
BorderPatrol: Isolating Events for Precise Black-box Tracing

John Jannotti Eric Koskinen

Brown University

{jj,ejk}@cs.brown.edu

Abstract

High-level causal request traces are of interest to develop-
ers of large concurrent and distributed applications. These
traces show how a request is processed as it passes through
several modules which may be processes, threads, machines,
or devices. They aid programmer understanding and are in-
creasingly analyzed by tools used to detect performance and
correctness errors. Precise traces are more useful than statis-
tical approaches because they can detect anomalous behavior
and allow decisions at run-time. Since these traces are dif-
ficult to obtain without application-specific instrumentation
of each module of the system, much of the recent work that
analyzes request traces is limited to applications for which
source code and developer expertise is available.

We present BorderPatrol, which obtains precise request
traces through systems built from a litany of unmodified
modules, written in varied languages, with varying architec-
tures. These include Apache, thttpd, PostgreSQL, Turbo-
Gears, BIND and notably Zeus, a closed-source event-driven
HTTP/1.1 web server, which uses helper processes. Border-
Patrol obtains these traces using active observation which
slightly modifies the event stream observed by system mod-
ules, simplifying precise observation. Protocol processors aid
active observation by leveraging knowledge about standard
protocols and interfaces between concurrent modules, avoid-
ing the need for implementation-specific instrumentation.

BorderPatrol obtains precise traces for black-box systems

that cannot be traced by any other technique. Further, it

does so with limited overhead on real systems (approximately

10-15%) making it a viable option for deployment on produc-

tion systems.

1 Introduction

Today’s large-scale applications consist of independent
modules (processes, threads, devices) that leverage con-
currency for performance. In many cases, the compo-
nents are developed by different groups and in different
languages. Individual components may use threaded,
multi-process, or event-driven designs.

Regardless of this heterogeneity, developers want
answers to questions about their entire applications.
“What path through the system do search requests take,
and where do they spend the most time?” or “What re-
sources are used by clients reading email, as compared

to sending email?” The principals of interest in these
queries are requests, not individual modules. Tracing
tools must follow single requests as they are passed be-
tween modules, including third-party binary modules
and even as those requests are passed and returned from
remote, untraced systems.

Beyond building traces for inspection by developers,
recent work has shown that these traces can be valuable
input to automated tools. Systems such as Pinpoint [7],
Pip [13], and Stardust [18] rely on precise request traces
to identify faulty modules, discover anomalous request
paths, and make capacity plans.

Unfortunately, obtaining precise request traces in a
heterogenous, concurrent system is difficult. It is insuf-
ficient to obtain traditional trace data, such as system
call or function call logs, since these logs do not indi-
cate when high-level requests have been handed off from
module to module. Instead, most tracing systems have
advocated module-specific programmer supplied instru-
mentation. While some have avoided instrumentation,
they have sacrificed precise traces for statistical infor-
mation.

When an application spans multiple modules, or when
a module multiplexes several requests, request flow does
not follow module control flow. Generally, requests will
be executed in fragments by modules that multiplex their
time among many such requests. These modules may
use operating system abstractions such as processes or
threads, or they may manage concurrency themselves,
using an event loop or user-level threading package.

BorderPatrol follows requests as they propagate
through this cacophony of modules, written by disparate
teams, loosely aggregated with protocols that do not
share a unifying request abstraction. We understand, be-
fore we begin, that perfection is impossible. In the gen-
eral case, precise black-box tracing is impossible, since
modules may act in arbitrary ways inside their “black-
boxes” particularly when presented with simultaneous
requests. However, our observation is that real applica-
tions are not arbitrary. Through careful observation and
a light-weight form of module isolation, causal paths can
be reconstructed in real-world systems.

Module parallelism is our chief challenge. When a
modules operates on two requests simultaneously, it is
impossible to know which of its actions are attributable

1



to which request.
Previous tracing systems have also recognized this

impossible challenge, and have compromised in various
ways. Many require developer instrumentation. Devel-
opers must manually record request transitions in order
to reconstruct paths from the resultant bread-crumbs.
Others provide the instrumentation for the developer,
but only as part of a rigid framework. For example, a
web application framework might make appropriate call-
outs to a tracing infrastructure without help from the
developer. However, if the developer makes an ad-hoc
call to a module that is not supported by the frame-
work, the path is incomplete. Finally, some systems ac-

cept imprecision. Rather than following the path of a
request precisely, a statistical model is built from the
repeated observation of module inputs and outputs. Al-
though paths can be obtained for unmodified modules
with some probability, precise traces of specific anoma-
lous paths cannot be determined. We discuss all of these
approaches in much more detail in Section 8.

Our compromise, and therefore our contribution, is
different. We present a tracing technique that actively

isolates black-box inputs so that request paths can be
precisely observed, without materially affecting the over-
all application’s ability to multiplex requests. Event iso-

lation (Section 3.2) unbundles concurrent input events
in order to allow the observation of a module’s behav-
ior on a per-event basis. When event isolation is im-
possible or undesirable, we identify request propagation
by inspection. Message witnesses (Section 3.1) identify
matched messages, often request/response pairs. Event
isolation and message witnesses are provided by proto-

col processors (Section 3.3), an abstraction that allows
developers to implement protocol-specific, rather than
implementation-specific, tracing. A single HTTP proto-
col processor can be used to trace any web server, web
proxy, or even XML-HTTP services.

The techniques described in this paper are realized in
a tool called BorderPatrol, which is publicly available.
Our evaluation consists of case studies (Section 6) and a
performance evaluation (Section 7). We show that Bor-
derPatrol reconstructs causal paths through a range of
diverse servers including Apache, thttpd, Zeus, BIND,
PostgreSQL, and TurboGears, without modifications to
the source code or the use of statistical methods. Fur-
ther, we show that the overhead of tracing is about 10-
15%, making it a viable technique for using at runtime
on industrial-grade software.

2 Black Box Model

BorderPatrol seeks to follow the repeated transfer of a
request from one black-box module to another in order
to construct causal paths that show which modules han-
dled a given request, in what order, and for how long.

For example, when a web application queries a database,
we want to associate the computation in the database
with the original HTTP request. Although BorderPa-
trol generally treats modules as “black boxes,” it makes
some assumptions about the way real-world applications
work that allow it to follow request transfers.

Request traces can be thought of as chains that are
made up of two types of links. External links connect
the output of one black-box module to the input of an-
other. Internal links connect a module input to a module
output.

External links can be observed by monitoring commu-
nication channels using any number of techniques, i.e.

network snooping, virtual machine monitoring, and sys-
tem or library call interposition. Each of these monitor-
ing techniques imposes a module resolution—the size of
black boxes. Network monitoring, for example, imposes
a machine-sized black box. We assume that BorderPa-
trol’s interposition and kernel based monitoring is suf-
ficiently fine-grained to observe the passage of requests
between black boxes.

Internal links, on the other hand, cannot be directly
observed by the very nature of “black box.” Border-
Patrol assumes that the unobserved internals of black-
box modules are honest, immediate, and independent. A
black box is honest if it faithfully implements the basic
structure of the protocols it participates in. It is im-
mediate if, when presented with a single input event, it
processes the input event before requesting another in-
put. Finally, black boxes are independent if they process
concurrent input events in the same way that they would
have processed the events if they arrived sequentially, ex-
cept for timing effects.

This section details these assumptions, and describes
why we expect that the operation of real-world black
boxes operate within them.

2.1 Honesty

Sometimes, internal links can be established by observ-
ing the contents of input and output messages. This is
common when a request is passed out of a module using
the same protocol that passed the request in, so that an
identifier is visible in both messages, for example in re-
quest/reply modules and in proxy servers. We refer to
these identifiers as witnesses and BorderPatrol assumes
they are accurate if they exist. We expect that bugs at
such a low level are unlikely in production systems. How-
ever, witnesses are currently used only to patch paths
when BorderPatrol’s request following techniques can-
not be used, such as when building a path through a
remote, untraced module.

2



B

A ?

? B

A

A

A

B

A

B B

B

Figure 1: An illustration of the immediacy and independence
assumptions. Immediacy tells us that when A is supplied, the
black box’s next observable action will be to create the output
labeled A. Independence tells us that the black box would not have
treated A differently had it been supplied simultaneously with B.

2.2 Immediacy

Usually, determining internal links is more difficult than
matching witnesses. Modules may receive concurrent re-
quests on one or more input channel, and then initi-
ate connections to several other modules. The protocols
used may be unrelated and the follow-on messages may
carry no identifying information that can be tied to the
original request.

The difficulty for internal link inference is that mod-
ules multiplex requests. For example, event-driven sys-
tems rotate servicing a number of outstanding requests.
Additionally, a single process may collect multiple in-
puts (via read for example), and work on both with no
externally identifiable break between them.

Our model assumes that black boxes are immediate–
they are composed of pieces we refer to as fragments. A
fragment is an internal control path that handles individ-
ual inputs and processes them until completion. Infor-
mally, a fragment is a short stretch of code during which
the process performs internal computation on behalf of
a single request.

These fragments do not usually process an entire re-
quest. The execution of the fragment runs from one in-
put event (such as data becoming available on a socket)
to another, not from request start to finish.

Since fragments immediately begin work on the re-
quest associated with their input event, BorderPatrol
can determine internal links by supplying that input,
noting the output caused by the fragment, and connect-
ing the two. (BorderPatrol takes a general view of output

that includes any interaction with an outside module,
such as connection creation.) We describe this process
in more detail in Section 5.5.

Immediacy is illustrated in Figure 1. On the left, two
concurrent requests enter a black-box module, and since
nothing is known about the module internals, it is im-
possible to match the inputs to the outputs. However,
the right side of the diagram illustrates the module’s true
structure. Although BorderPatrol cannot determine this
structure, it is easy to see that if the events are supplied
independently, the output can be matched with the in-
put.

In the Section 3, we explain how BorderPatrol takes

advantage of this assumption, and in Section 4 we ex-
plain why traced modules retain their ability to multi-
plex requests.

2.3 Independence

Our final assumption about black-box modules is inde-
pendence. We assume that modules will treat two se-
quential inputs the same way they would have treated
those inputs if they had been received simultaneously.
In a concrete example, we assume that an application
that uses poll will not behave differently if it must call
poll twice to obtain two ready file descriptors.

Like immediacy, the independence assumption says
nothing of entire requests, only the individual events

that comprise them. Inside most real-world modules,
multiple input events will be immediately separated any-
way. Libraries such as libevent [9] and libasync [10],
dispatch to event handlers for individual events. Even if
multiple events are supplied to an event-driven module,
the event loop dispatches these events serially to event
handlers. In threaded applications, events are serialized
to an even greater extent. These applications usually
block waiting for a single next event (such as the com-
pletion of a read) to proceed. There is no danger that the
behavior of these applications will change when events
are isolated.

Although batch-oriented interfaces are a common per-
formance optimization, we explain in Section 4 how Bor-
derPatrol is able to take advantage of independence with-
out foiling these optimizations.

3 Active Observation

We have created BorderPatrol to monitor and modify
communication and control channels between modules to
simplify request tracking. BorderPatrol uses active ob-

servation to observe and subtly modify the event streams
sent and received by monitored modules. The goals is
to ease request tracking by logging identifying informa-
tion and to schedule module input to allow independent
observation of the handling for each event.

In this section we discuss the techniques that allow
BorderPatrol to isolate events and execute fragments in-
dependently. BorderPatrol uses simple protocol proces-

sors to understand and separate multiple messages on a
single channel. These processors also supply witnesses
that allow path reconstruction even when certain types
of external modules are used where BorderPatrol is not
deployed.

BorderPatrol’s active observation is more intrusive
that previous tracing approaches. As such, there is a
greater risk that BorderPatrol’s observation changes the
behavior of the modules it traces. Sections 4 and 7 ex-
plore this concern in detail. Until then, we note only

3



that we believe, and our experiments have borne out,
that the vast majority of applications are essentially un-
affected. Our intuition was based on the understanding
that modules written to handle concurrent requests over
multiple communication channels must be impervious to
small message delays. Our experimental evidence is the
correct and efficient operation of several large software
systems operating under active observation.

3.1 Message Witnesses

As noted in the previous section, black-box tracing is
complicated mostly by the need to establish internal
links from module inputs to outputs. Message witnesses,
when available, greatly simplify this problem. A mes-
sage witness is data that can be extracted from input
messages and output messages to allow matching, for
example a request ID. Unfortunately, witnesses are un-
likely when input and output messages are of different
protocols, so they are useful mainly for linking requests
and replies. BorderPatrol does not normally use wit-
nesses, preferring to follow the path of a request more
directly using event isolation. However, witnesses pro-
vide the ability to construct traces where event isolation
is impossible because a module can not be controlled by
BorderPatrol. For example, witnesses allow the integra-
tion of remote web service modules info BorderPatrol
traces.

3.2 Event Isolation

In order to directly follow internal links, BorderPatrol
supplies input event to modules one at a time. Border-
Patrol monitors the module’s output, and assumes that
it can be attributed to the same request as the input
event. As a concrete example, consider poll, an inter-
face that modules use to obtain events for any number of
file descriptors. At the time poll is called, BorderPatrol
has tracked the input that is available on each channel,
and can attribute each potential input to a high-level.
By returning only one event at a time to the black-box
module, BorderPatrol can attribute the work of the mod-
ule to the work of the request associated with the event.
The module will then call poll again, and one more
event will be supplied.

The events returned by poll are indivisible, they can be
attributed to only one request. BorderPatrol has prede-
termined the association of each file descriptor to a given
request, based on when the descriptor was opened, or the
request of the input message to be read next. However,
when a module reads input data, there is the danger
that input from several messages, and therefore several
requests, is combined. Protocol processors allow Border-
Patrol to isolate events at the protocol level, preventing
multi-request reads.

3.3 Protocol Processors

BorderPatrol presents input to protocol processors be-
fore passing it on to unmodified modules. The proto-
col processors identify message boundaries, log protocol
specific attributes that users may wish to query, and
track message witnesses. Although the development of
protocol processors requires more specialized knowledge
than pure black-box approaches, the knowledge is not
application-specific, but protocol-specific. We have used
the same HTTP protocol processor to trace many dif-
ferent web servers with wildly varying implementations.
Furthermore, these protocol processors do not fully im-
plement the protocol, they usually understand little be-
yond the most basic “envelope” of the protocol messages.

Protocol processors look for message delimiters or
length counts in the data stream, and look into mes-
sages only enough to log application-specific identifiers
such as URLs, SQL queries, or sequence numbers. The
interface from the interposition library to the protocol
processor has been designed to make these tasks easy.
The protocol processors we have implemented are be-
tween 30-150 lines of code, including some boilerplate,
as shown in Figure 3.

The protocol processor interface consists of just four
functions, two of which are used for initialization and
tear-down. The following descriptions use pseudo-code
data types to elide the details of C typing and buffer
handling.

pp state pp init() Processors allocate and initialize a
structure to store protocol specific state for a given com-
munication channel in between invocations of the proces-
sor. The allocated state is passed as the first argument
to all other functions.

void pp shutdown(pp state) When a channel is
closed, processors deallocate the memory obtained in
pp init.

int pp read(pp state, buffer) When data arrives on
an input channel, pp read is invoked to log and demar-
cate requests. The processor returns the number of bytes
from the buffer that may safely be passed to the appli-
cation without crossing a protocol message boundary. If
the border between two requests is found in the buffer,
the processor returns the offset of the boundary. Other-
wise, the entire buffer will be passed on, including cases
in which the buffer represents a partial message. In these
cases, for the convenience of protocol processors, Bor-
derPatrol will buffer the partial message and re-invoke
pp read on the old data. The processor indicates the
desire for buffering by returning PP NEED MORE.

int pp write(pp state, buffer) When data is being
written to an output channel, pp write demarcates and
logs, just as pp read. However, when BorderPatrol
writes data, there is no need to perform event isolation.
The protocol processor is invoked only to log events and
witnesses. All data is passed through to the output chan-

4



int pp_http_read(pp_http_t state, buffer buf) {

switch(state->s) {

case DONE_1_0:

return buf.length();

case AWAIT_HEADER:

i = find_re(buf, "GET.*?HTTP/1.1\r\n.*?\r\n\r\n")

if (i==0) return PP_NEED_MORE;

url = extract_url(buf)

httpv = extract_version(buf)

log(http_req, url, state->seq++)

state->s = httpv == 1.1 ? AWAIT_HEADER : DONE_1_0;

return i

}

}

Figure 2: Example protocol processor for client to server commu-
nication using HTTP. pp http read illustrates an HTTP protocol
processor for client to server communication. Due to the simplified
interface, pp http read can always operate from the start of the
message.

nel immediately, so pp write will be invoked until it re-
turns PP NEED MORE or 0. Most of the time, outbound
data need not be cached, except for when the processor
returns PP NEED MORE in which case the partial message
is cached until more outbound data can be shown to the
processor.

Two protocol processors must be written for most pro-
tocols. The read and write functions, described above,
are used to process the messages for a protocol in one
direction. The write function is invoked at the sender,
and read at the receiver, but they perform nearly the
same work, except for a difference in logging a receive or
send. To process a protocol in both directions, a second
protocol processor is used that understands the format
of response messages.

An example pp read for HTTP is shown in Figure 2.
HTTP is a simple, sequential protocol in which each re-
quest is separated by two pairs of linefeed/newline char-
acters. This example is organized in a state transition
style. The DONE 1 0 state only applies to HTTP/1.0
clients. Once a request header is received, the protocol
processor enters this final state since HTTP/1.0 forbids
reusing a connection for multiple requests. In the al-
ternate state AWAIT HEADER, the processor looks for the
request separator. If it isn’t found in the current data,
it returns PP NEED MORE, indicating that the processor
should be invoked again when more data has arrived.
While the partial request is cached for the benefit of
the processor, BorderPatrol also passes it through to the
application because there is no danger that the partial
request contains a request boundary. Finally, when the
complete request is recognized, attributes are parsed out
of the header and logged.

BorderPatrol’s real HTTP processor is 105 lines long.
Figure 3 shows line counts for several other protocol pro-
cessors, each less than 150 lines long. Section 5 discusses

Protocol Processor Lines of Code

HTTP (1.0 & 1.1) 105
FastCGI 118
PostgreSQL 147
X11 (client-side only) 50
DNS (client-side only) 27
One-shot 28
Line-oriented 37

Figure 3: Protocol processor line counts. Each count includes
both the client- and server-side of the protocol, except where
noted. “One-shot” is used to handle any protocol with one re-
quest/response per connection. “Line-oriented” handles any pro-
tocol that uses newline to delimit sequential messages.

Concurrent Inputs
Multi−Threaded Paradigm Event−Driven Paradigm

Event−Driven ParadigmMulti−Threaded Paradigm

Event Separation

Figure 4: BorderPatrol works because real-world servers have
straightforward internal structure. Multi-threaded servers dis-
patch events independently, to separate threads (left). Event-
driven server execute in fragments that can be pieced together
by running them sequentially (right).

the implementation details that support this simple in-
terface.

4 Why does BorderPatrol work?

Do real-world applications decompose cleanly to code
fragments that operate on individual requests? Can
BorderPatrol obtain that decomposition? This section
explores typical application architectures and explains
when and why applications can be decomposed and
traced accurately.

Fundamental to real-world interactive programs, of
which servers are a subset, is the ability to handle con-
current requests. Therefore, these applications must be
able to (nearly) continuously accept new requests, even
as previous requests are still being processed.

There are several common paradigms for multiplex-
ing requests. Using the taxonomy presented by Pai et

al. [12], we consider some of the most popular.
Multi-process or Multi-threaded. Servers writ-

ten in the MP/MT style maintain a pool of individual

5



threads (or processes). These threads loop, continuously
accepting new requests, processing each one to comple-
tion. In pseudo-code:

while (fd = accept())

while (req = read(fd))

handle_request(req);

close(fd);

Once inside handle request(), such a server is well-
behaved in the sense of our assumptions about immedi-
acy and independence. While inside this function, the
server will service only a single request. It may inter-
act with additional modules to aid in servicing the re-
quest, but BorderPatrol’s tracing job is easy. For exam-
ple the request might be an HTTP request for a page
containing user customized data obtained via an RPC
interface. BorderPatrol attributes the RPC to the top-
level request, and continues path reconstruction in the
destination module. If the destination module is not
running BorderPatrol, a witness in the RPC response
can reestablish the request path, treating the entire re-
mote module as a single black box. BorderPatrol does
not assume that sequential behavior, across fragments,
is necessarily related. BorderPatrol actively follows the
request back into the web server. It does not assume the
web server continues on the same request across multiple
input events.

Single Process Event-driven. SPED servers have
a drastically different architecture. Rather than multi-
plexing requests across multiple threads, all computation
is contained within a single thread, which multiplexes
among the requests it handles. In pseudo-code:

while(1)

events = poll();

for e in events

handler = find_handler(e);

execute(handler, e);

The handling of a single request is divided into many
smaller stages. The equivalent of handle request()

might consist of five handlers: (1) parse the request and
initiate a connection to the RPC server (2) complete the
connection to the RPC server (3) write a message to the
RPC server (4) read the response from the RPC server
and (5) compute the HTML response and write it to the
client. In fact, each of these stages might re-register the
same handler to complete a lengthy operation.

BorderPatrol ensures that the SPED process receives
only one event at a time, so all of the following ac-
tions, until the next input, can be attributed to the input
event’s request. BorderPatrol obtains control at the start
of each handler, so it can determine the request designa-
tion at the start of each handler. An illustration of this
architecture appears on the right-hand side of Figure 4.

Asymmetric Multi-Process Event-Driven
AMPED is largely the same as SPED, with the addition
of helper processes used to simulate asynchronous

I/O. BorderPatrol observes the requests from the
main process and attributes the work of the helper to
the high-level request that initiated contact with the
helper. BorderPatrol will require a protocol processor
in the case that the communication between the main
process and helper persists on a single channel. Simpler
interactions with subprocesses that span of a single
request can be handled by the “One-shot” protocol
processor. We expect that these ad-hoc protocols are
conventiently delimited or used fixed frame sizes. We
expect implementations in the 10s of lines.

Workqueue. Applications that make use of “hidden”
work queues to pass requests from module to module will
present a problem for BorderPatrol’s tracing because of
unobservable fragment interactions. Workqueues may be
implemented with internal data structures that cannot
be observed without more invasive techniques. However,
some work queue implementations do have standard-
ized interfaces, and if they are implemented as shared
libraries or via IPC, fragment interactions might be ob-
served by an “API processor” akin to BorderPatrol’s
protocol processors. Regardless we were somewhat sur-
prised, but pleased, not to find this model in the many
modules we examined.

Whodunit [6] is an effort to derive information from
(nearly) unmodified servers that pass requests in this
manner. There is potential synergy with BorderPatrol’s
mechanism, though Whodunit’s output is statistical.

User-level Scheduling. User-level threads may also
present difficulties for BorderPatrol, depending on imple-
mentation. Cooperative thread packages switch threads
only when the current thread attempts a blocking sys-
tem call. A non-blocking version is substituted, and
the thread context is switched. The thread may be re-
sumed when an OS notification indicates the operation
would not block. This architecture is identical to SPED
for BorderPatrol’s purposes. Other thread packages use
asynchronous signals in order to support preemption.
BorderPatrol does not current support the interception
of these signals. Even if it did, treating the package as
a black box would prevent BorderPatrolfrom knowing
which thread has been swapped in. BorderPatrol could
only resume tracing when an interaction with a known
resource is observed.

5 Implementation

In this section we discuss our implementation of the
mechanisms described in Section 3. Briefly, trace data is
collected from unmodified modules by library interposi-
tion and a kernel module. The trace data is aggregated
and processed in one “forward temporal join,” to obtain
request paths. An overview of the architecture is given
in Figure 5.

6



logd

Log Log Log

Path Reconstruction

lib
bt

ra
ce

Protocol Processor

black−box
module

Figure 5: System Overview. The solid black box represents a
traced application module. Communications (messages, IPC, and
signals) are monitored by the Protocol and/or API processors.
Events are relayed through the Logging Daemon to a raw database.
Databases from multiple hosts are then aggregated, and causal
paths are reconstructed.

5.1 Library Interposition (libbtrace)

The core of BorderPatrol is a series of wrapper func-
tions for roughly 20 standard library calls in a library,
libbtrace. Using library interposition (i.e. LD PRELOAD

on Linux), libbtrace intercepts calls to libc, isolates
events, invokes protocol processors, and emit logging
events. Usually, a wrapper invokes the real libc rou-
tine as a part of its work.

Libbtrace must track the requests associated with
each connection in a process. BorderPatrol tracks all
connection creation operations (open,socket, pipe, etc.)
and alteration operations (close,dup,fcntl).

Libbtrace also tracks data as it flows through read

and write operations (including variants such as send

and recv). Many connections need not be monitored
since request causality doesn’t flow across them. For ex-
ample, the work involved in opening a file should be at-
tributed to the current request, but the request typically
doesn’t flow into the file (although we have thought of
cases such as mail servers in which we could track causal-
ity through the file system). For simple file operations,
BorderPatrol simply logs the interaction.

By contrast, requests do flow over the other connec-
tions in a distributed system (e.g. FastCGI connections
and database connections). In these cases, BorderPatrol
(a) identifies the protocol involved (b) invokes the proto-
col processor on read/write operations on the connec-
tion, and (c) buffers data and events when event isolation
requires it.

Currently, BorderPatrol does not trace some interfaces
that it ought to in order to gain the most comprehen-
sive coverage. For example, signals, the kevent API, and
the aio system calls are all ignored. We see no reason
why these interfaces pose fundamental challenges, but
we have not seen them in use enough to motivate their
inclusion.

Data Presented to Protocol Processor
Data

Isolated boundaries returned to the application

Inbound

GET /img/border.jpg HTTP/1.1\r\nHost: ... \r\n\r\n GET /img/backg

Figure 6: Example of data being presented to the Protocol Pro-
cessor and data being forwarded on to the application.

Protocol Selection For any connection, the appro-
priate protocol processor must be selected. One might
accomplish this with an identification function that be-
haves much like the Unix file command. By examining
the first few bytes of data on a channel, it could con-
verge on a protocol identity. For example, HTTP is eas-
ily recognized by the initial string "GET ...", whereas
FastCGI begins with a binary record format. Currently
BorderPatrol determines protocol identity based on con-
ventions such as port number, Unix domain path, or
executable name.

5.2 Protocol Processors

libbtrace additionally houses all protocol processors.
Each protocol is implemented once, and then it can be
used on any application that implements the protocol.
Section 3 describes the protocol processor interface; this
section provides implementation details.

When data arrives on a channel with a protocol pro-
cessor, the data cannot be written directly into the appli-
cation’s buffer since it may contain multiple input events
that should be isolated. Additionally, once the protocol
processor demarcates message boundaries, the messages
may exceed the size of the buffer that the application
made available.

For inbound data, BorderPatrol interposes on read. If
there is a protocol processor for the file descriptor the
inbound data is handled as follows:

ssize_t read(int fd, void *buffer, int len) {

if (tab[fd].hasProcessor()) {

if(tab[fd].hasCachedDataForApp())

return tab[fd].returnUpTo(buffer,len);

if(tab[fd].hasCachedDataForProcessor()) {

tab[fd].AdvanceProcessor();

if(tab[fd].hasCachedDataForApp())

return tab[fd].returnUpTo(buffer,len);

}

ssize_t r = real_read(fd,buffer,len);

if(r<=0) return r;

tab[fd].appendCache(buffer,r);

7



tab[fd].AdvanceProcessor();

assert(tab[fd].hasCachedDataForApp());

return tab[fd].returnUpTo(buffer,len);

}

else return real_read(fd,buffer,len);

}

Tab tracks data flowing through each file descriptor
and maintains cursors to indicate which portions have
been sent to the application, presented to the protocol
processor, and not yet considered.

If there is any data that the application has not yet
collected, as much data as possible is passed to the appli-
cation, considering the application’s buffer size and the
position of the protocol processor. Otherwise, there may
be additional data, collected during a previous read,
that the protocol processor has not yet seen. This hap-
pens whenever a protocol processor consumes a partial
message or one of two contiguous messages. Finally, in
the event that the protocol processor has been presented
with all data in the buffer (even if it contains a portion
of the next protocol chunk) and there is no cached data
that can be passed to the application, the real version of
read is used to refill the internal buffer.

Using the protocol processor on outbound data is far
simpler. Application writes are never shortened. In-
stead, the protocol processor is called repeatedly until all
messages in the stream have been identified and logged.
The remaining data is buffered until the next time write
is invoked.

When BorderPatrol retains data in order to perform
event isolation, it must also modify the result of any call
to poll. The buffered file descriptor should be labeled
readable regardless of its actual condition. In this way
the application will call read again, which can be fulfilled
from the buffer.

5.3 Kernel Page fault Monitor

User-level library interception is insufficient for captur-
ing entry and exit from some kernel-related processes.
BorderPatrol installs monitoring points in the Linux ker-
nel in order to observe page-fault activity. Some pro-
cesses use mmap to allow the operating system to page
in data on demand without an explicit call to read. Li-
brary interposition cannot be used to observe I/O that
results from page faults on mmap-ed pages, because page
faults cause a transparent trap to the kernel. Border-
Patrol includes a kernel process, pftrace that logs page
faults in specified processes. pftrace uses kprobes to
register call-backs whenever page faults occur. The pro-
cess ID and time-tamps are passed through relayfs to a
user-space daemon, which forwards them to the logging
daemon.

B A

A B

A

B

B

B

B

A B

B

A B

B

B

Figure 7: Correlating the outputs of atomic computation units
with the inputs of others.

5.4 Logging

Traces collected from the interposition library and the
kernel page fault monitor are sent across a named pipe
to the per-host logging daemon (logd). The logging dae-
mon exists to collect events from traced processes, buffer
them, and write them in batches to disk. Each thread
maintains a separate connection to the log daemon, so
events from different threads may be received out of or-
der. However, events from any particular thread are or-
dered by the pipe.

The volume and frequency of events motivated a bi-
nary logging format to limit space requirements and
avoid repeated calls to expensive formatting functions.
Each event consists of a fixed-length header, optionally
followed by a character string and a number of integers.
The event header record includes process and thread
identifiers, a cycle count time-stamp, and event details,
such as system call arguments and return values.

5.5 Recovering Request Paths

Events are collected from each module and sorted by
clock cycles. The correlation of external links between
modules with the internal links within modules provides
the causal path of a request. Two rules allow the con-
struction of paths while scanning forward in time:

1. When a module receives a message associated with
request r, a fragment initiates computation for r.

2. When a fragment computing r sends a message, that
message is associated with r.

Figure 7 provides a diagram of communication between
fragments, illustrating these rules.

Moving forward through an event stream, BorderPa-
trol reconstructs the history of modules, the communi-
cation channels they engage in, and messages transmit-
ted. As virtual time proceeds, BorderPatrol maintains
a mapping from file descriptors to communication chan-
nels as they are created, duplicated or destroyed. Dur-
ing the execution of fragments, a module designation

identifies which request the module is currently process-
ing. Finally, events from protocol processors indicate
when messages are transmitted or received. In accor-
dance with Rule 2 above, these messages are associated
with the sender’s current designation. An event signaling

8



receipt of such a message updates the recipient’s desig-
nation.

In addition to explicit module communication through
IPC or data streams, causal paths also continue across
process creation. Often a module will spawn a helper
module to assist computation. For example when a web
server receives a request for a CGI URL, it will fork
a process which then execs the CGI. Spawned modules
consist of an implicit initial fragment which is associated
with the same request that the parent was processing the
moment it called fork.

The rules we use to recover request paths are similar
in spirit to the work of Isaacs et al. [5] in which temporal

joins correlate events in accordance with an application-
specific join schema to reconstruct paths. BorderPatrol
obtains explicit internal and external causal links, so it is
immediately known when requests enter and exit mod-
ules.

As a result, BorderPatrol is application independent.
In contrast to join schemas, protocol processors exist
solely to identify request boundaries, and contain no
application-specific information.

Events on a single host can use the cycle count as a
total order, but these clocks may not be synchronized
across multiple hosts. Since we track message transmis-
sion and receipt, we can obtain a mapping between clock
cycles on multiple hosts.

6 Case Studies

Before considering performance overhead in the next sec-
tion, we first show how BorderPatrol copes with two
typical scenarios that require manual instrumentation to
obtain precise paths in previous tracing systems.

6.1 dearinter.net

dearinter.net
1 is a social networking web site which in-

vites users to post and vote on public questions. dearin-

ter.net consists of a multi-threaded Python application
tier (TurboGears [19]) between an Apache web server [3]
front-end and a PostgreSQL database back-end.

The tiers of dearinter.net inter-operate by communi-
cating using several standard protocols. Web requests
arrive as HTTP requests, Apache forwards application
requests to TurboGears as FastCGI messages, and fi-
nally TurboGears issues queries to the database through
the PostgreSQL protocol. BorderPatrol contains proto-
col processors for each of these protocols. All processors
are straight-forward, and none is longer than 150 lines
of code.

Examining an access log excerpt from a typical page
load motivates the need for event isolation using protocol

1Though dearinter.net is not our site, we have used a pseudonym
due our association with the developers.

KCycles Event

2,000,585 ProtocolInit(3) → https
2,000,592 Accept(16,0) → (3,:60983-:80)
2,000,860 ProtocolMsgRecv(3,https) [/question/521]
2,002,447 Socket() → 5
2,002,524 ProtocolInit(5) → fcgic
2,002,526 Connect(5,0) → (:40682-:9797)
2,002,591 ProtocolMsgSend(5,fcgic) URI=/q...
2,432,164 ProtocolMsgRecv(5,fcgic)
2,432,201 Close(5)
2,432,260 ProtocolMsgSend(3,https) [200]
2,435,414 ProtocolMsgRecv(3,https) [House.jpg]
2,435,462 ProtocolIsolate(67,161)
2,436,817 Socket() → 5,
2,436,914 ProtocolInit(5) → fcgic
2,436,916 Connect(5,0) → (:40683-:9797)
2,436,969 ProtocolMsgSend(5,fcgic) [House.jpg]
2,559,082 ProtocolMsgRecv(5,fcgic)
2,559,135 ProtocolMsgSend(3,https) [200]
2,560,658 Close(5)
2,560,808 ProtocolMsgRecv(3,https) [Mark2.jpg]
2,562,252 Socket() → 5
2,562,348 ProtocolInit(5) → fcgic
2,562,351 Connect(5,0) → (:40684-:9797)
2,562,391 ProtocolMsgSend(5,fcgic) [URI=Mark2...]
2,596,653 ProtocolMsgRecv(5,fcgic)
2,596,703 ProtocolMsgSend(3,https) [200]
2,598,234 Close(5)

... ...

Figure 8: Log of events relevant to the Apache process with Event
Isolation enabled on dearinter.net. Dashed lines indicate the begin-
ing of a code fragment. Fragments begin at every input event and
when poll indicates that a file descriptor has become writeable.

processors. Here we see that a top-level “question” page
is loaded, followed by almost simultaneous requests for
several embedded images (for brevity, we elide several
irrelevant fields and renamed some images).

clienthost 9:32:42.03 /question/521 HTTP/1.1 200 1949

clienthost 9:32:42.24 /img/House.jpg HTTP/1.1 200 19317

clienthost 9:32:42.30 /img/Mark2.jpg HTTP/1.1 200 18820

clienthost 9:32:42.34 /img/Meter.jpg HTTP/1.1 200 19947

Figure 8 illustrates a portion of the events logged by
BorderPatrol during this page load. Only the log en-
tries for the Apache process are shown, in order to mini-
mize details while motivating protocol processors. First,
the client establishes a connection. The HTTP protocol
processor recognizes incoming data as an HTTP request
for the URL /question/521. To service the request,
the, Apache connects to the FastCGI server (not shown),
which responds with data that is returned to the client.
The images are also served through the dearinter.net ap-
plication server.

Apache, like most other modern web servers, supports
HTTP/1.1 pipelining over persistent connections. The
elided protocols also send multiple messages over a single
connection: from the web server to the FastCGI process,
and from the FastCGI process to the database.

Notice the ProtocolIsolate event just after the re-
quest for House.jpg. As the application is reading, the

9



HTTP Protocol Processor notices the boundary between
two HTTP requests. Rather than passing the compound
request to the application, it isolates the first of the two.
Apache immediately contacts the FastCGI server, relays
House.jpg, and then calls read again to collect the sec-
ond request for Mark2.jpg.

We generated the same workload with event isolation
disabled. Now a single call to read fetched multiple im-
age requests. Regardless, Apache handled the requests
sequentially—it created a connection to the FastCGI
server, relayed the first image, and after forwarding it
to the client, repeated the process for the second image.
This serial behavior is an artifact of the MP architecture,
not BorderPatrol. (The recreation of the FastCGI con-
nection is an artifact of a poor FastCGI implementation
in Apache, an artifact that BorderPatrol does not rely
on for correct operation.)

This scenario is a concrete example of a module in-
teraction that cannot be precisely deciphered without
instrumentation using any other tracing tool. If Apache
were to read in both requests it would be impossible
to correlate which FastCGI connection corresponded to
which client request. In this example, both requests are
for images that are handled quite similarly, and we might
happen to know that Apache handles requests sequen-
tially. In general, the requests might be quite different,
and require several module interactions to service. An
error in constructing the causal path might, for example,
attribute database access to a request for a static image
rather than a dynamic Python page.

Validating Traces. From the dearinter.net workload
we used – based on access log files provided to us by the
developers – we extracted request traces. Our methodol-
ogy generated complete traces, from which we extracted
the relationship between client requests (URLs) to mes-
sages to the PostgreSQL tier that contain SQL queries.
Taking a single request (one for the URL /tag/rabbits

for example) the corresponding queries and cycle counts
where found to be:

316264 BEGIN; SET TRANSACTION ...

316522 SELECT NEXTVAL(’tg_visit_id_seq’)

317336 INSERT INTO tg_visit (id,visit_key,expiry)

VALUES (419704,’5c4...’,’2007-03-18...

335990 SELECT expiry,... FROM tg_visit WHERE id = 419704

336605 END

479741 BEGIN; SET TRANSACTION ...

479891 SELECT id,user_id FROM tg_visit_identity

WHERE visit_key = ’5c4...’

484013 SELECT id,tag,count FROM tag WHERE tag = ’rabbits’

485311 SELECT id,tag,count FROM tag WHERE tag = ’rabbits’

485928 SELECT id FROM qu_tag WHERE exttag_id = 1528

487024 SELECT question_id FROM qu_tag WHERE id = 2914

487778 SELECT title,sum,weight,user_id,numcomments,...

FROM question WHERE question_id = 1107

511741 SELECT user_name,email,... FROM tg_user ...

514104 SELECT id FROM qu_tag WHERE question_id = 1107

514841 SELECT tag_id FROM qu_tag WHERE id = 2911

515353 SELECT tag_id FROM qu_tag WHERE id = 2912

515782 SELECT tag_id FROM qu_tag WHERE id = 2913

516238 SELECT tag,count FROM tag WHERE id = 1525

516874 SELECT tag,count FROM tag WHERE id = 1526

517362 SELECT tag,count FROM tag WHERE id = 1527

539487 END

We spoke with the developers of dearinter.net and con-
firmed that these queries match the structure of the ap-
plication, and therefore this request trace is correct. The
first transaction corresponds to the user authentication
code, which generates a new unique identifier to store as
a browser cookie. Subsequently, the second transaction
begins by looking up the user’s identity, and generating
the content of the page. First an identifier for the “rab-
bits” tag is obtained, from which the list of questions
associated with that identifier can be loaded. The devel-
opers confirmed that the subsequent identical query was
due to an inefficiency in the structure of the application.
Finally, for each question (in this case there’s only one:
question id 1107) and associated author, statistics are
loaded, as well as the list of all the other tags associated
with the question. Through each state, BorderPatrol
followed internal and external links to obtain the causal
path without knowledge of the internals of dearinter.net.

6.2 Event-Driven Web Server (Zeus)

Zeus [20] is an enterprise-scale commercial web server.
Being a commercial product, the source is unavailable
to us. We have no direct knowledge of the internals
of Zeus, though we are aware it is a high-performance
event-driven design.

Included with Zeus is an extensive Administration web
application, which allows for the configuration of Zeus
and the web sites it serves. Since Zeus is based on HTTP
and FastCGI, we reused the protocol processors imple-
mented for dearinter.net; no additional work was neces-
sary. Loading the Cluster Configuration page of the Ad-
ministration application yields the following access log
entries, among others.

clienthost 7:58:10.03 GET /.../index.fcgi?... HTTP/1.1" 200

clienthost 7:58:10.16 GET /.../statimg.gif HTTP/1.1" 200

clienthost 7:58:10.17 GET /.../1t.gif HTTP/1.1" 200

The events collected are listed in Figure 9. As in the
previous case study, activity begins with the arrival of a
client connection. However, Zeus subsequently connects
to the name server to reverse resolve the client IP ad-
dress. The DNS protocol processor tracks the outstand-
ing DNS request using a witness that consists of the UDP
4-tuple and DNS request ID. BorderPatrol properly con-
structs paths and attributes time spent in remote, un-
monitored modules.

After the name is resolved, Zeus reads an HTTP re-
quest from the client for index.fcgi. A FastCGI sub-
process is forked and a connection is established via a
Unix domain socket. Finally, Zeus writes a FastCGI
message to the FastCGI server, receives the response

10



KCycles Event

1,137,563 ProtocolInit(8,:41170-:80) → https
1,137,567 Accept(4) → 8
1,137,756 Socket() → 9
1,137,758 ProtocolInit(9) → dnsc
1,137,780 Connect(9) → (:32784-:53)
1,137,817 ProtocolMsgSend(9,dnsc,3668)
1,140,325 ProtocolMsgRecv(9,dnsc,3668)
1,140,350 Close(9)
1,140,387 ProtocolMsgRecv(8,http,0) [GET,index.fcgi]
1,141,262 Socket() → 9
1,141,342 ProtocolInit(9) → fcgic
1,141,346 Connect(9) → (/tmp/s.zeus)
1,141,540 ProtocolMsgSend(9,fcgic)
1,405,294 ProtocolMsgRecv(9,fcgic)
1,405,297 ProtocolIsolate(8,11683,0)
1,405,625 ProtocolMsgSend(8,https,0) [200]
1,407,236 ProtocolMsgRecv(9,fcgi)
1,407,238 ProtocolIsolate(8,16,0)
1,409,622 ProtocolMsgRecv(8,http,1) [GET,statimg.fcgi?...]
1,409,687 ProtocolIsolate(101,193,0) → 0
1,409,811 ProtocolMsgSend(9,fcgi)
1,409,862 ProtocolMsgRecv(8,http,2) [GET,1t.gif]
1,421,876 ProtocolMsgRecv(9,fcgi)
1,421,878 ProtocolIsolate(8,9716,0) → 0
1,422,567 ProtocolIsoPoll(0,0,0) → 2
1,422,590 ProtocolMsgSend(8,https,1) [200]
1,422,666 ProtocolMsgRecv(9,fcgi)
1,422,668 ProtocolIsolate(8,16,0)
1,422,927 Open(1t.gif) → 10
1,422,953 Close(10)
1,422,980 ProtocolMsgSend(8,https,2) [200]

... ...

Figure 9: Log of events with Event Isolation enabled on Zeus.
Bold events signify where protocol processors demarcate mes-
sage borders, detect data parameters, and perform event isolation
(ProtIsolate).

and relays it to the client. Shortly thereafter, the client
requests a dynamically rendered GIF (statimg.fcgi2)
and a static GIF (1t.gif).

Although the requests are nearly simultaneous, Bor-
derPatrol can correctly correlate the FastCGI activity
with statimg.fcgi rather than with 1t.gif. This
tracking does not come at the expense of serializing re-
quests as Figure 9 illustrates. Event isolation supplies
Zeus with the message for statimg.fcgi first, and Zeus
immediately contacts the FastCGI server. With that
connection in progress, Zeus returns to its event loop
and receives the request for 1t.gif. Having both balls
in the air, it next receives the response from the FastCGI
server which it forwards to the client. Finally, Zeus reads
the static image off the disk and forwards it to the client.

Validating Traces. From these events that we cap-
tured with event isolation enabled, we reconstructed re-
quest paths. In the absence of a representative for Zeus,
we carefully examined these paths to see if they matched
our intuition.

2This file is not part of the standard administration application
package – we created it for illustrative purposes

6.3 Other Cases

In addition to these detailed case studies that include
traces through Zeus, Bind, Apache 1.3, TurboGears,
PostgreSQL, we have traced many other modules in com-
bination with these components. We have successfully
traced Perl scripts used as CGI and FastCGI compo-
nents, multiple web servers such as thttpd and a Java
web server.

7 Performance Evaluation

Our methodology introduces overhead. In this sec-
tion, we quantify this overhead both as absolute micro-
benchmarks, and under realistic workloads for the case
studies examined in Section 6. All of our evaluations
were run on a server with a single 2.0GHz Athlon CPU
and 500MB of RAM.

When an application is traced with BorderPatrol, our
shared library libbtrace is interposed between the ap-
plication and libc. Library interposition by itself has
negligible overhead: less than 1%. However, libbtrace
contains our core implementation, and there are sev-
eral routines that produce a small amount of overhead.
When the first application call is trapped, we initialize
pointers to the real libc version of some of our methods
since we will need them within libbtrace. Additionally,
we initialize some data structures, and connect to the
logging daemon. The first and all subsequent trapped
application calls typically involve some logging, invoking
protocol processors (in the case of I/O) and implement
event isolation.

7.1 Micro-benchmarks

A series of micro-benchmarks is shown in Figure 10. We
ran experiments measuring how latency of a web server
(Apache) degrades under various workloads as concur-
rent clients are increased. Bandwidth graphs are omit-
ted for brevity. In each graph, the solid line indicates the
control scenario – measurements of a pure Apache server.
The dotted line indicates the measurement of Apache
wrapped with our tracing layer libbtrace. All work-
loads were generated by closed-loop feedback clients, so
performance reaches a plateau at saturation.

The upper left benchmark shows latency degradation
under a disk-bound workload. We generated a variety of
files at 10MB each, and the clients fetched random sub-
sets. At around 5 concurrent clients, the server becomes
saturated as it cannot serve files faster than they can be
loaded from disk. Across the entire range of concurrency,
the mean overhead was 5.37%.

In the upper right benchmark, a workload was gener-
ated consisting of a single 1MB file, repeatedly fetched
by increasingly many clients. The file immediately is

11



0 5 10 15 20 25 30
0

20

40

60

80

100

Concurrent Clients

La
te

nc
y 

(m
s)

Mean Latency (ms) for Disk−bound Workload

 

 

Control
BorderPatrol

0 5 10 15 20 25 30
0

20

40

60

80

100

Concurrent Clients

La
te

nc
y 

(m
s)

Mean Latency (ms) for Network−bound Workload

 

 

Control
BorderPatrol

0 5 10 15 20 25 30
0

2

4

6

8

10

Concurrent Clients

La
te

nc
y 

(m
s)

Mean Latency (ms) for File−bound Workload

 

 

Control
BorderPatrol

0 5 10 15 20 25 30
0

20

40

60

80

100

Concurrent Clients

La
te

nc
y 

(m
s)

Mean Latency (ms) for Exec−bound Workload

 

 

Control
BorderPatrol

Figure 10: Latency overhead for three different micro-benchmark
workloads. Each graph shows the control (untraced web server)
as a solid line, and our implementation as a dotted line. The
workloads are disk-bound, network-bound, and exec/fork-bound.

loaded into the buffer cache, so this test measures the
overhead of a network-bound workload. As compared
with the disk-bound benchmark, it takes longer to reach
a plateau but does reach a plateau when Apache maxi-
mizes it’s ability to use the network. Across the entire
range of concurrency, the mean overhead was 7.65%.

The third benchmark in the lower left shows the over-
head for a workload consisting of one small file repeat-
edly fetched by concurrent clients. The file immediately
is loaded into the buffer cache and so the workload is
representative of system-call intense scenarios. Across
the entire range of concurrency, the mean overhead was
37.2%.

Finally, the lower right benchmark illustrates the over-
head when workloads involve fork and exec operations.
In this benchmark, clients requested a CGI written in
C. Perl CGI scripts had a slightly higher latency (due to
Perl initialization) and so were less directly indicative of
our implementation’s overhead. During fork, our imple-
mentation performs several initializations, such as con-
necting the child process to the logging daemon and al-
locating our bookkeeping data structures. Our wrapped
exec call performs additional initialization such as look-
ing up the real libc calls through dynamic linking, and
more extensive bookkeeping initialization. The mean
overhead for this benchmark was 307.7%.

In summary, our methodology generates the most
overhead for workloads that involve a large amount of
process creation because each time a new process is
created there some initialization routines must execute.
However, if the process is subsequently used to load data
from disk (such as a database) or communicate with
other processes (such as a web or application server) the
cost is quickly amortized. We will now turn to more

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Concurrent Clients

La
te

nc
y 

(m
s)

Mean latency for askeveryone.com

 

 

Control (Images)
BorderPatrol (Images)
Control (Pages)
BorderPatrol (Pages)

Figure 11: Latency and bandwidth overhead versus concurrent
clients for dearinter.net (Apache, TurboGears and PostgreSQL) un-
der a representative workload generated by replaying actual access
logs.

Case Study Events Log (MB) Time (s)
dearinter.net 603,962 21.63 46.29
Zeus 268,973 10.84 203.45

Figure 12: dearinter.net consumed approximately 470kb of log
space per second during our benchmark runs. Zeus consumed ap-
proximately significantly less – 53kb per second – as the commu-
nication channels had few attributes to be logged.

realistic workloads that illustrate this point.

7.2 Case Studies

We now revisit the case studies discussed in Section 6,
and analyze the overhead for a more realistic day-to-day
workload. In addition to the time-wise overhead that we
discuss below, executing the application with BorderPa-
trol accumulates log entries as summarized in Figure 7.1.
The logs are not particularly large and, of course, could
be deleted when their likely value has declined.
dearinter.net. The overhead of our implementation on
dearinter.net is shown in Figure 11. Here the workload
involves more computation and random disk access than
in the micro-benchmarks and so it quickly reaches ca-
pacity. Additionally, the workload includes both static
and dynamic content, so we show the overhead for each
in Figure 11. For the higher-latency dynamic pages, the
overhead of our implementation is 16.96%, whereas the
overhead is 8.4% for static images and JavaScript. The
variance profile was unchanged with our tracing method-
ology enabled.
Zeus. Figure 13 illustrates the latency overhead of our
implementation. We generated two workloads: dynamic
FastCGI pages to the left and static images on the right.
The mean overhead for dynamic pages is 2.0%, while
static images have a 96.4% overhead. Zeus is highly
tuned for serving static pages that fit in memory, so it
is unsurprising that BorderPatrol imposes a larger rel-
ative penalty. When serving dynamic content through

12



0 5 10 15 20
0

50

100

150

200

250

300

350

400
Mean latency for Zeus (Pages)

Concurrent Clients

La
te

nc
y 

(m
s)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
Mean latency for Zeus (Images)

Concurrent Clients

La
te

nc
y 

(m
s)

Figure 13: Latency and bandwidth overhead versus concurrent
clients for Zeus (closed-source high-performance event-driven web
server) under a workload of mixed images.

Application Component Traced Syscalls
Apache 1.3 and TurboGears No 324227
Apache 1.3 and TurboGears Yes 357248
PostgreSQL No 14582
PostgreSQL Yes 16194

Figure 14: BorderPatrol introduces a modest overhead in terms
of system calls. Apache and TurboGears execute 10% more system
when traced. PostgreSQL executes 11% more.

FastCGI, a workload more reminiscent of the systems we
are focused on, the overhead is lost in the noise. 100% er-
ror bars also show that BorderPatrol has not negatively
affected Zeus’ concurrency profile.

8 Related Work

To the best of our knowledge, no previous work has at-
tempted to determine request paths without application-
specific instrumentation or resorting to statistical mod-
els. Fundamentally unique to our work is the active iso-

lation of black-box inputs which allows us to precisely
observe request paths without materially affecting an
overall application’s ability multiplex requests. In this
section we discuss some previous approaches.
Instrumentation. The most accurate way to cor-
relate concurrent inputs with outputs is to leverage
application-specific knowledge and explicitly declare
which input corresponds to which output.

One such technique is Magpie [5] which seeks to pro-
vide precise traces of applications while minimizing the
burden on developers. Their approach is two-pronged.
First, they simplify instrumentation requirements by ap-
plying a general temporal join to logged events. A tem-
poral join allows a submodule to emit trace events with-
out knowledge of the global request that invoked it. At
entry or exit to the submodule, a second trace event is
recorded that matches the last module to the current
module. Magpie builds a path by joining these locally
significant attributes across modules to produce a path.
In addition, Magpie takes the pragmatic step of modify-
ing an application framework, Microsoft’s IIS and SQL
Server. Modules written within this framework require

no further modification.

TraceBack [4] uses program analysis to inject run-
time instrumentation into modules that enables a source-
statement reconstruction of program execution. From
that reconstruction, Traceback attempts to reconstruct
paths using techniques similar to [1].

A variety of commercially available products [17, 16,
15, 11] also use similar techniques. These products in-
strument application frameworks (such as WebSphere,
WebLogic, Oracle E-Business, and Siebel) with logging
calls to annotate the nodes of a causal path. The
products range from the simplistic 2-tier reconstructions
in [16] to many-tier reconstructions in [17, 15].

A shortcoming of instrumentation is a practical one:
all points in the application where inputs arrive must be
modified. In large-scale applications where components
span developer groups, are written in multiple languages,
and may lack source code, modifying the application (or
the frameworks) is not always possible. Further, devel-
opers may need to modify the application to make nec-
essary information available at the time it is needed for
logging, adding to their burden, though Magpie’s general
temporal join seeks to reduce this requirement.

Pervasive Frameworks. Alternatively, some ap-
proaches enforce infrastructure change. Specifically, the
interface of all modules is widened to include request
information. This work assumes that all participating
modules will be modified to implement the new inter-
face.

Pinpoint [7], whose focus is described further in below,
is designed specifically for J2EE web applications that
associate each request with exactly one thread. This di-
rect association allows any module to record the request
it is working on by examining a thread-local variable.
By contrast, the technique presented in this paper ob-
tains request paths automatically, allowing applications
to be written in almost any language, to use a variety of
execution models (multi-threaded/event-driven), and to
cross process and machine boundaries.

Causeway [2] advocates a pervasive change to applica-
tions and network protocols in order to bundle meta-data
alongside existing module communication. X-Trace [8]
is philosophically similar work that focuses on debugging
paths through many network layers. Each layer must be
modified to carry X-Trace meta-data that allows path
reconstruction. BorderPatrol focuses on tracing without
changing applications.

Probabilistic Correlation. An alternative approach
avoids augmenting the control- or data-flow by compro-
mising on some degree of precision: the correlation be-
tween inputs and outputs can be done statistically. HP
Labs has used this approach on network traffic [1], and
more recently [14] on a per-process granularity using li-
brary interposition. In both cases, causality is inferred
from the relative time-stamps of input arrivals and out-

13



put departures, an approach which is not always correct.
Whodunit [6] obtains transactional profiles that follow

request hand-offs that occur in shared memory, invisible
to BorderPatrol’s tracing mechanism, by observing and
analyzing module lock usage. Whodunit obtains aggre-
gate performance information, rather than precise traces
of individual requests.
Analysis From Causal Paths. Analysis of causal
paths is an emerging area of research. These analy-
ses assume causal paths can be obtained and perform
higher-order analysis such as failure detection or capac-
ity planning.

One such example is Pip [13], which has shown that
bugs can be found by specifying how causal paths flow
through a distributed system and dynamically detecting
deviations.

Another such project is Pinpoint [7], whose focuses is
on problem determination. Their goal is to find faulty
modules by recording the modules involved in handling
any particular request and applying data mining tech-
niques to the cases that can be categorized as failures.
As such, their contribution is mainly their technique for
finding faults once traces have been obtained. As men-
tioned above, they use a domain-specific data-flow tag-
ging approach rather than automatically determining re-
quest designation. BorderPatrol could be used to ease
the adoption of any of these tools.

9 Conclusions

The lesson of BorderPatrol is that traces can be obtained
for unmodified programs without sacrificing precision.
We present a model for understanding the behavior of
black-box distributed systems. Our model allows us to
safely employ a mechanism that isolates conflated in-
put events arriving at a module, without preventing the
application from multiplexing requests. Rather than re-
quiring systems to adopt new conventions to make re-
quest paths explicit, we are able to automatically extract
causal paths through active observation.

References
[1] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener,

Patrick Reynolds, and Athicha Muthitacharoen. Performance
debugging for distributed systems of black boxes. In Proc. of
the 19th ACM Symposium on Operating Systems Principles,
October 2003.

[2] Khaled Elmeleegy Anupam Chanda, Alan L. Cox, and Willy
Zwaenepoel. Causeway: Operating system support for con-
trolling and analyzing the execution of distributed programs.
In Proc. 10th Workshop on Hot Topics in Operating Systems
(HotOS-X). IEEE Computer Society Technical Committee on
Operating Systems, 2005.

[3] Apache HTTP server. http://httpd.apache.org/.

[4] Andrew Ayers, Richard Schooler, Chris Metcalf, Anant Agar-
wal, Junghwan Rhee, and Emmett Witchel. TraceBack: first

fault diagnosis by reconstruction of distributed control flow.
In PLDI ’05: Proceedings of the ACM SIGPLAN 2005 con-
ference on Programming language design and implementa-
tion, 2005.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard
Mortier. Using Magpie for request extraction and workload
modelling. In Proc. 6th Symposium on Operating Systems
Design and Implementation, December 2004.

[6] Anupam Chanda, Alan Cox, and Willy Zwaenepoel. Who-
dunit: Transactional profiling for multi-tier applications. In
Proc. of the 2nd European Conference on Computer Systems,
March 2007.

[7] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic internet
services. In Proceedings of the International Conference on
Dependable Systems and Networks (IPDS Track), 2002.

[8] X-Trace: A Pervasive Network Tracing Framework. Rodrigo
fonseca and george porter and randy h. katz and scott shenker
and ion stoica. In Proc. 4th USENIX/ACM Symposium on
Networked Systems Design and Implementation, April 2007.

[9] libevent. http://www.monkey.org/~provos/libevent.

[10] David Mazières. A toolkit for user-level file systems. In Pro-
ceedings of the General Track: 2001 USENIX Annual Tech-
nical Conference, 2001.

[11] MercuryTM. Diagnostics. http://www.mercury.com/us/

products/diagnostics/.

[12] Vivek Pai, Peter Druschel, and Willy Zwaenepoel. Flash: an
efficient and portable web server. In Proc. USENIX 1999
Annual Technical Conference, June 1999.

[13] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C.
Mogul, Mehul A. Shah, and Amin Vahdat. PIP: Detect-
ing the unexpected in distributed systems. In Proc. 3rd
USENIX/ACM Symposium on Networked Systems Design
and Implementation, May 2006.

[14] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Mar-
cos K. Aguilera, and Amin Vahdat. WAP5: Blackbox perfor-
mance debugging for widearea systems. In Proc. 15th Inter-
national World Wide Web Conference, May 2006.

[15] Quest Software R©. PerformaSure R©. http://www.quest.com/

performasure/.

[16] Symantec. Indepth. http://www.symantec.com/enterprise/

products/category.jsp?pcid=1021.

[17] Wily Technology. Introscope R©. http://www.wilytech.com/

solutions/products/Introscope.html.

[18] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-
Malek, J. Lopez, and G. Ganger. Stardust: Tracking activity
in a distributed storage system. In Proc. ACM SIGMETRICS
Conference, June 2006.

[19] TurboGears. http://www.turbogears.org/.

[20] Zeus web server. http://www.zeus.com/.

14


