise to the conclusion that over-

lapping windows are less prone to artifacts if the number of observations is

low, i.e., the dataset relatively small.

Taking advantage of the control over neural properties and stimulus char-

acteristics offered by synthetically generated data, we examined the depen-

dence of mutual information on several quantities. In the case of the binary

stimulus, relative firing rate contrast f1

f0
and absolute firing rate contrast

∆f = f1 − f0 appears to have the strongest influence on mutual informa-

tion6. However, our results also indicate that mutual information is not

independent from the baseline firing rate f0 if identical contrast is assumed.

In other words, mutual information I(N ;S) will have different values for a

neuron with (f0 = 30Hz, f1 = 40Hz) than one with (f0 = 20Hz, f1 = 30Hz).
6As we fix the value of f0 in our experiments, we can treat it as a constant and there

is a linear relationship between f1
f0

and ∆f , so both parameterizations are equivalent for

any given f0 6= 0: f0

“
f1
f0

”
− f0 = f1 − f0 = ∆f .
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If f0 is kept constant and mutual information plotted as a function of the

contrast f∆, the resulting curve is approximated well by a quadratic function

for small values of f∆. As f∆ increases further, the curve’s slope decreases

and curvature finally changes sign and becomes negative. For obvious rea-

sons, this part of the curve is not modelled well by a quadratic function but

can be fit well by an incomplete beta function. The aforementioned observa-

tion that neurons with (f0 = 30Hz, f1 = 40Hz) and (f0 = 20Hz, f1 = 30Hz)

behave differently, is supported by the fact that slightly different parameters

are necessary to model the negative part of the curve where f∆ < 0 versus

the positive part where f∆ ≥ 0.

One of the most significant contributions of this thesis is the analysis of

the relationship between the temporal characteristics of the stimulus and the

optimal window size that determines the width of the convolution window

for the purpose of firing rate estimation. Surprisingly, optimal window sizes

for the binary stimulus were found to be notedly smaller than t0,min and

thus significantly below the expected value. Even more counterintuitive is

the discovery that the relative magnitude of w and t0,min changes as we shift

our attention to the n-valued stimulus model. If n is increased, the optimal

window size w drifts to larger values. It is important to note that this

phenomenon can only be observed is the stimulus fulfills certain assumptions

concerning its smoothness and continuity.

In order to approximate continuous stimuli more closely, the n-valued

stimulus model was studied under similar conditions as the binary model.

We found that the gap between stimulus entropy and maximum mutual
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information increases significantly, notwithstanding favorable choices for the

temporal characteristics of the stimulus (such as long presentation intervals)

and high firing rate contrast for the neuron. Two different reasons can

cause this result. Either the neuron’s inherent properties (probabilistic spike

generation, linear dependence on the stimulus value) forestall the efficient

transmission of information about the stimulus or the toolchain to recover

information from the spike train is lacking. In the case of the n-valued

stimulus it seems as if the information output of a single neuron is not

sufficient to allow for an observer of the spike train to discriminate between

eight different stimuli.

We shortly evaluated mutual information in the context of neuron pop-

ulations by replicating the same neuron several times. Not surprisingly,

significant increases in mutual information can be observed as more neu-

rons are added, even though the difference per neuron diminishes with each

additional unit. Populations of multiple neurons constitute a more reliable

system for information transfer such that notedly smaller window sizes per-

mit the extraction of mutual information peak values. This phenomenon

has to be attributed to the fact that shorter segments of the neural signal

are sufficient to produce good estimates of firing rates. It is not perceivable

whether the shift of the optimum window size would be of similar magnitude

for more heterogeneous populations.
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6.2 Outlook

Based on the results and conclusions in the previous section, we propose the

following experiments to further evaluate the adequacy of mutual informa-

tion as a measure of relevance in neural coding and analyze its behavior in

a diverse set of environments:

Increasing the stimulus complexity: The n-valued stimulus is an ap-

proximation of continuous stimuli for sufficiently large n. Experiments were

only performed in the range n ≤ 8. Expanding the range to stimulus mod-

els that draw values from a larger discrete set in order to approximate a

continuous stimulus via binning will show whether estimators for discrete

distributions scale appropriately. Bigger sets of stimulus values reduce the

number of observations in the distribution over the neural signal conditioned

on a specific stimulus value. For practical applications, it is profoundly rele-

vant to have knowledge of the amount of data required for reliable estimates

of mutual information. Therefore, it could prove valuable to develop lower

bounds on this quantity as a function of stimulus properties and character-

istics of the neural signal.

Non-linear dependence of the firing rate on the stimulus: The

simulator for the generation of synthetic spike trains assumed a linear rela-

tionship between the stimulus value and the firing rate of the neuron. To

close the gap between artificially generated data and electrophysiological

recordings, non-linear models should be implemented. Within the domain

of the motor cortex, one could study hand motion in 2D or 3D and gener-
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ate spike trains from hypothetical neurons that behave in accordance with

spatiotemporal tunings function, as proposed by Paninski et al. [35].

Heuristics for the choice of window sizes: Our results in Section 5.1

have demonstrated the essential role of appropriately chosen window sizes

for the estimation of instantaneous firing rates. The location of the mutual

information peak value appears to vary as a function of several parameters,

including temporal features of the stimulus and neural properties. A trans-

formation of the stimulus and the neural signal into the frequency domain

might lay the foundation for methods that can automatically choose optimal

values for the window size that maximize mutual information.

Mutual Information Estimators: While there are several alternative

ways to estimate mutual information from continuous distributions, e.g.,

nearest-neighbor methods and kernel density estimates, only the plug-in

estimator is applicable to discrete distributions in general settings. Re-

search could proceed in two directions to explore estimators that converge

on smaller datasets. Firstly, nearest-neighbor methods could potentially be

modified and adapted to overcome the ill-posedness of the nearest neigh-

bor notion in discrete spaces. Secondly, discrete stimuli drawn from a large

set can be interpreted as approximations of continuous stimuli. Whereas

nearest-neighbor estimators still face the difficulties of integral distances

between data points, kernel density estimates could outperform maximum

likelihood estimates.
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Study of multiple neurons: We have briefly peeked into the field of pop-

ulation analysis. Obviously, our experiments have to be repeated on a larger

selection of datasets. Furthermore, the replication of identical neurons to

simulate population behavior is a misrepresentation of population properties

found in the brain. It is well known that many neural mechanisms rely on

groups of neurons that span the stimulus space uniformly with overlapping

tuning curves. A second, extremely interesting, field of research is related to

the role of (temporal) correlations between neurons. Hopefully, a powerful

measure of relevance can unite opposing views about their usefulness for

information transmission.
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