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Abstract
Pyramidal Bayesian Networks are graphical models that possess a biologically plausible structure for modeling the
human visual cortex. Well known algorithms for exact inference on such networks are ∈ O(2n) which is intractable for
any data set of interesting size. In this paper, we discuss the implementation of the hierarchical expectation refinement
algorithm which breaks up the problem of learning on a large pyramid graph bayesian network into smaller tractable
component learning problems. This allows our model to run on a massively distributed parallel network.

1. Introduction
There are many methods currently used for recognizing objects in digital images. These range from SVD [9] to PCA
to convolution networks to support vector machines to nearest neighbor methods. [5] However, there are still many
shortcomings to all of these methods. Namely, none of these methods are able to recognize diverse objects in images
with the accuracy of a human counterpart.

Citing the results of neuro-physiological research on monkey’s brains, Lee and Mumford suggest that in order
for primates to recognize objects visually, messages are passed from the retina up the chain of the visual cortex and
back down to the retina in a data propagation loop. They used this information to argue that inference based on
particle filtering and belief propagation in Bayesian networks could be a good model of the visual recognition system
of the human brain. They propose a ”hierarchical Bayesian framework in the cortex.” This is a feed-forward and
feed-backwards Markov chain structure that is analogous to the hierarchical layers of the primate visual cortex. [6]

In ”Scalable Inference in Hierarchical Generative Models” [4], Dean takes the ideas of Lee and Mumford and
proposes a class of algorithms for performing inference on a pyramid graph Bayesian network. It is these algorithms
which we have implemented that we discuss in this paper.

2 Pyramid graph Bayesian Network (PBN)

2.1 Neurological Background
The primate visual cortex consists of separate visual areas known as V1, V2, V3, V4 and V5 (also known as MT, the
medial temporal). Pathways exist between all of these areas to allow for extensive message passing back and forth
between visual areas. Studies in neuroscience have shown that these areas form a hierarchy in which visual features
become more and more abstracted as the areas are traversed. For instance, V1 - the ”bottom” layer - is the primary
target of axons from the lateral geniculate nucleus (LGN), which receives input from retinal cells. Based on the retinal
input provided by the LGN, V1 can abstract visual features such as lines in various orientations. This information is
fed to V2, which is able to recognize more abstract features and feed it to higher visual areas. This correlates to the
nature of our PBN. [2].
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Figure 1: This is Dean’s representation of Lee and Mumford’s hierarchical Bayesian model. You can see how each
region of the visual cortex (v1, v2, v4) is dependent directly and most importantly by its direct neighbors. [4, 6]

2.2 Structure
A Bayesian network is a set of random variables and a joint probability distribution over those variables. A pyramid
graph Bayesian network is a standard Bayesian network with the property that the nodes are hierarchical belonging
to a level in the pyramid. Only the lowest (base) level is observed. Each level is a rectangular grid. Nodes can have
dependencies on axis aligned neighbors in the same level or adjacent nodes in the parent level. This type of network
works particularly well with image recognition. The bottom level corresponds to the pixels of an image. As we go up
the pyramid, the nodes represent larger regions of the image or in our case, larger receptive fields. [8, 3]

Imagine that we had a 100 × 100 pixel image and we wanted to build a 5 level PBN as follows:

level Size Receptive Field overlap number of nodes
1 100 × 100 - 0 10000
2 20 × 20 5 × 5 0 400
3 5 × 5 4 × 4 0 25
4 2 × 2 3 × 3 1 4
5 1 × 1 2 × 2 0 1

For a 100 × 100 pixel image which is the size of an image thumbnail, the network already has 14,030 nodes. Since
exact inference is an exponential endeavor on such a network, we have a major problem. In order to deal with this
problem, we describe a method for breaking up inference into smaller tractable problems.

3 Subnet Decomposition
After we have specified the pyramid Bayesian Network, we need to break it up into its components which we refer to
as Subnets. Each subnet in our model consists of two levels, an observed level i and a hidden level i + 1. They are
called hidden and observed because that is how they act as we propagate data from the input level to the output level
in our distributed network. The observed node is observed with respect to the data it receives from its child. In reality,
only the level 1 subnet’s inputs are truly observed.

Each subnet has a small Bayesian network (or two in the case of a variable-order subnet) composed of the nodes
in its hidden and observed levels. The connections between the nodes in each subnet are the same connections as the
connections between the corresponding nodes in the PBN. It is important to realize that nodes in the PBN will appear
in multiple locations within the distributed network. The hidden nodes of the subnets of level i will also be observed
nodes in the subnets of level i + 1.

The following is a BNF specification of a subnet in our hierarchical network.

START := SUBNET {
RANK{INTEGER}
TYPE { SUBNET TYPE }
LEVEL { INTEGER }
PROCESSOR { INTEGER }
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SUPERVISED { BOOLEAN }
INPUT { [ NODES ] }
* DOMAIN { [ NODES ] }

*OUTPUT { [ NODES ] }
*HIDDEN { [ NODES ] }

*OBSERVED { [ NODES ] }
*OBN DAG { ADJ SPECS }
*OBN SIZES { [ INTEGERS ] }
*DBN INTRA { ADJ SPECS }
*DBN INTER { ADJ SPECS }
*DBN SIZES { [ INTEGERS ] }
LOCATIONS { LOC SPECS }
MESSAGES { MSG SPECS }

}

LOC SPECS := LOC SPEC | LOC SPEC LOC SPECS
LOC SPEC := LOCATION(SUBNET,NODE,CLASS)

MSG SPECS := MSG SPEC | MSG SPEC MSG SPECS
MSG SPEC := CMD(SUBNET,SUBNET) { LOCATION(SUBNET,NODE,CLASS) }
ADJ SPECS := ADJ SPEC | ADJ SPEC ADJ SPECS

ADJ SPEC := NEIGHBORS(NODE, [ NODES ])
SUBNET := INTEGER

CLASS := EVIDENCE | LABEL | LAMBDA | OUTPUT | PI
SUBNET TYPE := BASE | ZERO ORDER | FIRST ORDER | VARIABLE ORDER

NODES := NODE | NODE, NODES
NODE := INTEGER

INTEGERS := INTEGER | INTEGER, INTEGERS
INTEGER := 1 | 2| 3| ...

BOOLEAN := 0 | 1
CMD := RECV | SEND

Definition of terms
SUBNET { Signifies the start of a new subnet block.
RANK{INTEGER} A unique number which can be used to identify the subnet in a distributed environment
TYPE { SUBNET TYPE } This specifies the type of the subnet which can be BASE, ZERO ORDER,

FIRST ORDER or VARIABLE ORDER
LEVEL { INTEGER } The level in the PBN. 1 signifies an input subnet and k (where k is the height of the

PBN) signifies an output subnet.
PROCESSOR { INTEGER } This is used to specify the processor which this subnet’s computation is to be executed

on.
SUPERVISED { BOOLEAN } Is this a supervised node? If so, we need to handle incoming label messages.
*INPUT { [ NODES ] } The local id of the input nodes in this subnet. These correspond to
*DOMAIN { [ NODES ] } The global id of the nodes in this subnet.
*OUTPUT { [ NODES ] } The output node of the subnet. This is typically only one node; the one which gives a

classification to our image.
HIDDEN { [ NODES ] } The list of hidden nodes for this subnet. A subnet receives PI messages corresponding

to its hidden nodes. Every PBN node except for the ones in the highest level (so called
output nodes) is a hidden node in exactly one subnet.

OBSERVED { [ NODES ] } The list of observed nodes for this subnet. Every PBN node is an observed node in at
least one subnet.
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*OBN DAG { ADJ SPECS } An adjacency matrix for zero-order and first-order subnets. All adjacency matrices are
stores as neighborhood lists. The form is a node followed by the list of its neighbors.
This applies to DBN INTRA and DBN INTER as well.

*OBN SIZES { [ INTEGERS ] The arity of the observation nodes.
*DBN INTRA { ADJ SPECS } An adjacency matrix for first-order and variable-order subnets. This matrix describe

the intra-slice adjacencies.
*DBN INTER { ADJ SPECS } An adjacency matrix for first-order and variable-order subnets. This matrix describes

the inter-slice adjacencies.
*DBN SIZES { [ INTEGERS ] } The arity of the dynamic nodes.
LOCATIONS { LOC SPECS } The location of the nodes and the type of messages associated with that node
MESSAGES { MSG SPECS } The messages that are sent and received from this subnet.
LOC SPEC LOCATION(SUBNET,NODE,CLASS) Specifies a node location where SUBNET is

the id of the subnet specified (for send messages, the subnet to send the message to
and for receive messages, the subnet that is receiving the message), the NODE is the
local id of the node the message is being sent to or received from and the CLASS is
the class of the message: (EVIDENCE, LABEL, LAMBDA, OUTPUT or PI)

ADJ SPEC NEIGHBORS(NODE, [ NODES ]) Specifies an adjacency matrix using a neighbors
list where NODE is the node we are referring to and NODES is a set of nodes that are
adjacent to NODE.

An example subnet specification:

SUBNET {
RANK { 5 }
TYPE { ZERO_ORDER }
LEVEL { 2 }
PROCESSOR { 1 }
SUPERVISED { 1 }
OUTPUT { [1] }
HIDDEN { [1] }
OBSERVED { [2,3,4,5] }
OBN_DAG {
NEIGHBORS(1,[2,3,4,5])
NEIGHBORS(2,[6])
NEIGHBORS(3,[7])
NEIGHBORS(4,[8])
NEIGHBORS(5,[9])

}
OBN_SIZES { [5,5,5,5,5,1,1,1,1] }
LOCATIONS {
LOCATION(5,1,LABEL)
LOCATION(5,2,LAMBDA)
LOCATION(5,3,LAMBDA)
LOCATION(5,4,LAMBDA)
LOCATION(5,5,LAMBDA)

}
MESSAGES {
RECV(5,6) { LOCATION(5,1,LABEL) }
RECV(5,1) { LOCATION(5,2,LAMBDA) }
RECV(5,2) { LOCATION(5,3,LAMBDA) }
RECV(5,3) { LOCATION(5,4,LAMBDA) }
RECV(5,4) { LOCATION(5,5,LAMBDA) }
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Figure 2: A drawing of a bayesian network of three levels. Level 1, the input level is 7*7. Level 2 is 3*3 and maps
onto level 1 with an overlap of 1. Level 3, the output node is 1*1.

SEND(5,1) { LOCATION(1,1,PI) }
SEND(5,2) { LOCATION(2,1,PI) }
SEND(5,3) { LOCATION(3,1,PI) }
SEND(5,4) { LOCATION(4,1,PI) }
SEND(5,6) { LOCATION(6,1,OUTPUT) }

}
}

4 Subnet Types
We use three different types of Subnets: zero-order, first-order and variable-order. The difference between the types
has to do with how they learn their internal parameters.

4.1 Zero Order
The zero-order subnet has a static internal Bayesian network. This means that it learns the properties of images one
by one. There is no sequence of images it can learn from.

4.2 First Order
The first-order subnet has a dynamic Bayesian network. When we learn the parameters of our network, it is based not
only on the current evidence but also of the evidence of the previous time slice. In order for this type of subnet to be
effective, data is fed to the network in sequences.

4.3 Variable Order
The variable-order subnet has both a static and dynamic Bayesian network. The static network is called an observation
network. It is used to model the observation data during the learning phase of our algorithm. This data is then passed
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Figure 3: The Bayesian networks for the different subnet types. (a) is a static Bayes net for zero-order. (b) is a dynamic
Bayes net for first-order. (c) is a dynamic Bayes net for variable-order.

into a Variable Length Markov Model. This model will generate a predictive suffix tree that we can use to generate
our dynamic Bayesian network. This network is now dependent on the evidence of the current slice of evidence and a
variable number of previous slices. [1]

5. Message Passing
Now that we have defined the basic structure of each subnet, the next step is for the subnets to communicate with each
other. As seen in the subnet specification BNF, subnets can pass messages of 5 different classes:

1. LAMBDA messages are passed upward from child Subnet to parent subnet. They contain a set of probabilistic
potentials over the possible values that a node can take on.

2. PI messages are passed downward from parent subnet to child subnet. They contain a set of probabilistic
potentials over the possible values that a node can take on.

3. EVIDENCE messages contain an integer which corresponds to the class of the evidence. It will typically be a
pixel intensity. They are passed to the bottom level subnets.
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Figure 4: This is Dean’s example of a pbn broken up into its subnets. [4]

Figure 5: This is the resulting subnet graph. [4]

4. LABEL are passed to the output node during the supervised learning period. It is later passed when testing to
see how the networked performed.

5. OUTPUT messages are sent from the Output subnet. They contain the best guess of the network as to what
object it was looking at.

5.1 Expected Messages
Each subnet is specified with certain messages it expects to receive. On each iteration of evidence being entered into
the model, each subnet waits until they receive all of their messages. Once they receive all of their messages, then
there next action is dependent on the state of the network. When we first begin training our network, we are in a
training phase. Before we can do any meaningful computation, we need to see a certain number of samples. There
is a threshold set of the number of cycles of messages a subnet needs to receive before it can start passing messages
further up the hierarchy. Before the threshold is met, the subnet

Our algorithm starts with Evidence messages being sent to the first-level subnets. During the learning phase of the
algorithm, subnets cannot continue to pass messages up the chain until they have seen a certain number of messages
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Figure 6: Dileep George’s data set of line drawings.

already. This threshold is set globally. Until that threshold is met, we simply store the evidence passed in and pass
uniform distributions back down in PI messages.

After we have seen enough messages to pass our threshold, the subnet calls a learn method to run the learning
method that corresponds to the type of subnet as discussed above. After this, the Subnet then computes likelihoods
over the specified nodes and passes LAMBDA messages up to its parents. The whole process then starts at the next
level. Now that this level is trained, when its parents pass their PI messages back down to this level’s subnets, this
level can now marginalize actual PI distributions to pass down to its children as opposed to uniform distributions. The
PI and LAMBDA messages are computed according to Pearl’s polytree algorithm. [?]

5.2 Implementation
The subnet and message passing code has been implemented using C++ and Intel’s Probabilistic Network Library. (
http://www.intel.com/technology/computing/pnl/ ) The code is available upon request.

In our current implementation, messages are passed serially to a dummy Message Router as a proof of concept.
All of the foundation is in place to convert this to a parallel architecture. We are collaborating with a group at Google
who will take our current architecture and run it on their large scaled distributed network. All of the messages passed
to a specific level and the computation that the subnet needs to perform after receiving the messages can be done in
parallel. Since out pyramid networks are relatively shallow, this should speed up performance tremendously.

6. Dataset
The initial goal for our project is to be able to effectively recognize sequences of images from Dileep George’s dataset
of line drawings consisting of 48 total images of either English characters or simple renderings of objects. Each image
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is a 32 x 32 pixel bitmap, with pixel values represented by one bit: 1 for white and 0 for black. The dataset is displayed
in Figure 6. As our distributed network is completed, we hope to be able to deal with much more complex datasets.

7. Summary and Conclusions
We have described an architecture for building a hierarchical pyramid graph network inspired by the primate visual
cortex for image recognition. The architecture that we currently have is a stepping stone to a distributed network
which will allow us to experiment with computer algorithms that will attempt to recognize patterns much like primates
do. Since modern pattern recognition algorithms in general do not have the power of primates, this is an exciting step
indeed.

Note
Excerpts of the introduction and neurological background sections were taken from Theresa Vu and my final project
for our CS0297 S10 Reading and Research Class for the Fall of 2005.
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