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Abstract
Complex Event Detection (CED) is a key capability

for many monitoring applications such as intrusion detec-
tion, sensor-based activity/phenomenon tracking, and net-
work/infrastructure monitoring. Existing CED solutions
commonly assume centralized availability and proactive pro-
cessing of all relevant events, and thus incur significant over-
head in distributed settings. In this paper, we present and
evaluate efficient distributed CED techniques that reduce
event detection and transmission costs through a combina-
tion of proactive and retroactive processing strategies. The
key idea is to generate CED plans that leverage the temporal
and spatial windowing constraints associated with complex
events to determine a multi-step acquisition order of con-
stituent events that minimizes expected communication costs
while meeting application-defined latency bounds for event
detection. We demonstrate the utility of the proposed tech-
nique using extensive experimentation on a variety of work-
load scenarios.

1. Introduction
In this paper, we study the problem of complex event de-

tection (CED) in a distributed monitoring environment that
consists of potentially a large number of distributed event
sources (such as hardware sensors or software receptors).
CED is becoming a fundamental capability in many do-
mains including network and software infrastructure secu-
rity (e.g., denial of service attacks and intrusion detection),
phenomenon and activity tracking (e.g., fire detection, storm
detection, tracking suspicious behavior in an airport). Itis
often the case that such sophisticated (or “complex”) events
cannot be detected by individual sources at a single time and
location: complex events usually take place over a period of
time and region, thus require consolidation of many “simple”
events from multiple sources.

The traditional means for CED (as exemplified in stream
processing systems and traditional databases) is based on a
centralized, push-based processing model. Sources generate
simple events, which are continually pushed to a base where
the registered complex events are evaluated in the form of
continuous queries or triggers. This exclusively push-based,
“proactive” model of processing is inefficient in distributed

environments as it leads to significant communication over-
head that may deplete batteries or hog network pipes (espe-
cially considering the fact that while many complex events
are rare, some of the constituents elements may be generated
relatively frequently).

Before we introduce our approach, we first make two ob-
servations. (1)Local storage: Event sources usually have
storage capabilities (albeit limited) that enable them to keep
some of their data for short-medium periods of time. Clearly,
the available storage capacity depends on the hardware plat-
form, but even with tiny devices, storage is fast becoming a
non-issue due to the advances in flash- and similar technolo-
gies. (2)Delay tolerance: While timely detection of events
is critical, applications often have varying timeliness require-
ments. For example, fire or storm detection exhibits much
higher tolerance to delay than network intrusion.

The key topic of this paper is an approach for
communication-efficient complex event detection that lever-
ages these two observations. Given a complex event, we
proactively monitor only a subset of the simpler elements as
the first step, and only if they occur, we then “retroactively”
check for the existence of others at the appropriate sources
as the consequent step and iterate the algorithm. As such,
our hybrid proactive-reactive algorithm generates a multi-
step plan of event acquisition where rarer events are checked
before more frequent events, thus in many cases eliminating
the need for communicating the latter. To make this approach
work, sources use their local storage to store their events for
a pre-determined duration of time in case they need to be
retroactively consulted. As each step in the algorithm intro-
duces an additional delay, the algorithm also limits the num-
ber of steps based on application-specified per-event latency
bounds.

In addition to our basic CED algorithm, the other contri-
butions of the paper are as follows:

• A simple but expressive set of event composition oper-
ators decorated with time and space constraints (includ-
ing usage examples).

• An extension that leverages temporal and spatial con-
straints (when available and applicable) to further re-
duce event transmissions.

• An extension that leverages shared sub-events that are
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common to multiple complex events.
• Extensive experimentation that characterizes and quan-

tifies the behavior and benefits of the algorithm and its
extensions on a variety of workloads.

The rest of the paper is structured as follows. An overview
of the system and its functionality is provided in Section 2.
In Section 3, we present our event language together with us-
age examples. Then, we describe our multi-step approach to
event detection that uses a cost model based on event occur-
rence probabilities for estimating monitoring costs in Sec-
tion 4. We provide experimental results in Section 5. Re-
lated work is covered in Section 6 and Section 7 concludes
the paper.

2. System Overview

We present a complex event detection framework for dis-
tributed monitoring applications. Our framework uses a
plan-based approach to complex event detection and utilizes
probabilistic models of event occurrences in finding network
efficient event detection plans. Using this approach our sys-
tem incurs low network cost during times of inactivity and is
able to detect complex events quickly within user specified
deadlines once they occur.

2.1 Complex Event Model

Events are defined as activities of interest in a system [8].
Detection of a person in a room, the firing of a cpu timer, and
a denial of service attack in a network are example events
from various application domains. All events signify certain
activities, however their complexity degrees can be signifi-
cantly different. For instance, the firing of a timer is instan-
taneous and simple to detect whereas detection of a denial of
service attack is an involved process that requires computa-
tion over many simpler events. Correspondingly, events are
categorized as complex and primitive forming a hierarchy of
events.

At the base of the hierarchy are the primitive events, de-
picted bybottom layerevents in Figure 1. Primitive events
are defined as atomic occurrences of interest in a system. For
example, a temperature reading in a sensor network and de-
tection of a book in an RFID enabled library are examples
of primitive events. Complex events form the upper levels of
the hierarchy. They are built on top of simpler events, either
primitive or complex, using our event specification language
defined in section 3. Middle and top layers in Figure 1 rep-
resent the complex event layers.

All events are assigned a time interval that indicates their
occurrence intervals. For primitive events, the time interval
represents a single timepoint where the event occurs. For
complex events, the assigned intervals contain the time in-
tervals of all subevents. Hence, we use interval based se-
mantics instead of timepoints. The reason is that interval
semantics better represent the underlying structure and also

Top Layer

Middle Layer

Bottom Layer

Figure 1. Illustrating Event Hierarchies: Complex events map
to simpler events whereas primitive events lie at the bottom of
the hierarchy.

solve certain problems that arise with timepoints. As an ex-
ample, consider a complex event defined as the sequence of
eventsa and b (see Figure 2). If timepoint based seman-
tics are used then we only know the endpoints of events and
would therefore detect the sequence complex event in Fig-
ure 2 since b happens after a. On the other hand, if interval
semantics are used then the start times indicate that b actu-
ally started before a occurred which prevents the detectionof
the complex event. This is the required semantics if causal
relations between events are to be observed. This issue is
further discussed in [7].

1 2 3 4 5

sequence

a b

a

b

Figure 2. Point based semantics cause incorrect detection of the
complex eventa sequence b. With interval semantics, the com-
plex event is not detected since eventb starts beforea occurs.

2.2 System Architecture
The main components in our system are the information

sources and the base node (see Figure 2.2). The informa-
tion sources, which in a broad sense we refer to assensors,
are the entry points of information into the system. For in-
stance, routers and firewalls in a network monitoring applica-
tion, and a wireless temperature sensor in a disaster monitor-
ing application are example information sources. In addition
to gathering information, sensors also take part in low level
processing of information. The processing done by sensors
include the generation of primitive events, the simplest oper-
ational units in the system. Finally, we assume that sensors
have data logging capabilities. These data logs provide us
with the ability to reach historical data as well as current data
which is crucial for retrospective event detection.

Base station is the central component of the system that
plans and executes the complex event detection. It generates
event detection plans based on the hierarchical structure of
complex events, chooses a plan to execute using the infor-
mation from cost model and coordinates the execution of the
chosen plan among the sensors. For this reason, the base
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Figure 3. Complex event detection framework: The base node plans and coordinates the event detection using low network cost event
detection plans formed by utilizing event statistics. The event detection model is an event detection graph generated from the given
event specifications. Information sources feed the system with primitive events and can operate both in pull and push based modes.

station is provided with the ability to manage the sensors.
This ability is significant since sensors transmit the detected
events on demand from the base station. Therefore our sys-
tem combines the pull and push paradigms of data collection
to avoid the disadvantages of a push-based centralized sys-
tem. We try to reduce the network traffic towards base station
by carefully choosing which sensors will transmit data based
on the information we have about frequency and constraints
(such as spatial) of event types.

Our event detection model is based on an event detec-
tion graph constructed from the user given event specifica-
tions expressed in our language. For every event expression
we construct an event detection tree and these event trees
are then merged to form the event detection graph. Com-
mon events in different event trees, the shared events, are
merged to form nodes with multiple parents. Nodes in an
event detection graph are either operator nodes or primitive
event nodes. All the non-leaf nodes are operator nodes which
execute the event language operators on their inputs. The in-
puts to operator nodes are events (either complex or prim-
itive) coming from their child nodes and their outputs are
complex events. The leaf nodes in the graph are primitive
event nodes. A primitive event node exists for each primi-
tive event type and stores references to the instances of that
primitive event type.

3. Complex Event Language

In this section, we describe a SQL-like declarative event
specification language that is simple yet expressive enough
for a variety of monitoring applications we have considered.
Tha language includes event operators to express event cor-
relations, similar to the specification of triggers in active
database systems, and also contains other features such as
the time windows from stream processing systems. At this
point, we would like to emphasize that our main contribu-
tion is not the language itself but our efficient complex event
detection techniques which operate based on the event spec-
ifications.

All the basic information in the system comes from the
available information sources. The types and capabilitiesof
information sources (referred to as sensors hereafter) depend
on the application environment and could range from wire-
less cameras in a visual sensor network to logs of a web
server. An output specification of each sensor type is nec-
essary for the low level sensor information to be transformed
into primitive events. More specifically, sensor types need
to be introduced into the system through our event language
with a name and a schema describing their attributes.

Every event type (primitive or complex) is associated
with a set of attributes, forming its schema, in its declara-
tion. Certain attributes such as location and event identi-
fier are required for all events. Those attributes,eventid,
loc, start time, end time and nodeid, form a base schema
that must be extended by the schemas of every event type.
eventid is an identifier assigned to every event instance. It
can be made unique for every event instance or can be set to a
function of event attributes forsimilar event instances to get
the same id. For example, in an RFID enabled library appli-
cation a book might be detected by multiple RFID receivers
at the same time. Such readings can be discarded if they are
assigned the same event identifier.loc attribute is for storing
the location of the event.start time andend time represent
the time interval of the event and are assigned by the sys-
tem based on the event operator semantics explained in Sec-
tion 3.3. The last attribute,nodeid is the id of the node that
generated the event. All base schema attributes will be im-
plicitly defined unless they are explicitly specified. Finally,
a reserved but nonmandatory attribute, namedmaxlatency, is
used to specify the latency deadline for an event type. When
a latency deadline is specified, the system will only consider
the plans satisfying the latency requirement.

3.1 Primitive Event Declaration

Primitive events, the simplest units in the event hierar-
chy, are formed by annotating sensor readings with metadata.
Primitive event declarations specify the details of the trans-
formation from sensor readings into primitive events. The
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syntax for primitive event declaration is given in Figure 4.

primitive name
on sensorlist

schema attribute list

Figure 4. Primitive events are defined using sensor information.

Each primitive event is assigned a unique name using the
namesymbol. The set of sensors used in a primitive event is
listed in thesensorlist. Multiple sensors may be used in this
list given that they lie on the same platform. We provide the
pseudo-sensornodewhich enables access to context infor-
mation such as the location of the sensor node and the cur-
rent value of node clock.schemasection is used to express
the attributes of the primitive event type and the way they are
assigned values. The attributes listed in the schema must be
a super set of the base schema. An example primitive event,
expressing a person detection, is given in Figure 5 together
with the declaration of apersondetectorsensor (such as a
face detection algorithm running on a camera).

sensor persondetector
schema int id, double locx, double locy

primitive persondetected
on persondetector as PD, node

schema eventid as hash(persondetected, node.id, node.time, PD.id),
loc as [ PD.locx, PD.locy ],
personid as PD.id

Figure 5. The person detected primitive event is defined using
the person detector and node sensors.

3.2 Complex Event Declaration

Complex events are specified on simpler subevents using
the SQL-like template shown in Figure 6. Subevents of a
complex event type, which can be previously specified com-
plex or primitive events, are listed in thesourcelist. The
source list may contain thenodepseudo-sensor as well.

complex name
on sourcelist

schema attribute list
where constraintlist

Figure 6. Complex events are specified using simpler events on
which spatial, temporal or attribute-based constraints can also
be imposed.

The attribute list contains the attributes of a complex
event type which together form a super set of the base
schema and also describes the way they are assigned values.
In this sense, the schema section specifies the transformation
from subevents to complex events. Constraints of a complex
event type are specified in theconstraintlist. We discuss
constraint specification in more detail in Section 3.3.

3.3 Constraint Specification

In most applications, users will be interested in complex
events which impose constraints on their subevents. For in-
stance, users may want to monitor events occurring in nearby

locations or same time intervals. In order to support such
constraints, our system allows temporal, spatial, attribute-
based and existential constraints to be specified in the where
clause of a complex event specification.

We borrowed event operators from active database re-
search for easy specification of temporal correlations be-
tween subevents which could otherwise be expressed as a
set of attribute constraints on start and end times. Our event
operators,and, or andseq, are alln-ary operators. We also
extended the event operators with time windows for tempo-
ral constraint specification. The time window argument,w,
of an event operator specifies the maximum time between
any two subevents of a complex event instance. Hence, all
the subevents are separated by at mostw time units. For-
mal semantics of our operators are provided below where we
denote subevents withe1, e2, . . . , en and the start and end
times of the output complex event witht1 andt2.

And operator: and(e1, e2, . . . , en; w)
The and operator outputs a complex event witht1 =
mini∈{1,..,n}(ei.start time), t2 = maxi∈{1,..,n}(ei.end time)
if maxi,j∈{1,..,n}(ei.end time − ej .end time) <= w.

Sequence operator: seq(e1, e2, . . . , en; w)
The seq operator outputs a complex event witht1 =
e1.start time, t2 = en.end time if (a) ei.end time <

ei+1.start time for i = 1, . . . , n − 1, (b) en.end time −

e1.end time ≤ w. Hence,seqis a restricted form ofand where
overlapping is not allowed and events need to occur in order.

Or operator: or(e1, e2, . . . , en)

Theor operator outputs a complex event whenever a subevent oc-
curs. t1 andt2 are set to start and end times of the subevent. Ob-
serve thator operator does not take a window argument.

Parametrized attribute-based constraints between events
and value-based comparison constraints can be specified in
the where clause as well. Spatial constraints may be spec-
ified in the where clause usingloc attribute of events and
spatial functions such asdistance(loc x, loc y). Moreover,
spatial regions can be defined in the system and constraints
can then be expressed using them. For instance, a region R
can be expressed as a bounding box, and then the location of
an event can be required to be in the region withloc in R.

Nonexistence (negation) constraints can be specified us-
ing the not exists (subquery)SQL construct. Subquery is
specified as aselect-from-whereclause wherefromsection is
used to specify the subevent list and constraints are specified
in thewhereclause. We illustrate the use of the constraints
through the unattended bag event given in Figure 7.

complex unattendedbag
on BagDetected B, node

schema eventid as hash(unattendedbag, node.id, node.time, B.bagid),
loc as B.loc,
bagid as B.bagid

where not exists ( select * from persondetected P
where and(P,B;120) and distance(P.loc, B.loc)< 3 )

Figure 7. Unattended bag complex event specifies a bag as unat-
tended when no person is detected 3m around it for 120 seconds.
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4. Complex Event Detection Framework

A naive approach to event detection would be to con-
stantly send all the events to base station where they would
be processed as soon as possible. However, this push-based
centralized system would create a permanent hot spot loca-
tion at the base station even at moderate incoming data rates.
The described push-based data collection paradigm is com-
mon in continuous query processing systems [10, 11] where
the global view of data is important. However, event detec-
tion systems only need the fraction of the data that generates
events in the system. Therefore, continuous data collection
can generally be avoided without missing event detections
given that not all events cause complex events.

We construct event detection plans which specify efficient
event detection strategies to avoid continuous data collection.
The simplest event detection plan consists of a single step in
which all subevents are simultaneously monitored (i.e. the
naive plan). More complex plans have up ton (the number of
subevents) steps in each of which a subset of the subevents
are monitored. The number of detection plans for a com-
plex event with n subevents (primitive) is exponential in n as
given by the recursive relationT (n) =

∑n

i=1

(

n
i

)

T (n − i)
where we defineT (0) to be1.

We design a cost model based on event occurrence prob-
abilities to calculate the expected costs of event detection
plans. We define the expected cost of a plan as the expected
number of events it sends to base per time unit. For exam-
ple, the cost of the naive plan for detecting the complex event
and(e1, e2) would be the sum of unit costs ofe1 ande2. On
the other hand, a two step plan, first monitoringe1 and look-
ing up e2 whene1 occurs, could cost less but would incur
higher latency. Hence, one of the main goals of our system
is to try to find low network cost event detection plans meet-
ing latency deadlines.

Latency of an event detection represents the time between
the occurrence of the event and its detection by the system.
Event detection latencies are based on network latencies. In
our calculations, we do not consider the processing time or
cost at the base station. However, since our system decreases
the number of events sent to base, both the processing time
and cost should be reduced as well.

4.1 Event Detection Plans

Event detection plans specify monitoring orders for the
subevents of complex events. We represent the plans with
finite state machines in our system. Consider the complex
eventand(e1, e2, e3;w) wheree1, e2, e3 are primitive events
andw is the window size. State machines of the plans for
this complex event have at mostn = 3 states except the final
state in each of which a subset of primitive events is moni-
tored. One state machine of each size is given in Figure 8.
For instance, the3-step monitoring plan: “(1) continuously
monitore1, (2) one1 lookupe2, (3) one1 ande2 lookupe3”,

is illustrated in Figure 8c where the notatione1 → e2 → e3

is used to denote this plan.
The finite state machines we use for representing plans are

nondeterministic(NFA) since they can have multiple active
states at a time. Every active state corresponds to a partial
detection of the complex event. For example, in stateSe1

of the plan given in Figure 8c, there can be active instances
of e1 primitive events waiting fore2 primitive events. Then
when an instance ofe2 is detected, in addition to the transi-
tion to next state, a self transition will also occur so that an e1

instance can match multiple instances ofe2 (self-transitions
are not shown in the figure). Unlike the always active initial
state, intermediate states are active only as long as the event
window constraints allow.

start

startstart

(a) The naive plan:

(e1, e2)

(c) Plan e1 → e2 → e3:

(b) Plan e1 → e2, e3:

(e1)

(e1)

(e1, e2, e3)

Se1,e2
Se1

Se1

(e1, e2, e3)

w of e1 w of e1, e2

e3 withine2 withine1

e1, e2, e3 e1

(e1, e2, e3)

e2, e3 within
w of e1

Figure 8. Event detection plans represented as finite state ma-
chines (FSMs)

In Section 4.1.1, we describe the plan generation process
with the goal of optimizing the overall event detection cost.
First, operator wise plan generation is explained where each
operator forms a set of plans with different cost and latency
characteristics as no single plan can be chosen that will guar-
antee global minimum cost in advance (this will be explained
in more detail in the next section). Then, we describe how
these plans are used in the global optimization of all event
operators forming the event detection graph.

4.1.1 Plan Generation

In generating the plans for each operator, enumeration of
the plan space is not a viable option since its size is exponen-
tial in the number of subevents as mentioned before. To ad-
dress this issue we have come up with the following heuris-
tics that together form a representative subset of all plans
with distinct cost and latency characteristics:

Forward Stepwise Plan Generation: This heuristic
starts with the minimum latency plan (the naive plan with the
minimum latency plan selected for each complex subevent)
and repeatedly alters it to form lower cost plans until latency
constraint is exceeded or no more alterations are possible.At
each iteration, the current plan is transformed into a lower
cost plan either by moving a subevent detection to a later
state or changing the plan of a subevent with a cheaper plan.

Backward Stepwise Plan Generation: This heuristic
starts by finding the minimum cost plan (an n-step plan with
the minimum cost plans selected for each complex subevent).
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It can be found in a greedy way when all subevents are
primitive, otherwise a nonexact greedy solution which or-
ders the subevents in increasingcost × probability order
can be used. At each iteration the plan is repeatedly trans-
formed into lower latency plans either by moving an event to
an earlier state or changing the plan of an event with a lower
latency plan until no more alterations are possible.

Observe that the first heuristic starts with a single state
FSM and extends it in successive iterations whereas the sec-
ond one shrinks down the initial n-state FSM. Moreover,
both heuristics choose the move with the highest cost-latency
gain at each iteration and both end in a finite number of it-
erations since every move results in a better plan (lower cost
for the first one and lower latency for the second one). While
the first heuristic aims to form low latency plans with reason-
able costs, the other one tries to form low cost plans meeting
latency requirements.

All the plans are then merged into a feasible (i.e. meet-
ing latency requirements) plan set. During the merge only
pareto optimalplans are kept. Pareto optimal plans are the
plans for which there exist no other plan we can use to ei-
ther reduce the cost or latency without increasing the other.
Moreover, only a limited number of pareto optimal plans can
be stored by the operator node for use in the global optimiza-
tion process (explained later in this section). In such a case,
the choice is made so that plans with low latency, low cost
and low latency-cost (a linear combination of the two fac-
tors) are equally represented.

We described the plan generation process for the cases
where all the subevents of an operator node are primitive
events. However, when complex subevents exist, the plan
generation becomes a hierarchical process where the plans
for the upper level nodes are built on the plans of the lower
level nodes. Hence, plan generation is a bottom-up process
in which the plans of lower level nodes are generated first.

As mentioned before, choosing only the minimum latency
or cost plan at each node does not guarantee overall optimal
solutions since (a) a lower cost but higher latency plan may
be useful to reduce overall cost (e.g. when there are other
events with higher latency plans such that the overall latency
is not increased when a higher latency plan is used for this
event) and (b) a lower latency but higher cost plan may re-
duce overall cost (because an event with a high cost plan may
then switch to a lower cost plan with higher latency). For this
reason, each node creates a set of plans with different latency
and cost characteristics in the plan generation process. How-
ever, only a subset of these plans can be passed on to upper
level nodes due to computational complexity. The size of this
subset is a parameter trading computation with the explored
plan space size. This process continues up to the root nodes,
each of which then selects the minimum cost plan meeting
its latency requirements. This in turn finalizes the genera-
tion of the event detection plans to be used by all nodes in
a top-down manner. Finally, if a node has multiple parents

requesting different plans, then it chooses the plan with the
minimum latency.

The latency deadlines for complex events originate from
two different sources. First, as mentioned before we may
have user specified, explicit latency deadlines. Second, la-
tency deadlines can also stem from limited data logging ca-
pabilities. More specifically, due to restricted storage some
information sources may only be able to store the instances
of an event type for a limited time. Therefore, any plan that
relies on storage of events for longer periods are not gonna be
useful. Our system considers both of the described latency
requirements and uses the most strict one for each complex
event.

4.1.2 Execution of Plans

Once the selection of plans is completed, the set of prim-
itive events to monitor are identified and activated. When
a primitive event arrives to the base station, it is directed
to the corresponding primitive event node. The primitive
event node stores the event and then forwards a pointer of
the event to its active parents. An active parent is one which
has expressed interest in the time interval the event arrived
in. The complex event detection proceeds similarly in the
higher level nodes. Each node acts according to its plan upon
receiving events either by activating subevents or by detect-
ing a complex event and passing it along to its parents.

4.1.3 Modeling Event Detection Plans

In this section, we explain the cost and latency charac-
teristics of event detection plans. In our cost model, we use
probabilistic models of event occurrences to derive expected
costs of event detection plans. Our approach to cost model-
ing is not strictly tied to any particular probability distribu-
tion. Here, we derive the cost estimations for two different
probability models:PoissonandBernoulli distributions. In
both cases we assume that events occur independently.

Poisson distributions are widely used in modeling discrete
occurrences of events such as the receipt of a web request and
arrival of a network packet. A Poisson distribution is char-
acterized by a single parameterλ that expresses the average
number of events occurring in a given time interval. In our
case, we defineλ to be the rate of occurrence for an event
type, i.e. the average number of occurrences of an event type
per time unit. In addition, we assume that the number of
events in disjoint time intervals are independent. Under these
conditions, the event occurrences follows a Poisson process
with rateλ. On the other hand, when modeling an event type
with the Bernoulli distribution, we assume that event occurs
independently with probabilityp at every time step.

As described before, a complex event detection plan con-
sists of a set of states each of which corresponds to moni-
toring a set of events. The cost of a plan is the sum of the
costs of its states weighted by state reachability probabili-
ties. Cost of a state depends on the cost of the subevents
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in that state. We define the latency of an event detection
plan to be the maximum latency it could have so that we can
guarantee latency deadlines. For this reason, we associate
each event type with a latency value that represents the max-
imum latency its instances can have. Then, the latency of
an event detection plan can be derived using the latencies of
the subevents. Here, we consider identical latencies for all
event types for simplicity. However, different latency values
can be handled by the system as well. We will consider the
expected cost and latency of monitoring the complex event
and(e1, e2, e3) for describing the process in more detail.

We definee1, e2 and e3 to be primitive events with∆t
latency and use Poisson processes with ratesλe1

, λe2
and

λe3
respectively to model the events. When the naive plan

is used, all subevents will be monitored at all times. So the
cost will be the sum of the expected occurrence rates of the
subevents:

∑3

i=1
λei

. The latency of the naive plan, which
is simply the maximum latency among its subevents, is∆t.

The cost derivation for the three step plane1 → e2 → e3,
given in Figure 8c, is more complex. We define the reach-
ability probability of a state to be the probability of detect-
ing the partial complex event that activates the state. For
instance, the partial complex event which makes stateSe1

active ise1. State reachability probabilities are derived using
interarrival distributions of events. When using a Poisson
process with parameterλ, the interarrival time is exponen-
tially distributed with the same parameter. Hence, the prob-
ability of waiting time for the first occurrence of an event to
be greater thant is given bye−λt. On the other hand, when
using the Bernoulli distribution, the interarrival times have
geometric distribution. The reachability probability forini-
tial state is 1 since it is always active and the probability for
final state is not required for cost estimation. Using the in-
terarrival distributions to derive reachability probabilities the
cost of the three step plan can be derived as:

cost fore1 → e2 → e3 = λe1
+ (1 − e−λe1 )2Wλe2

+

((1 − e−λe1 )(1 − e−Wλe2 ) + (1 − e−λe2 )(1 − e−Wλe1 ))2Wλe3

In the cost equation above and for the rest of the paper,
we assume the probability of more than one events to occur
in the same time step to be negligible. However, if that is
not true, then the formula can be modified for the other case.
Moreover, as more events are required to occur in a single
time step, the occurrence probability will quickly diminish
which means the terms with many concurrent events can be
discarded as they will have negligible values.

The plan is assigned3∆t latency since this is the maxi-
mum latency it exhibits (when the events occur in the order
e3, e2, e1 or e2, e3, e1). Actually, for the exact latency we
need to include the latency of sending pull requests for events
e2 ande3 in the equation. However, the pull requests will
have the same∆t latency and since we assumed all events
to have the same latency it is not required to include them in

our calculations (they will not change the result when com-
paring the cost of plans). For ease of presentation, we omit
them in the rest of the paper as well.

And Operator. Here we describe the cost estima-
tion for the n-aryand operator. Given the complex event
and(e1, e2, . . . , en) with window sizeW, and a detection plan
with m + 1 statesS1 throughSm and the final stateSm+1,
we show the cost derivation using reachability probabilities
both for Poisson and Bernoulli distributions below. For event
ej we represent the Poisson process parameter withλej

and
the Bernoulli parameter withpej

.
The cost for and operator with n operands is given

by
∑m

i=1
PSi

∗ costSi
where PSi

is the state reachabil-
ity probability for state Si and costSi

represents the
cost of monitoring subevents of stateSi for a period of
length 2W . In the case that all subevents are primitive
costSi

=
∑

ej∈Si
2Wλej

when Poisson processes are used
andcostSi

=
∑

ej∈Si
2Wpej

for Bernoulli distributions.
PSi

, the reachability probability forSi, is equal to the oc-
currence probability of the partial complex event that causes
the transition to stateSi. For this partial complex event to
occur in this time step, all its constituent events need to oc-
cur within the last W time units with the last one occurring in
this time step (otherwise the event would have occurred be-
fore). Then,PSi

is 1 wheni is 1 and form ≥ i > 1 is given
for Poisson processes (i) and Bernoulli distributions (ii)by:

(i)
X

ej∈
Si−1

k=1
Sk

(1 − e
−λej )

Y

et 6=ej

et∈
Si−1

k=1
Sk

(1 − e−λet
W )

(ii)
X

ej∈
Si−1

k=1
Sk

pej

Y

et 6=ej

et∈
Si−1

k=1
Sk

(1 − (1 − pet )
W )

Under the identical latency assumption, the latency of a
plan forand operator is defined by the number of the states
in the plan (except the final state). Hence, the latency for the
eventand(e1, e2, . . . , en) can range from∆t to n∆t.

Sequence Operator. We can consider the same set of
plans forsequenceoperator as well. However, sequence has
the additional constraint that events have to occur in a spe-
cific order and must not overlap. Therefore, the time interval
to monitor a subevent depends on the occurrence times of
other subevents and is at mostW time units.

Xep1
Xepj

. . .ep1
ep2

ept
. . .epj+1

epj

Figure 9. subevents forseq(ep1
, ep2

, . . . , ept)

Expected cost for monitoring the complex event
seq(e1, e2, . . . , en) with window sizeW using a plan with
m + 1 states has the same form

∑m

i=1
PSi

∗ costSi
.

Let seq(ep1
, ep2

, . . . , ept
) with t ≤ n andp1 < p2 <

. . . < pt be the partial complex event consisting of the events
before stateSi, i.e.∪i−1

k=1
Sk = {ep1

, ep2
, . . . , ept

}. Then
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1. PSi
, the reachability probability forSi, is equal to de-

tectingseq(ep1
, ep2

, . . . , ept
) at a time point. For this

complex event to occur subevents has to be detected in
sequence as in Figure 9 within W time units. We define
the random variableXepj

to be the time betweenepj+1

and the occurrence ofepj
beforeepj+1

(see Figure 9).
Then,Xepj

is exponentially distributed withλepj
if we

are using Poisson processes, or has geometric distribu-
tion with pepj

when using Bernoulli distributions.

(i) For the Poisson process case, we havePSi
= (1 −

e
−λept )(1−R(W )) whereR(W ) = P (

Pt−1

j=1
Xepj

≥

W ). Closed form expressions for sums of expo-
nential random variables are studied in [9]. In the
case all exponential variables have distinct param-
etersR(W ) has the following form:

R(W ) =
Pt−1

j=1
Aje

−λepj
W where Aj =

t−1
Y

k=1
k 6=j

λepk

λepk
− λepj

.

(ii) For the Bernoulli distributionPSi
= pept

(1−R(W ))

whereR(W ) is defined on a sum of geometric
random variables. In this case, there is no para-
metric distribution forR(W ) unless the parame-
ters of geometric random variables are identical.
Hence, it has to be numerically calculated.

2. Any eventeik
of stateSi should either occur (a) be-

tweenepj
andepj+1

for some j or (b) beforeep1
or af-

ter ept
depending on the order inseq(e1, e2, . . . , en).

In casea, we need to monitoreik
betweenepj

and
epj+1

for Xepj
time units (see Figure 9). For case

b we need to monitor the event forW −
Pt−1

j=1
Xepj

time units. In the cost estimation, we use the ex-
pectation valuesE[Xepj

|
Pt−1

k=1
Xepk

≤ W ] and W −

E[
Pt−1

k=1
Xepk

|
Pt−1

k=1
Xepk

≤ W ] for estimatingLeik
, the

monitoring interval. ThencostSi
is

P

eik
∈Si

Leik
λeik

.

The latency of a plan for sequence depends on the latency
of the last event (en) and the events in later states (afteren)
of the plan. If the complex eventseq(e1, e2, . . . , en) is being
monitored with an m-step plan where thejth step contains
en, then its latency is(m−j +1)∆t. This latency difference
betweenand andsequenceoperators exists because unlike
thesequence, with andoperator any of the subevents can be
the last event that causes the occurrence.

Negation Operator. In our system, negation can be used
on the primitive events insideand andseqoperators. Here,
we consider the plans for complex events, with negated
terms, specified usingand operator over primitive events.
The plans we consider for such events resemble a filtering
approach. First, we detect the partial complex event consist-
ing of non-negated events only. When that complex event
is detected, we monitor the negated events. The detection
plan for the complex event defined by non-negated events

can be any arbitrary plan discussed forand operator. Same
set of detection plans can be considered for negated events
as well. However, the execution has to be changed in a way
that the absence of an event is now what is aimed for. The
cost estimations discussed forand operator can be applied
here by changing the occurrence probabilities with nonoc-
currence probabilities.

Or Operator. As discussed before,or operator generates
a complex event for every event instance it receives. Hence,
the only detection plan foror operator is thenaiveplan. The
cost of the naive plan is the sum of the costs of the subevents
and its latency is the highest latency among the subevents.

4.2 Optimizing for Shared Subevents
The hierarchical nature of complex event specification

may introduce common subevents across complex events.
For example, in a network monitoring application we could
have thesynevent indicating the arrival of a TCPsynpacket.
Various complex events could then be specified using thesyn
event such as syn-flood (sending syn packets without match-
ing acks to create half-open connections for overwhelming
the receiver), a successfull TCP session and another event
detecting port scans where the attacker looks for open ports.

The overall goal of shared optimization is to find the set
of plans for which the total cost of monitoring all complex
events is minimized. Yet the base algorithm presented in
Section 4.1.1 does not consider sharing between event ex-
pressions as it runs independently for each expression. Here,
we modify our plan generation algorithm for (1) calculat-
ing the overall event detection cost correctly when shared
subevents exist and (2) choosing plans that facilitate sharing
to further reduce cost when available and applicable.

First, we need to identify the expected amount of sharing
that will happen on a shared node. However, the degree of
sharing depends on the plans selected by the ancestor nodes
of the shared node. Since our base algorithm proceeds in a
bottom-up fashion, we cannot identify the amount of sharing
unless the algorithm completes and the plans for all nodes
are selected. Below, we present an iterative version of our
algorithm to address these problems (for simplicity, modified
algorithm is presented for the case of a single shared complex
event):

1. run the base plan generation algorithm

2. find the expected amount of sharing with the current plan se-
lections and recalculate the current plan costs for ancestors of
the shared node

3. rerun the base algorithm starting at each parent of shared node
utilizing the sharing probabilities

4. if overall cost is reduced then goto 2 else exit with the previous
plans

After the first step, every node will have selected its plan
but the total cost for the shared node will be incorrect. In
the second step, we fix the overall cost by taking sharing into
account. This is possible because we can find the amount of
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sharing after all nodes have selected their plans. We assume
that parents of the shared node function independently and
find the probability that they will monitor the shared event
in overlapping intervals. Third step runs the base algorithm
starting at each shared node parent. However, in this execu-
tion of the algorithm, the sharing probabilities of generated
plans are calculated and utilized as well. Hence, ancestors
of shared node may now change their plans since increased
sharing may further reduce plan costs. Moreover, the plan
changes made in third step are guaranteed to increase the
amount of sharing because (1) Cost of the shared node can
only decrease due to sharing and (2) Ancestor nodes can only
reduce their costs at each step if they choose plans which
monitor the shared node in earlier states (and monitoring the
shared node earlier means it will be shared more). The algo-
rithm reiterates as long as the overall cost is reduced.

4.3 Constraint Optimization

In this section, we describe how the spatial and attribute-
based constraints affect the occurrence probabilities of
events and explain the additional optimizations we have
made to the plan selection and execution processes for fur-
ther reducing cost using these constraints. First, we discuss
the effects of spatial constraints on the plan generation pro-
cess. Thespatial constraints we consider are defined in
terms of regional units. The space is divided into regions
such that events in a region occur independently from events
in other regions. The division of space into such independent
regions is typical for some applications. For instance, in ase-
curity application we could consider the rooms of a building
as independent regions. In addition, it is also easy for users
to specify spatial constraints (by combining smaller regions)
once regional units are provided.

When the spatial constraints are specified in the described
way, their effect on event occurrence probabilities can be in-
corporated in our system with minor changes. First, we mod-
ify our model to keep event occurrence statistics per each in-
dependent region of an event type. Then, when a spatial con-
straint on a complex event is given, we only need to combine
the information from corresponding regions to derive the as-
sociated event occurrence probability. For example, if we
have Poisson processes with parametersλ1 andλ2 for two
regions, then the Poisson process associated with the com-
bined region has the parameterλ1 + λ2. Hence, by com-
bining Poisson processes we can easily construct the Pois-
son process for any arbitrary combination of independent re-
gions. However, this is only possible because the regions
are independent, otherwise we would have to derive joint
distributions. Hence, the spatial constraints alter the event
detection process, such that different plans may be used for
monitoring different spatial regions if doing so reduces the
overall cost. A related experiment is available in the experi-
ments section.

Attribute-based constraints have been considered in

many query processing systems. The main approach, which
we also adapt, has been to keep histograms for attributes.
Histograms provide the information for deriving the selectiv-
ity probabilities of attribute-based constraints which wecan
then use to derive the event occurrence probabilities. More-
over, value based attribute constraints can be pushed down to
information sources further reducing the number of transmit-
ted events. Parametrized attribute constraints between events
can also be pushed down whenever one of the events is mon-
itored earlier than the other one.

5. Experiments

In this section, we analyze the performance of our sys-
tem and investigate the effects of various parameters through
a set of experiments. We have implemented the base node
functionality and generated specific event adapters for use
in experiments. Our experiments involve both synthetic and
real data sets. Unless stated otherwiseZipfian distribution
has been used in synthetic data generation. Real data set is
a collection of network traffic logs obtained from Planetflow
web site [12].

5.1 Experiments with Synthetic Data Sets

On window size and detection latency:We explore the
effects of window size and latency deadline on the event
detection cost in this experiment. We defined the complex
eventsand(e1, e2, e3) andseq(e1, e2, e3) wheree1, e2 ande3

are primitive events. Using Zipfian distribution with skew
0.255 (other skew values are used in the varying skewness
experiment) we generated event streams for these primitive
types. Then, for different window values and latency dead-
lines of both complex events we ran our event detection al-
gorithm on the generated streams. The event detection costs,
expressed as percentage of the primitive events sent to base,
are provided in Figures 10(a) and 10(b).

Both figures show that as the allowed latency for event de-
tection increases (from1 to 3 in this case) the event detection
cost reduces. The lines labeledoutput, which show the per-
centage of primitive events output as parts of complex events,
serve as a lower bound on cost. Becausesequenceoperator
does not need to monitor all events unless the first events of
sequence occur, it can reduce cost even under hard latency
constraints. Finally, the event detection cost increases with
window size since larger window size means increased event
occurrence probability.

Increasing the number of subevents: In this experi-
ment, we investigate the cost performance under increasing
number of subevents through a complex event specified with
a singleandoperator. We randomly generated streams using
similar event frequencies for all event types (to rule out the
effect of frequency in the test). In Figure 10(c), we can see
that (1) increasing the number of operands tends to decrease
the number of detected complex events and (2) greater num-
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(a) and operator with 3 operands (b) seq operator with 3 operands (c) and operator with increasing operands

(d) and operator with increasing skew (e) and operator with increasing negation(f) events with increasing number of operators

Figure 10. Operator wise experiments and complex event detection performance

ber of operands means we have a wider latency spectrum
(therefore a larger plan space) to reduce cost.

Workloads with varying skewness: In this experiment,
we use the complex eventand(e1, e2, e3) with a fixed win-
dow parameter under workloads with varying skewness.
Each workload stream is generated with a Zipfian distribu-
tion and has around the same number of events. In Fig-
ure 10(d), we see that in low skew streams a greater num-
ber of complex events is detected and the cost is therefore
higher. Increasing the skew generates event types with low
frequencies which our system uses to reduce the cost.

Negated subevents:To explore the cost performance for
complex events involving negated subevents, we performed
an experiment using theand(e1, e2, e3) event in which we
varied the number of negated subevents. In Figure 10(e),
we can see that while the costs for the complex events
with single and no negated terms are similar, the cost when
two subevents are negated is high even though less com-
plex events are detected. This is mainly because (1) mon-
itoring of negated and non-negated events are not inter-
leaved, that is we monitor the negated subevents after the
non-negated subevents occur (see Section 4.1.3) and (2) all
the detected non-negated subevents are discarded when a
negated subevent that prevents them from forming a com-
plex event is detected.

Increasing the number of operators: In this exper-
iment, we consider the cost performance with increasing
number of operators. We varied the number of operators
used in complex events from 1 to 7 and for each operator
count we generated 10 complex events based on event com-
position rules. The average event detection cost for each

operator count is shown in Figure 10(f). As the number of
operators in an expression is increased, generally its occur-
rence probability decreases. Moreover, for similar event oc-
currence probabilities the relative cost of event detection is
also similar irrespective of the operator number.

Shared subevents:To test the shared event optimization,
we specified two complex events with a common subevent
tree and compared the performance with and without shared
optimization. In the experiment, we varied the frequency of
the complex event that corresponds to the shared subtree. In
Figure 11(a), we see that when the frequency of the shared
part is low, both with and without sharing the system experi-
ences similar cost since the shared part is chosen to be moni-
tored earlier in both cases. When the frequency of the shared
part is the same with or slightly higher than other parts, non-
shared parts are monitored earlier without sharing optimiza-
tion. In this case, shared optimization reduces cost by moni-
toring the shared part first. Finally, when shared part has very
high frequency, non-shared parts are monitored first in both
cases. Even in this case shared optimization experiences less
cost, because it better estimates shared subevent costs which
can cause better execution plans to be selected in some cases
(since we are using heuristics for plan generation). When we
used exhaustive plan generation, both with and without shar-
ing the algorithm chose the exact same plans for this case.

Spatial constraints: In this experiment, we show the
utilization of spatial constraints in reducing detection costs
through the complex eventand(e1, e2) with constrainte1.loc
= e2.loc. We assume that there are two regions X and Y
with event occurrence ratesλX

e1
= 3λ, λY

e1
= 7λ, λX

e2
= 6λ

andλY
e2

= 4λ. When localized information is available, i.e.
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(a) shared optimization (b) spatial constraint between two events

Figure 11. Shared optimization and spatial constraints

frequencies of events are known for each region, the cost is
lowest (see Figure 11(b)). In this case, the system monitors
e1 in region X ande2 in region Y. Then whene1 is detected in
X (or e2 in Y), e2 is monitored in X (ore1 in Y). When local-
ized information is not available, but the global selectivity of
the spatial constraint is known (global info in Figure 11(b)),
eithere1 or e2 is monitored (both have the same total fre-
quency) in all regions. Finally, when no spatial constraint
information is available, the system expects that the com-
plex event will occur every time step and therefore chooses
to execute the naive plan.

5.2 Experiments with Planetlab Data Set

The Planetlab data set we have used consists of 5 hours
of network logs for 49 Planetlab nodes we have obtained
from [12]. The network logs provide aggregated informa-
tion on network connections between Planetlab nodes and
other nodes in the Internet. The provided information in-
cludes connection start/end times, amount of generated traf-
fic and used network protocol. We have experimented with
various complex events most of which can easily be found
on many network monitoring applications. Here, we present
the results for three of the complex events.

Change of overall network load: We define a Planetlab
node asidle if its average network transfer speed (incoming
and outgoing total) in the last minute is less than125KBps
and asactive if the average speed is greater than a thresh-
old T . Given that, the complex event monitors for an overall
network load change from a situation where more than half
of all nodes are idle to more than half being active within
a specified time interval. The complex event is defined as
seq(count(idle)> %50 of all nodes, count(active)> %50
of all nodes; W=30min ). The results are provided in Fig-
ure 12(a) forT = 250, 500, and1250 KBps.

Diverse clusters: We define a cluster to be a set of ma-
chines from the same/8 IP class. A diverse cluster is then
defined as a cluster with more thanC connections to Planet-
lab nodes in total. To specify this complex event we first de-
fine alocally diverse clusterevent which monitors the event
that a Planetlab node has more thanC

N=49
connections with

a cluster. The diverse cluster complex event is specified as

sum(conns)> C group by cluster. Then, it isand’ed with the
locally diverse cluster event which acts as a prerequisite for
the diverse cluster event and helps reduce monitoring cost.
The results are given in Figure 12(b) forC = 250, 500, 1000,
and2000.

Clusters with multiple active nodes:
We define a node (outside of Planetlab) to beactiveif its

aggregate average network transfer rate to Planetlab nodesis
more thanT in the last minute. In this complex event we are
interested in/8 clusters with more than one active nodes in
the last minute. Similar to the diverse cluster complex event,
we first defined alocally active nodeevent which monitors
a node with an average network speed greater thanT

N=49

to a Planetlab node. Then the active node complex event is
specified assum(speed)> T group by nodeip and isand’ed
with the locally active node event which acts as a prerequisite
event. Finally, clusters with multiple active nodes is specified
ascount(active node)> 1 group by cluster. The results are
provided in Figure 12(c) forT = 500, 1000, and2000 KBps.

6. Related Work
In continuous query processing systems such as

TinyDB [1] for wireless sensor networks, and Borealis [10]
for stream processing applications queries are expected to
constantly produce results. Push based data transfer, either
to a fixed node or to an arbitrary location in a decentralized
structure, is characteristic of such continuous query process-
ing systems. On the other hand, event detection systems are
expected to be silent as long as no events of interest occur.
The aim in event systems is not continuous monitoring of the
data, but is the detection of events of interest.

In the active database community, ECA (event-condition-
action) rules have been studied for building triggers [6].
Triggers offer the event detection functionality through
which database applications can subscribe to in-database
events, e.g. the insertion of a tuple. However, most in-
database events are simple whereas more complex events
could be defined in the environments we consider. Many
active database systems such as Samos [2], Ode Active
Database [3], and Sentinel [4] have been produced as the re-
sults of the studies in the active database area. Most systems
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(a) network load change (b) diverse clusters (c) clusters with multiple active nodes

Figure 12. Experiments with Planetlab data set

provide their own event languages. These languages form
the base of the event language in our system. However, our
language has additional features such as spatial and temporal
constructs which are important for the systems we consider.

In the join ordering problem, database query optimizers
try to find ordering of relations for which intermediate re-
sult sizes is minimized [13]. Most query optimizers only
consider the orders corresponding to left-deep binary trees
mainly for two reasons: (1) Available join algorithms such
as nested-loop joins tend to work well with left-deep trees,
and (2) Number of possible left-deep trees is large but not
as large as number of all trees. Our problem of constructing
minimum cost monitoring plans is different from the join or-
dering problem for the following reasons. First, we are not
limited to binary trees since multiple event types can be mon-
itored in parallel. Second, our cost metric is the expected
number of events sent to base. Finally, we have an additional
constraint, i.e. the latency constraint, further limitingthe so-
lution space.

In a recent study about high performance complex event
processing [5] optimization methods for efficient event pro-
cessing are described. There the aim is to reduce processing
cost at the base station. While our system also helps reduce
the processing cost, our main goal is to minimize the network
traffic. Moreover, their system does not consider distributed
event processing, and simultaneous queries.

7. Conclusions and Future Work

CED is a critical capability for many monitoring appli-
cations. While earlier work primarily focused on optimiz-
ing processing requirements of complex events, we made an
effort towards optimizing communication needs when dis-
tributed sources are involved.

The results support our premise that communication re-
quirements can be significantly reduced by exploiting spatio-
temporal constraints within the event specification and the
frequency skew among the relevant sub-events, at the ex-
pense of additional detection delays. Specifically, the main
benefit came from a novel multi-step planning technique that
combined proactive and retroactive monitoring of events.

This is a rich research area with many open problems.

Our immediate future work will explore probabilistic plan-
ning for sensor network applications and augmenting manual
event specifications with learning-based techniques.
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