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Abstract environments as it leads to significant communication over-

Complex Event Detection (CED) is a key capability head that r'nay'deplete batteries or hog network pipes (espe-
for many monitoring applications such as intrusion detec- cially considering the fact 'Fhat while many complex events
tion, sensor-based activity/phenomenon tracking, and net &€ rare, some of the constituents elements may be generated
work/infrastructure monitoring.  Existing CED solutions  élatively frequently). .
commonly assume centralized availability and proactie pr Before we introduce our approach, we first make two ob-
cessing of all relevant events, and thus incur significastov ~ Servations. (ly.ocal storage Event sources usually have
head in distributed settings. In this paper, we present and Storage capabilities (albeit limited) that enable themeerk
evaluate efficient distributed CED techniques that reduce SOMe of their data for short-medium periods of time. Clearly
event detection and transmission costs through a combina-{he available storage capacity depends on the hardware plat
tion of proactive and retroactive processing strategiehe T~ fOrm, but even with tiny devices, storage is fast becoming a
key idea is to generate CED plans that leverage the temporal NON-1Ssue due to the advanc_es in flash- and _5|m|lar technolo-
and spatial windowing constraints associated with complex 9i€s. (2)Delay tolerance While timely detection of events
events to determine a multi-step acquisition order of con- IS ¢'itical, applications often have varying timelinesguie-
stituent events that minimizes expected communicatida cos MeNts. For example, fire or storm detection exhibits much
while meeting application-defined latency bounds for event higher tolerance to delay than network intrusion.

detection. We demonstrate the utility of the proposed tech- 1he key topic of this paper is an approach for
nigue using extensive experimentation on a variety of work- communication-efficient complex event detection thatileve

load scenarios. ages these two observations. Given a complex event, we
proactively monitor only a subset of the simpler elements as
1. Introduction the first step, and only if they occur, we then “retroactively

check for the existence of others at the appropriate sources
) . e N ! as the consequent step and iterate the algorithm. As such,
tection (CED) in a distributed monitoring environment that our hybrid proactive-reactive algorithm generates a multi
consists of potentially a large number of distributed event g njan of event acquisition where rarer events are checke
sources (such as hardware sensors or software receptorshetore more frequent events, thus in many cases eliminating

CED is becoming a fundamental capability in many do- e need for communicating the latter. To make this approach
mains including network and software infrastructure secu- work, sources use their local storage to store their events f

rity (e.g., denial of service attacks and intrusion de®li 5 re_determined duration of time in case they need to be
phenomenon and activity tracking (€.g., fire detectionysto  reroactively consulted. As each step in the algorithrointr
detection, tracking suspicious behavior in an airpor)isit  y,ces an additional delay, the algorithm also limits the num

often the case that such sophisticated (or “complex”) &/ent pa o steps based on application-specified per-eventdaten
cannot be detected by individual sources at a single time and, 5 ,gs.

location: complex events usually take place over a period of
time and region, thus require consolidation of many *
events from multiple sources.

The traditional means for CED (as exemplified in stream ¢ A simple but expressive set of event composition oper-
processing systems and traditional databases) is based on a  ators decorated with time and space constraints (includ-
centralized, push-based processing model. Sources ¢genera ing usage examples).
simple events, which are continually pushed to a base where e An extension that leverages temporal and spatial con-
the registered complex events are evaluated in the form of  straints (when available and applicable) to further re-
continuous queries or triggers. This exclusively pustetas duce event transmissions.

“proactive” model of processing is inefficient in distriledt e An extension that leverages shared sub-events that are

In this paper, we study the problem of complex event de-

" In addition to our basic CED algorithm, the other contri-
sifiple  putions of the paper are as follows:



common to multiple complex events.
e Extensive experimentation that characterizes and quan-

tifies the behavior and benefits of the algorithm and its I

extensions on a variety of workloads. [ g " Toplayer
The rest of the paper is structured as follows. An overview ~
of the system and its functionality is provided in Section 2. -} _ ————— R R
In Section 3, we present our event language together with us- /_ widdie Layer
age examples. Then, we describe our multi-step approach to —n — :
event detection that uses a cost model based on event occur- "=

—n . Bottom Layer

rence probabilities for estimating monitoring costs in -Sec _ . !
Figure 1. lllustrating Event Hierarchies: Complex events map

tion 4. We.prOVIde ex.perlme_ntal results in _Sectlon 5. Re- to simpler events whereas primitive events lie at the bottom of
lated work is covered in Section 6 and Section 7 concludes the hierarchy.

the paper.

solve certain problems that arise with timepoints. As an ex-
2. System Overview ample, consider a complex event defined as the sequence of

eventsa and b (see Figure 2). If timepoint based seman-

We present a complex event detection framework for dis- tjcs are used then we only know the endpoints of events and

tributed monitoring applications. Our framework uses a yoyld therefore detect the sequence complex event in Fig-
plan-based approach to complex event detection and stilize yre 2 since b happens after a. On the other hand, if interval
probabilistic models of event occurrences in finding nelwor - semantics are used then the start times indicate that b actu-
efficient event detection plans. Using this approach our sys 4y started before a occurred which prevents the deteofion
tem incurs low network cost during times of inactivity and is e complex event. This is the required semantics if causal
able to detect complex events quickly within user specified rg|ations between events are to be observed. This issue is

deadlines once they occur. further discussed in [7].

2.1 Complex Event Model L 2 3 o4 s ¢
Events are defined as activities of interest in a system [8]. I sequence

Detection of a person in a room, the firing of a cpu timer, and e /\

a denial of service attack in a network are example events b T . X

fror_n_v_arlous appllcatlo_n domalns_. All events signify C&_Tta_ . Figure 2. Point based semantics cause incorrect detection of the
activities, however their complexity degrees can be signifi complex eventa sequence b. With interval semantics, the com-
cantly different. For instance, the firing of a timer is insta  plex event is not detected since eveftstarts beforea occurs.
taneous and simple to detect whereas detection of a denial of ]
service attack is an involved process that requires computa 2.2 System Architecture
tion over many simpler events. Correspondingly, events are  The main components in our system are the information
categorized as complex and primitive forming a hierarchy of sources and the base node (see Figure 2.2). The informa-
events. tion sources, which in a broad sense we refer teaasors

At the base of the hierarchy are the primitive events, de- are the entry points of information into the system. For in-
picted bybottom layerevents in Figure 1. Primitive events stance, routers and firewalls in a network monitoring applic
are defined as atomic occurrences of interest in a system. Fotion, and a wireless temperature sensor in a disaster nronito
example, a temperature reading in a sensor network and deing application are example information sources. In additi
tection of a book in an RFID enabled library are examples to gathering information, sensors also take part in lowlleve
of primitive events. Complex events form the upper levels of processing of information. The processing done by sensors
the hierarchy. They are built on top of simpler events, eithe include the generation of primitive events, the simplestrep
primitive or complex, using our event specification languag ational units in the system. Finally, we assume that sensors
defined in section 3. Middle and top layers in Figure 1 rep- have data logging capabilities. These data logs provide us

resent the complex event layers. with the ability to reach historical data as well as curreatad
All events are assigned a time interval that indicates their which is crucial for retrospective event detection.
occurrence intervals. For primitive events, the time iveér Base station is the central component of the system that

represents a single timepoint where the event occurs. Forplans and executes the complex event detection. It geserate
complex events, the assigned intervals contain the time in-event detection plans based on the hierarchical strucfure o
tervals of all subevents. Hence, we use interval based se-complex events, chooses a plan to execute using the infor-
mantics instead of timepoints. The reason is that interval mation from cost model and coordinates the execution of the
semantics better represent the underlying structure @uad al chosen plan among the sensors. For this reason, the base
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Figure 3. Complex event detection framework: The base node plans and codinates the event detection using low network cost event
detection plans formed by utilizing event statistics. The event dettion model is an event detection graph generated from the given
event specifications. Information sources feed the system withimitive events and can operate both in pull and push based modes.

station is provided with the ability to manage the sensors.  All the basic information in the system comes from the
This ability is significant since sensors transmit the detc  available information sources. The types and capabildfes
events on demand from the base station. Therefore our sysinformation sources (referred to as sensors hereaftegrep
tem combines the pull and push paradigms of data collectionon the application environment and could range from wire-
to avoid the disadvantages of a push-based centralized sysless cameras in a visual sensor network to logs of a web
tem. We try to reduce the network traffic towards base station server. An output specification of each sensor type is nec-
by carefully choosing which sensors will transmit data base essary for the low level sensor information to be transfarme
on the information we have about frequency and constraintsinto primitive events. More specifically, sensor types need
(such as spatial) of event types. to be introduced into the system through our event language
Our event detection model is based on an event detec-with a name and a schema describing their attributes.
tion graph constructed from the user given event specifica- Every event type (primitive or complex) is associated
tions expressed in our language. For every event expressiorwith a set of attributes, forming its schema, in its declara-
we construct an event detection tree and these event treetion. Certain attributes such as location and event identi-
are then merged to form the event detection graph. Com-fier are required for all events. Those attributesentid,
mon events in different event trees, the shared events, ardoc, starttime endtime andnodeid, form a base schema
merged to form nodes with multiple parents. Nodes in an that must be extended by the schemas of every event type.
event detection graph are either operator nodes or priitiv eventid is an identifier assigned to every event instance. It
event nodes. All the non-leaf nodes are operator nodes whichcan be made unique for every event instance or can be setto a
execute the event language operators on their inputs. The in function of event attributes faimilar event instances to get
puts to operator nodes are events (either complex or prim-the same id. For example, in an RFID enabled library appli-
itive) coming from their child nodes and their outputs are cation a book might be detected by multiple RFID receivers
complex events. The leaf nodes in the graph are primitive at the same time. Such readings can be discarded if they are
event nodes. A primitive event node exists for each primi- assigned the same event identifiec attribute is for storing
tive event type and stores references to the instancestof thathe location of the eventstart time andendtime represent

primitive event type. the time interval of the event and are assigned by the sys-
tem based on the event operator semantics explained in Sec-
3. Complex Event Language tion 3.3. The last attributeyodeid is the id of the node that

generated the event. All base schema attributes will be im-

In this section, we describe a SQL-like declarative event plicitly defined unless they are explicitly specified. Figal
specification language that is simple yet expressive enougha reserved but nonmandatory attribute, namedtlatencyis
for a variety of monitoring applications we have considered used to specify the latency deadline for an event type. When
Tha language includes event operators to express event cora latency deadline is specified, the system will only conside
relations, similar to the specification of triggers in aetiv the plans satisfying the latency requirement.
database systems, and also contains other features such as o )
the time windows from stream processing systems. At this S-1 Primitive Event Declaration
point, we would like to emphasize that our main contribu- Primitive events, the simplest units in the event hierar-
tion is not the language itself but our efficient complex @ven chy, are formed by annotating sensor readings with metadata
detection techniques which operate based on the event specPrimitive event declarations specify the details of thadra
ifications. formation from sensor readings into primitive events. The



syntax for primitive event declaration is given in Figure 4.  locations or same time intervals. In order to support such
constraints, our system allows temporal, spatial, attetou
primitivename based and existential constraints to be specified in theavher
on sensorlist clause of a complex event specification.
schema attributelist _ _ _ _ We borrowed event operators from active database re-
Figure 4. Primitive events are defined using sensor information. search for easy specification of temporal correlations be-
Each primitive event is assigned a unique name using thetween subevents which could otherwise be expressed as a
namesymbol. The set of sensors used in a primitive event is set of attribute constraints on start and end times. Ourteven
listed in thesensorlist. Multiple sensors may be used in this operatorsand, or andseq are alln-ary operators. We also
list given that they lie on the same platform. We provide the extended the event operators with time windows for tempo-
pseudo-sensanodewhich enables access to context infor- ral constraint specification. The time window argumen,
mation such as the location of the sensor node and the curof an event operator specifies the maximum time between
rent value of node clockschemasection is used to express any two subevents of a complex event instance. Hence, all
the attributes of the primitive event type and the way they ar the subevents are separated by at mesime units. For-
assigned values. The attributes listed in the schema must benal semantics of our operators are provided below where we

a super set of the base schema. An example primitive eventdenote subevents withy, e, . .., e, and the start and end
expressing a person detection, is given in Figure 5 togethertimes of the output complex event with and,.
with the declaration of @ersondetectorsensor (such as a And operator: and(ey, ez, . .., en;w)
face detection algorithm running on a camera). The and operator outputs a complex event withh =
MiNieq1,.. ny (€i.start_time), ta = maxic(y,.. ny(ei.end_time)
sensor persondetector if maz; jeq1,..,.n)(€i.end_time — ej.end_time) <= w.
schema int id, double locx, double locy Sequence operator: seq(eq, ez, .. ., en;w)
primitive persondetected Thet siqtiopere;tor _outputs ;t'compflex evgnt dvzl.thl =
on persondetector as PD, node ei.start-time, t2 = en.cnd-time | @ ei.end- vme. <
schema eventid as hash(persadetected, node.id, node.time, PD.id), ei+v.starttime for i = 1,...,n — 1, (b) en.end-time —
loc as [ PD.locx, PD.locy ], e1.end_time < w. Hence,seqis a restricted form o&nd where
personid as PD.id overlapping is not allowed and events need to occur in order.
Figure 5. The person_detected primitive event is defined using Or operator: or(ei,ea,...,en)

the person_detector and node sensors. The or operator outputs a complex event whenever a subevent oc-

curs. t; andt, are set to start and end times of the subevent. Ob-
serve thabr operator does not take a window argument.

Complex events are specified on simpler subevents using Parametrized attribute-based constraints between events
the SQL-like template shown in Figure 6. Subevents of a and value-based comparison constraints can be specified in
complex event type, which can be previously specified com- the where clause as well. Spatial constraints may be spec-
plex or primitive events, are listed in ttsourcelist. The ified in the where clause usirlgc attribute of events and
source list may contain theodepseudo-sensor as well. spatial functions such adistance(loc x, loc y) Moreover,
spatial regions can be defined in the system and constraints
can then be expressed using them. For instance, a region R

3.2 Complex Event Declaration

complex name
on sourcelist

schema attribute list can be expressed as a bounding box, and then the location of
where constraintlist an event can be required to be in the region wathin R
Figure 6. Complex events are specified using simpler events on Nonexistence (negation) constraints can be specified us-
\t/)vehlﬁp%p;%t(ljal, temporal or attribute-based constraints can also ing the not exists (subquery$QL construct. Subquery is

] ] ] ] specified as aelect-from-wherelause wherérom section is
The attribute list contains the attributes of a complex seq tg specify the subevent list and constraints are sgecifi

event type which together form a super set of the basej, thewhereclause. We illustrate the use of the constraints
schema and also describes the way they are assigned valueﬁ.lmugh the unattended bag event given in Figure 7.
In this sense, the schema section specifies the transfomati

from subevents to complex events. Constraints of a COMpleX .ymyjex unattendechag

event type are specified in trmnstraintlist. We discuss
constraint specification in more detail in Section 3.3.

3.3 Constraint Specification

In most applications, users will be interested in complex

on BagDetected B, node
schema eventid as hash(unattendeldag, node.id, node.time, B.bagid),
loc as B.loc,
bagid as B.bagid
where not exists ( select * from persatetected P
where and(P,B;120) and distance(P.loc, B.lecB)

events which impose constraints on their subevents. For in-Figure 7. Unattended_bag complex event specifies a bag as unat-

stance, users may want to monitor events occurring in nearb

Yy

tended when no person is detected 3m around it for 120 seconds.



4. Complex Event Detection Framework is illustrated in Figure 8c where the notation — ey — e3
is used to denote this plan.

A lnalve apﬁr%ach to event detecnqn Woﬁld b‘; to con; The finite state machines we use for representing plans are
stantly send all the events to base station where they wou dnondeterministic(NFA) since they can have multiple active

be proz_:essed as soon as possible. However, this pUSh'b"’ls'e&ates at a time. Every active state corresponds to a partial
centralized system would create a permanent hot spot loca-yotaction of the complex event. For example, in stéite

tion at the base station even at moderate incoming data rates ¢ 1o plan given in Figure 8c tHere can be ac’tive instances
The (_jescnb.ed push-based data (;ollect|on paradigm is COMGt ¢, primitive events waiting foe, primitive events. Then
mon in cont!nuous query processing systems [10, 11] WhereWhen an instance of; is detected, in addition to the transi-
t_he global view of data is |mport_ant. However, event detec- tion to next state, a self transition will also occur so the¢a
tion systems only need the fraction of the data that gererate ;,qya e can match multiple instances:@f(self-transitions
events in the system. Therefore, continuous data collectio

. i . -~ are not shown in the figure). Unlike the always active initial
can generally be avoided without missing event detections state, intermediate states are active only as long as tin¢ eve
given that not all events cause complex events. windéw constraints allow.

We construct event detection plans which specify efficient
event detection strategies to avoid continuous data c¢itec (a) The naive plan: (b) Plan e; — e, e5:

The simplest event detection plan consists of a single step i (e1, 2, 3) (e1) (1, €, ¢3)
which all subevents are simultaneously monitored (i.e. the —>© @ @ 7 @
naive plan). More complex plans have uptthe number of S/ /

subevents) steps in each of which a subset of the subevents “ o

are monitored. The number of detection plans for a com- (c) Plane; — ez — e3:

plex event with n subevents (primitive) is exponential irsn a ) 2\ (ene) /o \leneses)
given by the recursive relatiofi(n) = Y7, (3)T(n — 1) @ \SJ \SJ @
where we defind’(0) to bel. % 4 within 4 within

We design a cost model based on event occurrence prob- wofer wofere o
abilities to calculate the expected costs of event detectio Figure 8. Event detection plans represented as finite state ma-

. &hlnes (FSMs)

plans. We define the expected cost of a plan as the expecte ' _ _
number of events it sends to base per time unit. For exam- _In Section 4.1.1, we describe the plan generation process
ple, the cost of the naive plan for detecting the complexeven With the goal of optimizing the overall event detection cost
and, e») would be the sum of unit costs ef ande,. On First, operator wise plan generation is explained wheré eac
the other hand, a two step plan, first monitoringand look- operator forms a set of plans with different cost and latency
ing up e, whene, occurs, could cost less but would incur ~ characteristics as no single plan can be chosen that wift gua
higher latency. Hence, one of the main goals of our system antee global minimum cost in advance (this will be explained
is to try to find low network cost event detection plans meet- in more detail in the next section). Then, we describe how
ing latency deadlines. these plans are used in the global optimization of all event

Latency of an event detection represents the time betweenPPerators forming the event detection graph.
the occurrence of the event and its detection by the system. 4
Event detection latencies are based on network latenaies. | ] )
our calculations, we do not consider the processing time or N generating the plans for each operator, enumeration of
cost at the base station. However, since our system desreasd€ Plan space is not a viable option since its size is exponen
the number of events sent to base, both the processing timdial in the number of subevents as mentioned before. To ad-

g, e3 within
w of e;

.1.1 Plan Generation

and cost should be reduced as well. dress this issue we have come up with the following heuris-
tics that together form a representative subset of all plans
4.1 Event Detection Plans with distinct cost and latency characteristics:

Forward Stepwise Plan Generation: This heuristic

Event detection plans specify monitoring orders for the starts with the minimum latency plan (the naive plan with the
subevents of complex events. We represent the plans withminimum latency plan selected for each complex subevent)
finite state machines in our system. Consider the complexand repeatedly alters it to form lower cost plans until laten
eventande, es, es; w) whereey, es, e3 are primitive events  constraint is exceeded or no more alterations are posgible.
andw is the window size. State machines of the plans for each iteration, the current plan is transformed into a lower
this complex event have at most= 3 states except the final  cost plan either by moving a subevent detection to a later
state in each of which a subset of primitive events is moni- state or changing the plan of a subevent with a cheaper plan.
tored. One state machine of each size is given in Figure 8. Backward Stepwise Plan Generation: This heuristic
For instance, th8-step monitoring plan: (1) continuously starts by finding the minimum cost plan (an n-step plan with
monitorey, (2) one; lookupes, (3) one; ande; lookupes”, the minimum cost plans selected for each complex subevent).



It can be found in a greedy way when all subevents are requesting different plans, then it chooses the plan wigh th
primitive, otherwise a nonexact greedy solution which or- minimum latency.
ders the subevents in increasingst x probability order The latency deadlines for complex events originate from
can be used. At each iteration the plan is repeatedly trans-two different sources. First, as mentioned before we may
formed into lower latency plans either by moving an eventto have user specified, explicit latency deadlines. Secord, la
an earlier state or changing the plan of an event with a lower tency deadlines can also stem from limited data logging ca-
latency plan until no more alterations are possible. pabilities. More specifically, due to restricted storagmso
Observe that the first heuristic starts with a single state information sources may only be able to store the instances
FSM and extends it in successive iterations whereas the secof an event type for a limited time. Therefore, any plan that
ond one shrinks down the initial n-state FSM. Moreover, relies on storage of events for longer periods are not goana b
both heuristics choose the move with the highest costdgten useful. Our system considers both of the described latency
gain at each iteration and both end in a finite number of it- requirements and uses the most strict one for each complex
erations since every move results in a better plan (lowedr cos event.
for the first one and lower latency for the second one). While )
the first heuristic aims to form low latency plans with reason 4-1.2 Execution of Plans
able costs, the other one tries to form low cost plans meeting  Once the selection of plans is completed, the set of prim-
latency requirements. itive events to monitor are identified and activated. When
All the plans are then merged into a feasible (i.e. meet- a primitive event arrives to the base station, it is directed
ing latency requirements) plan set. During the merge only to the corresponding primitive event node. The primitive
pareto optimalplans are kept. Pareto optimal plans are the event node stores the event and then forwards a pointer of
plans for which there exist no other plan we can use to ei- the event to its active parents. An active parent is one which
ther reduce the cost or latency without increasing the other has expressed interest in the time interval the event arrive
Moreover, only a limited number of pareto optimal plans can in. The complex event detection proceeds similarly in the
be stored by the operator node for use in the global optimiza- higher level nodes. Each node acts according to its plan upon
tion process (explained later in this section). In such &cas receiving events either by activating subevents or by detec
the choice is made so that plans with low latency, low cost ing a complex event and passing it along to its parents.
and low latency-cost (a linear combination of the two fac-
tors) are equally represented. 4.1.3 Modeling Event Detection Plans
We described the plan generation process for the cases In this section, we explain the cost and latency charac-
where all the subevents of an operator node are primitive teristics of event detection plans. In our cost model, we use
events. However, when complex subevents exist, the planprobabilistic models of event occurrences to derive exqabct
generation becomes a hierarchical process where the plansosts of event detection plans. Our approach to cost model-
for the upper level nodes are built on the plans of the lower ing is not strictly tied to any particular probability ditm-
level nodes. Hence, plan generation is a bottom-up procesgion. Here, we derive the cost estimations for two different
in which the plans of lower level nodes are generated first. probability models:Poissonand Bernoulli distributions. In
As mentioned before, choosing only the minimum latency both cases we assume that events occur independently.
or cost plan at each node does not guarantee overall optimal Poisson distributions are widely used in modeling discrete
solutions since (a) a lower cost but higher latency plan may occurrences of events such as the receipt of a web request and
be useful to reduce overall cost (e.g. when there are otherarrival of a network packet. A Poisson distribution is char-
events with higher latency plans such that the overall iaten acterized by a single parametethat expresses the average
is not increased when a higher latency plan is used for thisnumber of events occurring in a given time interval. In our
event) and (b) a lower latency but higher cost plan may re- case, we define to be the rate of occurrence for an event
duce overall cost (because an event with a high cost plan maytype, i.e. the average number of occurrences of an event type
then switch to a lower cost plan with higher latency). Fosthi per time unit. In addition, we assume that the number of
reason, each node creates a set of plans with differenthaten events in disjoint time intervals are independent. Undes¢h
and cost characteristics in the plan generation process: Ho conditions, the event occurrences follows a Poisson psoces
ever, only a subset of these plans can be passed on to uppewith rateA. On the other hand, when modeling an event type
level nodes due to computational complexity. The size af thi with the Bernoulli distribution, we assume that event oscur
subset is a parameter trading computation with the exploredindependently with probability at every time step.
plan space size. This process continues up to the root nodes, As described before, a complex event detection plan con-
each of which then selects the minimum cost plan meeting sists of a set of states each of which corresponds to moni-
its latency requirements. This in turn finalizes the genera- toring a set of events. The cost of a plan is the sum of the
tion of the event detection plans to be used by all nodes in costs of its states weighted by state reachability probabil
a top-down manner. Finally, if a node has multiple parents ties. Cost of a state depends on the cost of the subevents



in that state. We define the latency of an event detection our calculations (they will not change the result when com-
plan to be the maximum latency it could have so that we can paring the cost of plans). For ease of presentation, we omit
guarantee latency deadlines. For this reason, we associatéhem in the rest of the paper as well.

each event type with a latency value that represents the max- And Operator. Here we describe the cost estima-
imum latency its instances can have. Then, the latency oftion for the n-aryand operator. Given the complex event
an event detection plan can be derived using the latencies ofandfy, e, . . ., ¢,,) with window sizeWw, and a detection plan
the subevents. Here, we consider identical latencies for al with m + 1 statesS; through.S,, and the final staté&,,, 1,
event types for simplicity. However, different latency wes we show the cost derivation using reachability probabditi
can be handled by the system as well. We will consider the both for Poisson and Bernoulli distributions below. Forreve
expected cost and latency of monitoring the complex event e; we represent the Poisson process parameter\witiand
and(, ez, e3) for describing the process in more detail. the Bernoulli parameter with, .

We definee;, es andes to be primitive events with\¢ The cost forand operator with n operands is given
latency and use Poisson processes with rates \., and by Y7, Ps, * costs, Where Pg, is the state reachabil-
Ae; respectively to model the events. When the naive plan ity probability for state S; and costs, represents the
is used, all subevents will be monitored at all times. So the cost of monitoring subevents of staf for a period of
cost will be the sum of the expected occurrence rates of thelength 21¥. In the case that all subevents are primitive
subeventszl 1 Ae;- The latency of the naive plan, which  costg, = >e,es; 2W A, when Poisson processes are used
is simply the maX|mum latency among its subeventsyis andcosts, = Ze cs, QWpe for Bernoulli distributions.

The cost derivation for the three step plan— e; — e, Ps,, the reachability probability fos;, is equal to the oc-
given in Figure 8c, is more complex. We define the reach- cyrrence probability of the partial complex event that esus
ability probability of a state to be the probability of dettec  the transition to stat&;. For this partial complex event to
ing the partial complex event that activates the state. For occur in this time step, all its constituent events need to oc
instance, the partial complex event which makes state  cyr within the last W time units with the last one occurring in
active ise;. State reachability probabilities are derived using this time step (otherwise the event would have occurred be-
interarrival distributions of events. When using a Poisson fore). Then,Ps, is 1 wheni is 1 and form > i > 1 is given

process with parametex, the interarrival time is exponen-  for Poisson processes (i) and Bernoulli distributionsti)
tially distributed with the same parameter. Hence, the prob

. “Ae, e
ability of waiting time for the first occurrence of aneventto  ® > (1—e ") J[ (1 -e™)

be greater thanis given bye~**. On the other hand, when es€UL ) Sk . E‘fof s

using the Bernoulli distribution, the interarrival timeave k=

geometric distribution. The reachability probability foi- @ > vy, I A= -pe)™)

tial state is 1 since it is always active and the probabitity f ej €U} Sk 7y

final state is not required for cost estimation. Using the in- Ui S

terarrival distributions to derive reachability probitigls the Under the identical latency assumption, the latency of a

cost of the three step plan can be derived as: plan forand operator is defined by the number of the states

in the plan (except the final state). Hence, the latency fr th

costfore; — ea — e3 = Ae; 4 (1 — e 2e1)2W Ay + eventandey, es, . . ., €,) can range from\¢ to nAt.

(1—ePer)(1— e Whea) 4 (1 — e Ne2)(1— e~ WA ))2W e, Sequence Operator. We can consider the same set of

plans forsequenceperator as well. However, sequence has
the additional constraint that events have to occur in a spe-
’ cific order and must not overlap. Therefore, the time interva
to monitor a subevent depends on the occurrence times of
other subevents and is at m@gttime units.

In the cost equation above and for the rest of the paper,
we assume the probability of more than one events to occur
in the same time step to be negligible. However, if that is
not true, then the formula can be modified for the other case.

Moreover, as more events are required to occur in a single o éon % .. o
time step, the occurrence probability will quickly dimihis 1 1 1 1 1
which means the terms with many concurrent events can be X, X,

discarded as they will have negligible values.

The plan is assignedAt latency since this is the maxi-
mum latency it exhibits (when the events occur in the order  Expected cost for monitoring the complex event
es, ea,e1 Of ea,e3,e1). Actually, for the exact latency we  seq(eq,ea, ..., e,) with window sizeW using a plan with
need to include the latency of sending pull requests fortsven m + 1 states has the same fotm); | Ps, * costsg, .

e andes in the equation. However, the pull requests will Let seq(ep,,€py,---,€p,) With t < nandp; < py <
have the samét¢ latency and since we assumed all events ... < p; be the partial complex event consisting of the events
to have the same latency it is not required to include them in before states;, i.e. Uj_" Sy = {ep,, €pys- - -, €p, }. Then

Figure 9. subevents forseq(ep, , €pys - - -5 €p;)



1. Pg,, the reachability probability fof;, is equal to de-  can be any arbitrary plan discussed éord operator. Same
tecting seq(ep, ; €p,, - - -, €p,) @t @ time point. For this  set of detection plans can be considered for negated events
complex event to occur subevents has to be detected inas well. However, the execution has to be changed in a way
sequence as in Figure 9 within W time units. We define that the absence of an event is nhow what is aimed for. The

the random variable&l. , - to be the time betwees, cost estimations discussed fand operator can be applied
and the occurrence @fp beforee,,,, (see Figure 9). here by changing the occurrence probabilities with nonoc-
Then, X, 0 is exponentially distributed with.  if we currence probabilities.
are using Poisson processes, or has geometrlc distribu- Or Operator. As discussed beforey operator generates
tion with Pe,, when using Bernoulli distributions. a complex event for every event instance it receives. Hence,
the only detection plan fasr operator is thaaiveplan. The
(i) For the Poisson process case, we haye = (1 - cost of the naive plan is the sum of the costs of the subevents
e Mer)(1- R(W)) where R(W) = P(S!2) Xe,, > and its latency is the highest latency among the subevents.

w). Closed form expressions for sums of expo-
nential random variables are studied in [9]. In the 4.2 Optimizing for Shared Subevents
case all exponential variables have distinct param-

) The hierarchical nature of complex event specification
etersR(W) has the following form:

may introduce common subevents across complex events.

For example, in a network monitoring application we could

have thesynevent indicating the arrival of a TC$y/npacket.

Various complex events could then be specified usingyhe

. S event such as syn-flood (sending syn packets without match-

(i) Forthe Bernoulli distributiorPs, = p,, 1-E(W))  ing acks to create half-open connections for overwhelming
where R(W) is defined on a sum of geometric  {he receiver), a successfull TCP session and another event
random variables. In this case, there is no para- getecting port scans where the attacker looks for open.ports

t—1
_ —Xe, W
R(W) = Z;:i Aje Pj Where A] = H ﬁ.

)‘epk

metric distribution forR (1) unless the parame- The overall goal of shared optimization is to find the set
ters of geometric random variables are identical. of plans for which the total cost of monitoring all complex
Hence, it has to be numerically calculated. events is minimized. Yet the base algorithm presented in

Section 4.1.1 does not consider sharing between event ex-
pressions as it runs independently for each expressiore, Her
we modify our plan generation algorithm for (1) calculat-
ing the overall event detection cost correctly when shared
subevents exist and (2) choosing plans that facilitateirstpar

to further reduce cost when available and applicable.

2. Any evente;, of stateS; should either occur (a) be-
tweene,,, ande,,, ., for some j or (b) before,, or af-
ter e,, depending on the order iseg(er, ez, ..., ep).

In casea, we need to monitoe;, betweene,. and
€p; 4, fOT Xepj time units (see Figure 9). For case

t.’ we nged to monitor the event for — 3251 X, First, we need to identify the expected amount of sharing
time units. In the cost estimation, we use the eX- 4 \ill happen on a shared node. However, the degree of
pectation valuesz[x., |37,7% Xe,, < W] andw — sharing depends on the plans selected by the ancestor nodes
B[S0 Xep, | 202 ﬁXepk < w] for estimatingL., , the of the shared node. Since our base algorithm proceeds in a
momtormg interval. Themosts, ISy, s LeLkA bottom-up fashion, we cannot identify the amount of sharing
unless the algorithm completes and the plans for all nodes
The latency of a plan for sequence depends on the latencyare selected. Below, we present an iterative version of our

€ipg, "

of the last event(,) and the events in later states (aftg) algorithm to address these problems (for simplicity, medifi

of the plan. If the complex evenrtg(eq,ea, ..., e,) is being algorithm is presented for the case of a single shared comple
monitored with an m-step plan where t}i¢ step contains  event):

en, then its latency i$m — j + 1) At. This latency difference 1. run the base plan generation algorithm

betweenand and sequenc®perators exists because unlike
the sequencewith and operator any of the subevents can be
the last event that causes the occurrence.

Negation Operator. In our system, negation can be used
on the primitive events insidend andseqoperators. Here,
we consider the plans for complex events, with negated
terms, specified usingnd operator over primitive events. 4. if overall costis reduced then goto 2 else exit with the previous
The plans we consider for such events resemble a filtering ~ Plans
approach. First, we detect the partial complex event ctnsis After the first step, every node will have selected its plan
ing of non-negated events only. When that complex event but the total cost for the shared node will be incorrect. In
is detected, we monitor the negated events. The detectionthe second step, we fix the overall cost by taking sharing into
plan for the complex event defined by non-negated eventsaccount. This is possible because we can find the amount of

2. find the expected amount of sharing with the current plan se-
lections and recalculate the current plan costs for ancestors of
the shared node

3. rerun the base algorithm starting at each parent of shared node
utilizing the sharing probabilities



sharing after all nodes have selected their plans. We assuménany query processing systems. The main approach, which
that parents of the shared node function independently andwe also adapt, has been to keep histograms for attributes.
find the probability that they will monitor the shared event Histograms provide the information for deriving the sdlect

in overlapping intervals. Third step runs the base algorith ity probabilities of attribute-based constraints which ves
starting at each shared node parent. However, in this executhen use to derive the event occurrence probabilities. More
tion of the algorithm, the sharing probabilities of genedat  over, value based attribute constraints can be pushed adown t
plans are calculated and utilized as well. Hence, ancestorsinformation sources further reducing the number of tratsmi
of shared node may now change their plans since increaseded events. Parametrized attribute constraints betwesmsv
sharing may further reduce plan costs. Moreover, the plancan also be pushed down whenever one of the events is mon-
changes made in third step are guaranteed to increase théored earlier than the other one.

amount of sharing because (1) Cost of the shared node can

only decrease due to sharing and (2) Ancestor nodes can onlys Experiments

reduce their costs at each step if they choose plans which

monitor the shared node in earlier states (and monitoriag th  In this section, we analyze the performance of our sys-
shared node earlier means it will be shared more). The algo-tem and investigate the effects of various parameters gtrou

rithm reiterates as long as the overall cost is reduced. a set of experiments. We have implemented the base node
functionality and generated specific event adapters for use
4.3 Constraint Optimization in experiments. Our experiments involve both synthetic and

In this section, we describe how the spatial and attribute- '€@! data sets. Unless stated otherwdggfian distribution
based constraints affect the occurrence probabilities of @S Peen used in synthetic data generation. Real data set is
events and explain the additional optimizations we have a collection of network traffic logs obtained from Planetflow

made to the plan selection and execution processes for fur-Web site [12].
ther reducing cost using these constraints. First, we déscu
the effects of spatial constraints on the plan generation pr
cess. Thespatial constraints we consider are defined in On window size and detection latencyWe explore the
terms of regional units. The space is divided into regions effects of window size and latency deadline on the event
such that events in a region occur independently from eventsdetection cost in this experiment. We defined the complex
in other regions. The division of space into such independen eventsande, es, e3) andseqéy, eo, es) Whereey, e; andes
regions is typical for some applications. For instance,sg-a  are primitive events. Using Zipfian distribution with skew
curity application we could consider the rooms of a building 0.255 (other skew values are used in the varying skewness
as independent regions. In addition, it is also easy forsuser experiment) we generated event streams for these primitive
to specify spatial constraints (by combining smaller regjo  types. Then, for different window values and latency dead-
once regional units are provided. lines of both complex events we ran our event detection al-
When the spatial constraints are specified in the describedgorithm on the generated streams. The event detection costs
way, their effect on event occurrence probabilities cambe i  expressed as percentage of the primitive events sent tp base
corporated in our system with minor changes. First, we mod- are provided in Figures 10(a) and 10(b).
ify our model to keep event occurrence statistics per each in ~ Both figures show that as the allowed latency for event de-
dependent region of an event type. Then, when a spatial con4ection increases (frommto 3 in this case) the event detection
straint on a complex event is given, we only need to combine cost reduces. The lines labeledtput which show the per-
the information from corresponding regions to derive the as centage of primitive events output as parts of complex eyent
sociated event occurrence probability. For example, if we serve as a lower bound on cost. Becassguenceperator
have Poisson processes with parametgrand )\, for two does not need to monitor all events unless the first events of
regions, then the Poisson process associated with the comsequence occur, it can reduce cost even under hard latency
bined region has the parameter + )\,. Hence, by com-  constraints. Finally, the event detection cost increasds w
bining Poisson processes we can easily construct the Poiswindow size since larger window size means increased event
son process for any arbitrary combination of independent re occurrence probability.
gions. However, this is only possible because the regions Increasing the number of subevents:In this experi-
are independent, otherwise we would have to derive joint ment, we investigate the cost performance under increasing
distributions. Hence, the spatial constraints alter trenev  number of subevents through a complex event specified with
detection process, such that different plans may be used fora singleand operator. We randomly generated streams using
monitoring different spatial regions if doing so reduces th similar event frequencies for all event types (to rule oet th
overall cost. A related experiment is available in the ekper effect of frequency in the test). In Figure 10(c), we can see
ments section. that (1) increasing the number of operands tends to decrease
Attribute-based constraints have been considered in the number of detected complex events and (2) greater num-

5.1 Experiments with Synthetic Data Sets
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Figure 10. Operator wise experiments and complex event detection performmece

ber of operands means we have a wider latency spectrumoperator count is shown in Figure 10(f). As the number of

(therefore a larger plan space) to reduce cost. operators in an expression is increased, generally itsroccu
Workloads with varying skewness: In this experiment, rence probability decreases. Moreover, for similar eveat o
we use the complex eveand, es, e3) with a fixed win- currence probabilities the relative cost of event deteciso

dow parameter under workloads with varying skewness. also similar irrespective of the operator number.
Each workload stream is generated with a Zipfian distribu-  Shared subeventsTo test the shared event optimization,
tion and has around the same number of events. In Fig-we specified two complex events with a common subevent
ure 10(d), we see that in low skew streams a greater num-tree and compared the performance with and without shared
ber of complex events is detected and the cost is thereforepptimization. In the experiment, we varied the frequency of
higher. Increasing the skew generates event types with lowthe complex event that corresponds to the shared subtree. In
frequencies which our system uses to reduce the cost. Figure 11(a), we see that when the frequency of the shared
Negated subeventsTo explore the cost performance for  partis low, both with and without sharing the system experi-
complex events involving negated subevents, we performedences similar cost since the shared part is chosen to be moni-
an experiment using thand, es, e3) event in which we tored earlier in both cases. When the frequency of the shared
varied the number of negated subevents. In Figure 10(e),part is the same with or slightly higher than other parts,-non
we can see that while the costs for the complex eventsshared parts are monitored earlier without sharing optimiz
with single and no negated terms are similar, the cost whention. In this case, shared optimization reduces cost by moni
two subevents are negated is high even though less comioring the shared part first. Finally, when shared part has ve
plex events are detected. This is mainly because (1) mon-high frequency, non-shared parts are monitored first in both
itoring of negated and non-negated events are not inter-cases. Even in this case shared optimization experienses le
leaved, that is we monitor the negated subevents after thecost, because it better estimates shared subevent costs whi
non-negated subevents occur (see Section 4.1.3) and (2) altan cause better execution plans to be selected in some cases
the detected non-negated subevents are discarded when &ince we are using heuristics for plan generation). When we
negated subevent that prevents them from forming a com-used exhaustive plan generation, both with and without shar
plex event is detected. ing the algorithm chose the exact same plans for this case.

Increasing the number of operators: In this exper- Spatial constraints: In this experiment, we show the
iment, we consider the cost performance with increasing utilization of spatial constraints in reducing detectia@sts
number of operators. We varied the number of operators through the complex eveand(;, es) with constraintel.loc
used in complex events from 1 to 7 and for each operator = e2.loc We assume that there are two regions X and Y
count we generated 10 complex events based on event comwith event occurrence raté{1 = 3\, /\3’1 =T\, /\é = 6A
position rules. The average event detection cost for eachand)@’2 = 4X. When localized information is available, i.e.
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Figure 11. Shared optimization and spatial constraints

frequencies of events are known for each region, the cost issum(conns} C group by cluster Then, it isanded with the
lowest (see Figure 11(b)). In this case, the system monitorslocally diverse cluster event which acts as a prerequisite f
ey inregion X anck, inregion Y. Then whenm, is detected in the diverse cluster event and helps reduce monitoring cost.
X (orezinY), es is monitored in X (ore; in Y). When local- The results are given in Figure 12(b) for= 250, 500, 1000,

ized information is not available, but the global seletyivif and2000.
the spatial constraint is known (global info in Figure 1)(b) Clusters with multiple active nodes:
eithere; or e, is monitored (both have the same total fre- We define a node (outside of Planetlab) todotiveif its

qguency) in all regions. Finally, when no spatial constraint aggregate average network transfer rate to Planetlab eodes
information is available, the system expects that the com- more tharil" in the last minute. In this complex event we are
plex event will occur every time step and therefore chooses interested in/8 clusters with more than one active nodes in

to execute the naive plan. the last minute. Similar to the diverse cluster complex gven
_ _ we first defined docally active nodeevent which monitors
5.2 Experiments with Planetlab Data Set a node with an average network speed greater than;

The Planetlab data set we have used consists of 5 hourd® @ Planetlab node. Then the active node complex event is
of network logs for 49 Planetlab nodes we have obtained SPecified asum(speed)- T group by nodep and isanded
from [12]. The network logs provide aggregated informa- with the I_ocally active noqle even_twhlch_acts as apre_r_emusu
tion on network connections between Planetlab nodes andevent. Finally, clusters with multiple active nodes is sped
other nodes in the Internet. The provided information in- @Scount(active node)- 1 group by cluster The results are
cludes connection start/end times, amount of generatéd tra Provided in Figure 12(c) fof” = 500, 1000, and2000 KBps.
fic and used network protocol. We have experimented with
various complex events most of which can easily be found 6. Related Work
on many network monitoring applications. Here, we present  In continuous query processing systems such as
the results for three of the complex events. TinyDB [1] for wireless sensor networks, and Borealis [10]

Change of overall network load: We define a Planetlab  for stream processing applications queries are expected to
node addle if its average network transfer speed (incoming constantly produce results. Push based data transfegy eith
and outgoing total) in the last minute is less tH23KBps to a fixed node or to an arbitrary location in a decentralized
and asactiveif the average speed is greater than a thresh- structure, is characteristic of such continuous querygssc
old T. Given that, the complex event monitors for an overall ing systems. On the other hand, event detection systems are
network load change from a situation where more than half expected to be silent as long as no events of interest occur.
of all nodes are idle to more than half being active within The aim in event systems is not continuous monitoring of the
a specified time interval. The complex event is defined as data, but is the detection of events of interest.

seq(count(idle)> %50 of all nodes, count(active} %50 In the active database community, ECA (event-condition-
of all nodes; W=30min.) The results are provided in Fig- action) rules have been studied for building triggers [6].
ure 12(a) forT’ = 250, 500, and1250 KBps. Triggers offer the event detection functionality through

Diverse clusters: We define a cluster to be a set of ma- which database applications can subscribe to in-database
chines from the samg8 IP class. A diverse cluster is then events, e.g. the insertion of a tuple. However, most in-
defined as a cluster with more théhconnections to Planet- database events are simple whereas more complex events
lab nodes in total. To specify this complex event we first de- could be defined in the environments we consider. Many
fine alocally diverse clusteevent which monitors the event active database systems such as Samos [2], Ode Active
that a Planetlab node has more t@@ﬁfg connections with Database [3], and Sentinel [4] have been produced as the re-
a cluster. The diverse cluster complex event is specified assults of the studies in the active database area. Most sgstem
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Figure 12. Experiments with Planetlab data set

provide their own event languages. These languages formOur immediate future work will explore probabilistic plan-
the base of the event language in our system. However, ouming for sensor network applications and augmenting manual
language has additional features such as spatial and tampor event specifications with learning-based techniques.
constructs which are important for the systems we consider.
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