
Making Next-Gen Video Games in Your Basement
Korhan Bircan

Department of Computer Science
Brown University

Providence, RI 02912
kbircan@cs.brown.edu

Abstract
The combination of open source libraries with the
advanced and affordable hardware has made near
commercial quality video game production a
reality for thousands of hobbyists all around the
world. Never before have the graphics looked so
good nor the physics felt so real with such high
frame-rates. In this project we have demonstrated
how decent quality video games can be made
without an army of programmers or millions of
dollars investment. Even though the techniques
that we have implemented are proof of concept,
the results are promising and with more time and
effort and more extensive use of the technologies
we will describe shortly, they can be improved to
a level where the line between commercial quality
and homemade games will become blurry.

One of our aims was to create a code base for the
enthusiastic prospective students of CS134
Innovating Game Development class. We have
compiled a set of tutorials for some of the most
practical freely available libraries and engines.
We hope that our work will provide the students
with a set of tricks and techniques for rapid game
prototyping and guide them in the right direction
so that the transition from hobbyist game
programming to professional game programming
will be a seamless one (if they choose to go in the
industry in the future).

Keywords: Game development, XNA, Irrlicht,
Ogre 3D, Newton Game Dynamics, .ODE,
NVIDIA PhysX, OpenAL, FMOD, ragdoll
physics, vehicle simulation, particle systems,
projective texturing, high dynamic range
rendering, Wiimote control, speech recognition.

1 Introduction
Our main aim in this project was to determine
the best set of tools for CS134 students in
order to enable them to prototype and create
games quickly and also demonstrate the power
of these tools with a proof of concept game.
We went through some of the most popular
rendering, physics, and sound engines before
deciding which libraries we should use for this
project. We have prepared a set of tutorials for
each of the engines and libraries that we
examined. Here is a brief explanation of some
of the technologies we have looked at.

2 Practical Tools for Making
Video Games on Your Own
PC gaming has taken big hits in the last couple
of years. During 2007, the sale of PC games
generated only 14% of the gaming industry’s
$18.85 billion software revenue, according to
figures released from market research firms1.
This must have rung alarm bells at
semiconductor companies such as Intel, AMD,
and NVIDIA whose revenues are greatly
affected by PC gamers. In order to promote
PC game development, Intel has acquired
Havok Inc2., one of the leading providers in
physics technology for gaming and digital
content, and NVIDIA has acquired AGEIA
Technologies3, who is another leading
provider in gaming physics technologies.
Microsoft has been promoting PC game

1 http://www.shacknews.com/onearticle.x/50939
2http://www.intel.com/pressroom/archive/releases/2007
0914corp.htm
3http://www.nvidia.com/object/io_1202161567170.html

 1

development in various ways, and has developed
a software development framework, XNA, in
2004 and recently has made it even more
attractive by enabling developers to deploy their
games on XBox 360 and also let them share user
created games via XBox Live. There are already
some very stable open source rendering, physics,
and audio engines. The Internet is an ocean of
game development related information. In short,
game development has never been so accessible to
the mass public. The hardware has never been so
good at rendering such realism, physics
simulations have never run so fast (now some
even run on the GPU eg. PhysX) and accurate,
shaders have never been so powerful, and there
has never been such a plethora of intuitive tools
and API’s. With such a variety to choose from, it
could be a little confusing for a beginner to figure
out where to start. We went through the most
popular and stable freely available engines and
libraries out there and compiled our findings as a
set of tutorials which can be downloaded from the
author’s webpage4.

2.1 XNA
Microsoft XNA Game Studio Express is a set of
tools based on Microsoft Visual Studio C# that
allows hobbyists to build games for both
Microsoft Windows and Xbox 360. XNA uses
DirectX API to render the graphics. DirectX is a
relatively complicated API compared to OpenGL.
It takes much longer to learn DirectX, system
initializations and setup are fairly tedious. XNA is
a tremendous leap in that regard. It makes using
DirectX almost a breeze. Displaying 3D models,
getting user input, math operations, storage,
playing sounds and other media files are seamless
thanks to the strong DirectX media framework.
Integrating HLSL shaders have never been so
easy in any other framework. Just that aspect itself
carries so much importance that it may be enough
reason to use XNA. The exact same code written
for the Windows operating system can be built
and run on Xbox 360 through the XNA

4 www.cs.brown.edu/people/kbircan

framework. There were two reasons why we
did not choose XNA for our project. XNA is
not a game engine. It is a game development
framework. Therefore primitive things such as
adding a camera to the scene, making it first
person style, third person style, animations,
particle effects, template shader effects,
template models, and media are missing. After
one implements those missing pieces, then
XNA would be a great prototyping tool. The
second reason is to do with runtime
performance. The C# compiler is at present
not as sophisticated as the Visual C++
compiler and it may end up creating
performance problems5. We have compiled an
introduction tutorial to get started with XNA6.

2.2 Irrlicht
Irrlicht is an open source cross-platform
realtime 3D engine that uses DirectX,
OpenGL, and its own software renderer. Some
of its main features are extensible material
library with vertex and pixel shader support,
customizable scene management, character
animation system through skeletal and morph
target animations, particle effects, billboards,
light maps, environment mapping, stencil
buffer shadows, water surfaces, bump and
parallax mapping, sphere mapping, texture
animation, 2D GUI system, 2D drawing,
direct import of textures and common mesh
formats, collision detection and response
system, optimized 3D math library, and
integrated XML parser. As with most popular

5 An XNA program manager and a CS134 guest
speaker Frank Savage, gave as an example a
performance problem where the C# compiler did not
inline an overloaded operator but instead made function
calls. Detailed explanation of this problem was
addressed in the following technical article
“Optimization Tutorial: Particles and High-Frequency
Code”,
http://creators.xna.com/Headlines/tutorialscol1/archive/
2007/08/09/Optimization-Tutorial_3A00_--Particles-
and-High_2D00_Frequency-Code.aspx
6 Useful Tools for Making Games: XNA,
http://www.cs.brown.edu/people/kbircan/talks/xna.ppt

 2

open source projects, one of its strength is the
large user community. The forums and user
created tutorials and games are valuable
resources. It is fairly simple to make simple
games with Irrlicht in a couple of hundred lines of
code. We have prepared an introductory tutorial
which can be found at the provided link7.

2.3 Ogre
Ogre (Object-Oriented Graphics Rendering
Engine) is the another cross-platform 3D engine
that abstracts the details of using the underlying
system libraries such as Direct3D and OpenGL
and provides an interface based on world objects
and other intuitive classes. It has more features
than any of the engines and frameworks we have
looked at. It is relatively large and the learning
curve is a little steeper. The way the engine was
designed is reminiscent of the Quake engine. The
materials are declared in .material script files,
particle systems are declared in .particle script
files, shader parameters are tied to parameters in
your program in .program files. The 3D models
need to be converted into Ogre’s proprietary
.mesh format. These are some of the things that
make the learning curve a little steeper but once
comfortable, this is as good a graphics engine as
most commercial ones. It comes with a very
impressive set of tutorials, materials, and shaders
which make it all the more inspirational to start
making a game. Samples out of the box include
Bezier patches, BSP level loading, BSP collision
detection, camera animation, cel shading, various
shader effects, crowd simulation, cube mapping,
deferred shading, bump mapping, parallax
mapping, environment mapping, facial animation,
Fresnel refractions, grass simulation, 2D GUIs,
instancing, dynamic lighting, ocean simulation,
particle effects, rendering to textures, texture
animation, dynamic shadows, skeletal animation,
sky boxes, sky domes, sky planes, smoke
rendering, terrain rendering, transparency,
volumetric textures, and water surface simulation.
What is more is the biggest online user

7 Useful Tools for Making Games: Irrlicht,
http://www.cs.brown.edu/people/kbircan/talks/irrlicht.ppt

community. It has the largest forum database
and wiki entries, user created tutorials and
other content. Suffice it to say we have chosen
Ogre as our rendering engine. We have
provided an introductory tutorial to help
students get started using the engine which
can be downloaded at the provided link8.

2.4 ODE
Open Dynamics Engine (ODE) is an open
source library for simulating rigid body
dynamics. It emphasizes speed and stability
over physical accuracy. It uses special non-
penetration constraints when two bodies
collide. The alternative method used by some
other physics engines is virtual springs which
are error-prone. It supports rigid bodies with
arbitrary mass distribution, various joint types
(ball, hinge, slider, fixed, angular motor, and
universal), a number of collision primitives
(sphere, box, capped cylinder, plane, ray, and
triangular mesh), quat-tree, hash-space, and
simple collision spaces. It derives its equations
of motion from a Lagrange multiplier9
velocity based model and uses a first order
integrator. The available time stepping
methods are either standard big matrix or an
iterative method. The contact and friction
model is bassed on the Dantzip LCP solver
described by Baraff10.

2.5 NVIDIA PhysX
When we started this project the company was
owned by Ageia and one had to jump through
hoops to get the SDK. Recently NVIDIA has
bought PhysX and made it freely available and
ported it to work on its GeForce 7900 and
higher series GPUs. The engine supports
complex rigid bodies, a number of collision

8
http://www.cs.brown.edu/people/kbircan/talks/ogre.ppt
9 In mathematical optimization problems, Lagrange
multipliers are used to find the extrema of a function of
several variables subject to one or more constraints.
10 “Physically Based Modeling: Principles and
Practice”, SIGGRAPH ’95 course, David Baraff.

 3

primitives including sphere, box, capsule, plane,
heightfield, convex shapes, and triangular meshes,
includes the widest array of joint types such as
spherical, revolute, prismatic, cylinders, fixed,
distance, pulley, 6DOF, has a very advanced
ragdoll creation and editing system, supports
materials and friction model, continuous collision
detection (CCD). A great feature is the advanced
character control system which can be used for
first-person or third-person player control that
does not make use of rigid body physics. It has a
sophisticated articulated vehicle dynamics which
supports various wheel shapes and joint-based
suspension. It is able to simulate volumetric fluids
and gases using particle systems and emitters.
Fluid simulation mode can be either Smoothed
Particle Hydrodynamics (SPH) or simple mode
without inter-particle forces. The volumetric force
field simulator supports various force field shapes
such as sphere, capsule, box, and convex mesh
and allow the simulation of effects such gust of
wind, dust devils, vacuum cleaners or anti-gravity
zones. Another distinct feature of the engine is the
cloth and clothing authoring and playback which
supports cloth attachment, self-collisions, tearing,
pressure, and deformable metal cloths. The last
but not the least it allows simulation of volumetric
deformable objects and provides a tool called
NVIDIA TetraMaker for easy soft body creation.

2.6 Newton
Newton Game Dynamics is an integrated solution
for real time simulation of physics environments.
The API is small, stable, and provides scene
management, collision detection, and dynamic
behaviors. It is unfortunately closed source. In
contrast to most other real-time physics engines it
favors accuracy over speed. It has a deterministic
solver not LCP11 or iterative methods. Some of its

11 In linear algebra, linear complementarity problem (LCP)
consists of starting with a known n-dimensional column
vector q and a known nxn matrix M, and finding two n-
dimensional vectors w and z such that:

• q = w - Mz
• w_i >= 0 and z_i >= 0 for all i
• w_i x z_i = 0 for all i

main features are having a wide variety of
collision shapes, continuous collision mode,
and hinge, ball, slider, corkscrew, and custom
joints. We have chosen to use Newton in our
project because of the easy integration,
excellent documentation, wide range of
samples, and the large user community.
Another factor is the stable and relatively easy
convex hull support which we used
extensively for some of our 3D models. We
have prepared an introductory tutorial to help
get started with Newton which can be
downloaded at the provided link below12.

2.7 OpenAL
OpenAL (Open Audio Library) is a cross-
platform (Windows, linux, and Macintosh,
iPhone, and Xbox 360) library that models a
collection of audio sources moving in a 3D
space that are heard by a single listener
somewhere in that space. The basic OpenAL
objects are a Listener, a Source, and a Buffer.
There can be a large number of Buffers, which
contain audio data. Each buffer can be
attached to one or more Sources, which
represent points in 3D space which are
emitting audio. The result of this is that the
sounds behave naturally as the user moves
through the 3D environment and the
programmer does not need to perform much
additional work.

2.8 FMOD
FMOD is a closed-source sound engine that
supports more hardware platforms than any
other audio system including GameCube, Wii,
PlayStation Portable, Playstation 2,
Playstation 3, Xbox, Xbox 360 as well as
various operating systems including Windows,
Linux, and Macintosh. Among its key features
are digital sound processing effect suite,
2D/3D morphing of sound, and 3D reverb
support and geometric occlusion. One

12http://www.cs.brown.edu/people/kbircan/talks/newton
.ppt

 4

Figure1. A bird’s eye view of Twisted Race..

impressive feature is a tool called FMOD
Designer which allows simple or complex
multilayer sound events to be modeled and

created by the sound designer. This way the
programmer is provided with assets and an event
list and the behavior of the audio events are
independent of the game implementation. We
have prepared an introductory tutorial to help get
started with Newton which can be downloaded at
the provided link below13.

13 http://www.cs.brown.edu/people/kbircan/talks/fmod.ppt

3 Twisted Race the Game
The game we created as part of this project is
a fair example of what can be done in terms of
rapid prototyping using a combination of these
engines and libraries. We hope that it can be
used by future CS134 students as a template
implementation for some of the fundamental
next-generation video game tricks as well as a
reference for standard requirements of any
game (graphical user interfaces, game state
handling, AI, game control loop, player
control, user input handling etc.). We also
believe that our code base will be a valuable
resource for CS134 students who want to learn
the theory and practice behind some

 5

fundamental game programming techniques. In
this regard we have demonstrated how techniques
such as ragdoll physics, vehicle simulation,
particle effects, and various shader effects can be
implemented and integrated into a game. As far as
innovative user interaction goes, we have
demonstrated how Wiimote controls and speech
recognition can be a natural and fun part of game
dynamics.

The goal of the game is to collect the energy
spheres (shown as number 1 on the figure below)
and place them on the ring at the other side of the
map (location number 2 on the map). The player
is a race car driver and controls a realistically
simulated rally car. In order to collect a sphere,
the player has to fly over a ramp at one end of the
map. To place a sphere, the player has to fly over
the other ramp and through an energy ring at the
other end of the map. Both ramps are protected by
evil robots who shoot missiles at the player once
close enough. The player can dodge those missiles
or blow these robot up by shooting missiles
himself. There are evil zombies lurking around
who want to stop the player from driving around.
These zombies are immune to fire power and can
only be defeated by physical impact. To make
things harder, there are explosive barrels placed
randomly in the map, which the player can either
dodge or blow up to get more points. The sooner
the mission is completed and the more enemies
and obstacles destructed, the higher the score.
Players take turns trying to finish each level in the
shortest amount of time. With each new level the
enemies get more aggressive and there are more
obstacles in the way.

We have chosen to use Ogre as the rendering
engine due to the largest user community, user
created contents, and commercial quality
rendering capabilities. We are using Newton as
our physics engine for easy integration but as
soon as NVIDIA made PhysX SDK freely
available Newton no longer was the optimal
choice, however it was too late to change our
infrastructure. We have chosen to use FMOD for

sounds because of the wide commercial use in
console games. Not having to change code
across any platform is a huge benefit and the
engine has been used in triple A titles such as
Guitar Hero III, BioShock, Heavenly Sword,
Call of Duty 4, World of Warcraft, and
StarCraft II therefore it was obvious that we
would endorse this engine.

3.1 Ragdoll Physics for Zombie
Simulation
Ragdolls are physics simulated game
characters where the bones are represented as
rigid bodies and are tied to each other via
joints. Ragdolls are usually used as a
replacement for traditional static death
animations. There are various implementation
approaches to ragdoll physics. Verlet
integration14 models each character bone as a
point connected to an arbitrary number of
other points via simple constraints. Inverse
kinematics15 post-processing relies on playing
a cooked death animation and then using
inverse kinematics to force the character into a
possible position after the animation has
completed. In procedural animation is used in
non-realtime media and employs use of multi-
layered physical models (bones, muscles,
nervous system) in non-playable characters
(NPCs). The qualities of the movement are
more natural and provide a more immersive
experience. In blended ragdoll a cooked
animation is used as a constraint to the output
of the physical system would allow. A state of
the art implementation of this technique can
be found in a dynamic motion synthesis
software package called Endorphin by
NaturalMotion16 which uses behavior scripts
to combine physics, AI, and genetic
algorithms to create realistic animations for
game characters.

14 Method for calculating the trajectories of particles in
molecular dynamics simulations.
15 Process of determining the parameters of a jointed
flexible object in order to achieve a desired pose.
16NaturalMotion, http://www.naturalmotion.com/

 6

We have chosen to use a constrained rigid body
approach where we represented each bone as
capsules and connected them with ball-and-socket
or hinge joints. Here we may briefly talk about the
various rigid body and joint types. Rigid bodies
can be one of primitive box, capsule, or filled-
donut shaped chamfer cylinder. They have
properties such as size, orientation, position,
mass, inertia matrix, linear and angular velocities.
Joints define the type of constraints between two
connected rigid bodies. Ball and socket joint
constraints the ball of one body to be in the same
location as the socket of another body. Hinge joint
constraints the two parts of the hinge to be in the
same location and lined up along the hinge axle.
Slider joints have a piston and socket and they
constraint the two rigid bodies to line up along
these two.

We have developed a scalable system that can be
used to create ragdolls for any 3D model with a
skeleton. The rigid bodies and joints need to be
defined in an XML file in the format shown in
figure1. The ragdoll physics simulation is turned
on at the moment of impact. Till then the model is
associated with a capsule shaped bounding
volume. The graphics scene node plays the
animation and the character movement is
governed through applying forces to the bounding
volume. The bounding volume is assigned custom
contact callback functions for desired materials in
the scene (eg. other characters, vehicles, missiles,
props etc.). Through the callback function the
bounding volume is deleted, the animation is
stopped, and the ragdoll simulation is started.
From there on, the rigid bodies behave according
to the forces due to the impact, gravity, friction,
and the constraints created by the joints. We let
the ragdoll simulation run for a certain period of
time and delete the ragdoll bodies after the system
has reached equilibrium. We have observed that
getting rid of the ragdoll bodies improves the
performance of our global simulator.

Figure2. Skeleton we use for the 3D character
model,

<RagDoll>
 <Bone dir="0 1 0" length="0.0"
 shape="hull" size="0.1 0.0 0.0"
 mass="10.0" skeleton_bone="NECK">
 <Joint type="ballsocket"
 pin="0 1 0" limit1="20.0"
 limit2="10.0" />
 <Bone dir="0 1 0" length="0.0"
 shape="hull" size="0.5
 0.0 0.0" mass="8.0"
 skeleton_bone="HEAD">
 <Joint type="ballsocket"
 pin="0 1 0" limit1="40.0"
 limit2="30.0" />
 </Bone>
 </Bone>
 ...
</RagDoll>

Figure3. XML based rigid body and joint
input we provide to our system.

 7

Figure4. On the left is the bounding box view of
the character and on the right is when the ragdoll
is actually turned on.

Figure5. Ragdoll system after having reached a
stable state.

3.2 Vehicle Simulation for the Playable
Character
We have simulated a relatively realistic vehicle by
attaching four tires to a rectangular prism chassis

via ball and socket joints. The tires have
properties such as local position/orientation,
pin position/orientation on the chassis , mass,
width, radius, spring damper coefficient,
suspension spring constant, and suspension
length. The vehicle is driven by first setting
the steering angle then setting a desired torque
to the front tires. Spring and suspension
related properties help simulate a variety of
vehicles. Adjusting the friction coefficient
between the tires and the various regions of
the world (eg. dirt ground vs asphalt track)
help convey the different driving conditions.
A nice extension would be to have different
weather conditions such as rain and snow and
simulate the traction by adjusting the friction
coefficients.

Figure6. Our vehicle system. On the left the
chassis and the four wheels, on the right a 3D
model is attached to the physics system.

 8

3.3 Particle Effects for Fire, Smoke,
and Dust
We have come up with creative ways of using
particle effects in a number of occasions. There
are three major properties of particle systems.
These are particle system attributes such as the
maximum limit of allowed particles, the texture
file, dimension of the texture, and billboard type;
emitter attributes such as the type of emitter (box,
cylinder, ellipsoid, point, ring), its position ,
velocity, color, and time-to-live. The last property
of our particle systems are called affectors and
they can be used to apply linear forces, fade
particle colors, scale, rotate, or apply custom
transformations to the particles. Here is a sample
particle system script that we came up with that
creates an explosion effect:

explosion
{
quota 200
material explosion
particle_width 6
particle_height 6
cull_each false
renderer billboard
billboard_type point

emitter Point
{
 angle 101.7
 colour 1 1 1 1
 colour_range_start 1 1 1 1
 colour_range_end 1 1 1 1
 direction 0 1 0
 emission_rate 200
 position 0 0 0
 velocity 5
 velocity_min 4
 velocity_max 4
 time_to_live 0.2
 time_to_live_min 0.5
 time_to_live_max 0.5
 duration 0.2
 duration_min 0.5
 duration_max 0.5
 repeat_delay 0
 repeat_delay_min 0
 repeat_delay_max 0 }

affector ColourFader
{

 red 0.9024
 green -0.3913
 blue -0.1
 alpha 0.7073
}
}

Figure7. A sample execution of our particle
system.

Figure8. A variation of the explosion script
used as rocket smoke.

Figure9. Dust particles when a vehicle skids.

 9

Figure11. Smoke particles after a barrel is hit.

Figure12. A ring and two linear particle systems
(similar particle systems are used to create laser
beam effects in other games).

We have made all the scripts and materials to
these particle systems available under the
Media/particle/ and Media/materials/textures/
directories respectively.

3.4 Projective Texturing for Craters
and Blood Pools
Projective texturing allows a textured image to
be projected onto a scene as if by a slide
projector. It is essentially a special per-vertex
matrix transformation which is interpolated
linearly in the pixel shader.

1. Create decal frustum (set near/far clip
planes, position, and orientation)
2. Get the material
3. Create a new pass in the material to render
the decal
4. Set our pass to blend the decal over the
model’s regular texture
5. Set the decal to be self illuminated instead
of lit by scene lighting
6. Setup decal texture unit
7. Enable projective texturing, set texture
addressing mode and texture filtering
properties

How the shaders achieve step 6 can be
summarized as the following:
7.1 Render the scene from the light’s point of
view
7.2 Use the light’s depth buffer as a texture
7.3 Protectively texture the shadow map onto
the scene
7.4 Use texture colors in fragment shader

As a result of this procedure desired textures
can be projected onto non-flat surfaces as well
as any object in the scene. The following
figures show in-game examples of how we
used this technique.

This is a common technique used in almost all
next-gen first person shooter games to place

 10

s

Figure13. Crater texture projected on an arbitrary
object in the scene.

Figure14. The same crater texture from Figure6.
rotated and scaled randomly to give the
impression of non-static appearance.

decals on walls where bullets hit. An obvious
improvement to this technique is to use bump-
mapped textures so that the crater or the gun shot
decal looks carved into the surface.

One important issue we have observed is that with
individual pass of projective textures there is
significant loss in frame rates due to additional
shader passes. We have witnessed a possible
driver bug (ATI Catalyst April 16, 2008 for ATI
X600, DirectX 9.0c 4.09.0000.0904) where all
textures in the scene go gray after the 16th decal is
projected on the scene. To circumvent this issue
we have decided to preallocate our decals in a
queue of size 10, then recycle the decals in a first-
in-first-out fashion. This technique also proved to
be faster because no dynamic
allocations/deallocations were being made.
Another common approach is to delete the decals
after a certain period of time which has the
drawback of dynamic memory
allocations/deallocations.

3.5 High Dynamic Range Rendering
(HDR)
HDR lighting is a technique to render highly
realistic lighting effects by using floating-
point textures and high-intensity lights. Unlike
the traditional textures in integer format,
floating-point textures are capable of storing a
wide range of color values. Because color
values in floating-point textures don’t get
clamped to [0, 1] range, much like lights in
real-world, these textures can be used to
achieve greater realism.

Figure15. A shot of the car in front of the sky
before and after bloom shader has been
applied.

Image processing is usually done offline on
the CPU. With pixel shaders they can be
efficiently performed on the GPU as a post-
processing effect allowing them to be applied
in real-time. In this project we have used HDR
to create bloom which is a widely used next-
gen shader effect. The visual effect that bloom
achieves is that bright spots in a scene get
magnified and the area around these spots are
further brightened. In order to achieve this,
two passes of down filter are first performed.
This can be done because the bright spots do
not need to be very detailed. Next, a bright
pass is done where the lower intensity regions

 11

of the image are stenciled out. After that, the
current image is blurred out once in the horizontal
and vertical directions. As a final step, two passes
of up filter are performed to bring the image back
to original size and then the original image and
the processed image are combined.

3.6 Wiimote Control
Since the Wiimote was announced in September
2005 it has received much attention due to its
motion sensing capability, which allows user
interaction through the use of accelerometer17 and
optical sensor technology. There is an open source
movement called Wii homebrew which provides
tools to expand or alter the capabilities to reuse
the Wiimote hardware, accessories, and software.
For our game we have decided to use the
accelerometer of the Wiimote to control the
steering, forward and backward acceleration of
the vehicle. We have used the Wii Remote
Communication API for which allows to connect
the Wiimote through Windows’ Human Interface
Device (HID). This set of classes support
receiving button presses and motion data as well
as setting rumble and LED status. We connect to
the Wiimote through Windows’ Bluetooth HID
service. We have used the BlueSoleil Bluetooth
Stack18 and TrendNet Bluetooth adapter19.

Here is a simplified outline of the steps taken to
communicate with the Wiimote:

1. Start listening to input reports
2. Request the Wiimote to start sending back
motion data
3. while (game_is_running)
 3.1 Get last motion data
 3.2 Interpret motion data
4. Stop listening

17 A device for measuring acceleration and gravity induced
reaction forces. Singe- and multi-axis versions models are
available to detect magnitude and direction of the
acceleration as a vector quantity. They can be used to sense
inclination, vibration, and shock.
18 http://www.bluesoleil.com/
19http://www.trendnet.com/products/proddetail.asp?prod=13
0_TBW-102UB&cat=10

5. Disconnect

The motion data needs to be averaged over the
last several inputs to smooth out the players
motion. Also, when the Wiimote is pitched,
gravity increases the motion value readings
which causes problems when the Wiimote is
shook, therefore initial calibration is required
and the inputs need to be normalized and
clamped to achieve a smooth game play
experience.

3.7 Speech Recognition
We have integrated speech recognition as a
part of aiming system for the vehicle. The
player can use one of the commands {“left”,
“right’, “up”, “down”, “stop”, “fire”, “reset”}
to control to cross hair and shoot a missile.
We have used Microsoft Speech SDK SAPI
5.120 for speech recognition (SR) capability.
SAPI is a very intuitive interface which
enabled us to initialize the SR engine, accept
input from the microphone, and recognize
words in a few lines of code.

Before speech recognition takes place, the SR
engine requires grammar creation and
grammar activation. A recognizer may have
more than one grammar associated with it
which can be of type context free grammar21
or dictation. We load the general dictation
topic file and activate it, after setting the audio
options and dictation states, we launch a new
thread that blocks for audio input. We have

20http://www.microsoft.com/downloads/details.aspx?Fa
milyID=5e86ec97-40a7-453f-b0ee-
6583171b4530&displaylang=en
21 A context-free grammar (CFG) consists of a number
of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a
sequence of one or more nonterminal and terminal
symbols as its right-hand side. For each grammar, the
terminal symbols are drawn from a specified alphabet.
In this context a CFG refers to a user created set of
rules that would constitute a grammar (eg. If we were
developing an application to accept orders via phone,
we would create a grammar to define of acceptable user
input.)

 12

observed that recognition success rate is highest
for single word commands. We have compiled a
list of words that sound like the acceptable
commands to smooth out the erroneous
recognition (eg. “resend” ~ {“resends”, “resent”,
“reset”, “resets”, “recent”} etc). The SR engine
does a fairly good job of recognizing player
commands in real-time as long as there is not too
much noise in the environment.

4 Future Work and Conclusion
We believe that our project constitutes a sufficient
reference code base for most genres of games that
can be developed within a semester. Apart from
the innovative aspects and the various techniques
we have implemented, the project is a sample
work of how rendering and physics should be
integrated, GUIs and HUDs are added, in game
sound should be used, game state and character
controlling should be handled, and in general how
the code should be structured so that the various
modules of the game can best communicate with
each other.

We are very excited with the acquisitions of
Havok by Intel and Physx by NVIDIA and we are
looking forward to getting our hands on the next
versions of their SDK. Our project is not only is a
fun game to play but also a playground of various
technique implementations. We are eager to port
the game to a more advanced physics engine and
come up with new ideas so that we can integrate
the interesting features these advanced engines
have to offer (eg. fluid simulation, cloth
simulation, soft body simulation, advanced
character control etc.).

We think that our suggestions about what public
engines and libraries to use will prove practical by
saving CS134 students considerable amount of
time in the beginning of the project. The tutorials
we have provided still cover most of the
technologies we have analyzed.

Game programming is a best suited for people
who enjoy coding in their free times. It is

unrealistic to expect any one course to cover
all the available technologies and tools.
Therefore the student’s curiosity and
enthusiasm are the driving force to successful
game programming. Game programming is
probably the one area of software engineering
that gets so much affected by hardware and
technology trends. The new lines of CPUs,
GPUs, video consoles, input devices,
networking technologies, mobile devices, and
many more immediately effects on video
games. Unless the students are self-motivated
and are successful in keeping up with the most
recent technologies they will not be able to
avoid falling behind

The game and gameplay videos/screenshots
can be found at the author’s website22.and the
author will be more than happy to provide
technical support with the game and related
issues.

5 References
[1] Verlet Integration,
http://en.wikipedia.org/wiki/Verlet_integratio
n
[2] Ragdoll Physics,
http://en.wikipedia.org/wiki/Ragdoll_physics
[3] Inverse Kinematics,
http://en.wikipedia.org/wiki/Inverse_kinemati
cs
[4] Projective Texture Mapping, Cass Everitt,
Nvidia Developer Zone,
http://developer.nvidia.com/object/Projective_
Texture_Mapping.html
[5] DirectX and XNA Development Kit
Documentation, March 2008.
[6] Wii Remote Communication API,
http://digitalretrograde.com/projects/wiim/
[7] Wii Remote,
http://en.wikipedia.org/wiki/Wiimote
[8] Wii homebrew,
http://en.wikipedia.org/wiki/Wii_homebrew

22 www.cs.brown.edu/people/kbircan

 13

 [9] The HID Page,
http://www.lvr.com/hidpage.htm

 [10] Microsoft Visual Studio 2005 Express
Edition Documentation,
http://msdn.microsoft.com/en-
us/express/aa975050.aspx

 [11] Irrlicht, http://irrlicht.sourceforge.net/
 Ogre 3D, http://www.ogre3d.org/
 [12] Newton Game Dynamics,

http://www.newtondynamics.com/
 [13] Open Dynamics Engine, http://www.ode.org/
 [14] NVIDIA PhysX,

http://developer.nvidia.com/object/physx.html
 [15] OpenAL, http://www.openal.org/

 14

	Making Next-Gen Video Games in Your Basement
	Abstract
	1 Introduction

	2 Practical Tools for Making Video Games on Your Own
	2.1 XNA
	2.2 Irrlicht
	2.3 Ogre
	2.4 ODE
	2.5 NVIDIA PhysX
	2.6 Newton
	2.7 OpenAL
	2.8 FMOD

	3 Twisted Race the Game
	3.1 Ragdoll Physics for Zombie Simulation
	3.2 Vehicle Simulation for the Playable Character
	3.3 Particle Effects for Fire, Smoke, and Dust
	3.4 Projective Texturing for Craters and Blood Pools
	3.5 High Dynamic Range Rendering (HDR)
	3.6 Wiimote Control
	3.7 Speech Recognition

	4 Future Work and Conclusion
	5 References

