GestureBar: Making Gestures
Browseable, Discoverable,
Learnable and Training-Free

Andrew Bragdon
Master’s Project 2008

Department of Computer Science

Brown University

Abstract

The design of GestureBar is a presented, a
system for disclosing and teaching pen-based
gestures, with the goals of making gesture-
based applications approachable and intuitive,
and eliminating the need for introductory
training, videos, crib sheets, or other assistance
— even for users who have no prior Tablet PC or
pen-based gesture experience. The design
draws from user interface concepts users are
experienced with, such as toolbars, icons and
tooltips, to create a top-level interface which is
familiar and inviting. This top-level interface
can be used to launch the Gesture Explorer, an
interface which presents, and allows a user to
browse, procedurally-animated gesture
demonstrations, interactive practice areas, and
additional feature information. The results of a
preliminary pilot user study is presented, which
indicate that the GestureBar approach
outperforms a state of the art crib sheet, and
that GestureBar is effective for teaching a
variety of single-stroke and multi-stroke
gestures from the Line-o-grammer diagramming
application.

Introduction
Pen-based, and multi-touch gestures have many
benefits. They are inherently parameterized,

effectively allowing the user to specify “what to
apply the command on” or “how much” for
example, without additional widgets or dialog
boxes. This physical unification implies that no
additional explicit mode selections, for example
clicking a zoom or move tool, are required to
switch between commands. Because of these,
and other advantages, gestures are arguably
more “cognitively lightweight” and perhaps
physically more efficient than conventional
WIMP interfaces. The user does not have to
leave their work area to select command
buttons on the periphery of the screen, and
many tasks can be simplified into a single
interaction that has been committed to muscle
memory.

Nonetheless gestures have historically always
had one major drawback: they are not self-
disclosing. WIMP interfaces display all of the
available commands onscreen, allowing the
user to browse for the command that they need
when they need it. Gestures, on the other
hand, are fundamentally different in that they
do not involve buttons, menus or other
onscreen Ul, and so they are not inherently
discoverable.

Thus, many gesture-based applications require
the user to watch a training video, or review a
gesture “crib sheet.” Other applications require
a user to step through an introductory tutorial
in which the user performs each gesture until
they can execute it accurately.

However, these approaches are not satisfactory
for a number of reasons. These approaches
create a training phase that a user must get
through, which creates a barrier of entry to the
adoption of such software. Users have come to
expect software to be so intuitive that no
explicit training is required. Moreover,
mandatory, automated introductory training

screens are not practical or efficient for large
and complex applications. Many large
applications have hundreds, even thousands, of
commands. In addition, a given user is typically
only interested in a subset of the available
commands that is relevant to them. Evenifa
user were able to get through the necessary
training, it is quite possible that they will have
forgotten the precise gesture and its nuances by
the time they want to use it.

But even more importantly, users are familiar
with the pervasive WIMP interface paradigm, in
which they first form a mental goal of what they
want to do, then search for a command to
accomplish this task, and lastly once the
command is found, make use of it. The essence
of this process works well. In fact, it is often
taken for granted that most users can begin
using popular WIMP applications without any
training.

Why should this be any different for gestural
commands? Users should be able to learn
gestural commands on the fly as they are
needed. They should be able to browse for the
command that they need. They should not
have to refer to help files or crib sheets.
Absolutely no training, informational videos or
coaching should be required or needed. And
they should feel comfortable learning a gesture-
based application even if they have no prior
experience with pen computing or gestural
commands.

Users should be able to walk up to a gestural
application, and without having ever used a
Tablet PC before, begin using it right away — just
as they might begin using a WIMP application
right away.

The goal of the GestureBar approach is to make
pen-based gestures as intuitive, approachable,

browseable, learnable and self-disclosing as
WIMP commands — while still retaining all of
the advantages of gestures.

Prior Work

GestureBar builds on parts of the work,
“Contextual Animation of Gestural Commands”
by Kurtenbach, et al. (1). In (1), a user may
perform a press-and-hold operation with the
pen, at which point a crib sheet containing
contextually relevant gestures is presented. If a
gesture in the crib sheet, displayed as a static
image of the gesture, is pressed on, a series of
animations illustrating examples of the gesture
will play over the document. Users may then
trace the gestures to execute the corresponding
commands. There are a number key differences
between, and extensions by GestureBar of this
system, however. The approach used in (1)
requires the user to know the press-and-hold
“gesture” that brings up contextually relevant
commands; a significant handicap for first-time
pen computing users. The approach taken with
GestureBar utilizes a top-level toolbar-like
interface instead, eliminating the need to know
the press-and-hold gesture. GestureBar instead
integrates context by using canonical examples,
rather than contextual examples used in (1).
Another key difference is that in (1), a user
learns/practices a gesture by tracing it after it
has been demoed. However, this is potentially
counterproductive if a user does not perform a
gesture correctly — causing adverse effects in
their document. The approach taken in
GestureBar is to instead provide a dedicated,
scoped Practice area for each gesture. Another
drawback of the contextual animations
approach used in (1) is that more complex
“approaches” or “strategies” cannot be readily
explained — as canonical examples are better
suited to illustrate overall methods, approaches

and strategies. A number of other additions
and extensions to (1) exist in GestureBar as well
(see Final System Design, below).

Another approach, taken by Forsberg et al. in
“Tablet PC Music Composition Tool,” (2) based
on their music notepad work (3) is to provide a
tutorial in the form of a crib sheet which the
user can open by pressing a “Demo” button.
The user can then copy/trace each note gesture
to learn them. However, this approach forces
the user to undergo training. A user cannot sit
down and begin using the application by looking
for relevant commands; instead they must first
review and train with the crib sheet. In
addition, the crib sheet cannot be quickly open
and closed for reference as opening it
necessitates clearing the existing document.

Zeleznik et al. took a different approach in the
MathPaper application (4), which makes use of
an interactive training tutorial. The user is
asked to perform a series of actions via a text
description, and can click on a “Show me”
button to receive an animated example. Once
they correctly perform an action, they may
advance to the next task. This approach, while
probably effective for teaching a user to use the
system, again requires a rigorous, up-front
training process for a new user; effectively
requiring a user to invest time in the application
before they can use it. In addition, if a user
forgets how to use a specific feature, they will
have to go through the training process again
rather than being able to reference/practice
that one gesture or action.

The Mouse Gestures add-on for the Mozilla
Firefox web browser (5) makes use of a static,
monochrome cheat sheet docked to the side of
the screen, which users can open (and leave
open) to learn, and reference mouse gestures
for executing various browser commands.

Gestures are grouped into categories, and each
gesture is shown with a text label and a black
and white gesture diagram, with a black dot
indicating the start of the gesture and a black
line indicating the path of the gesture.
GestureBar improves on this design in a number
of key ways. The animated disclosure in
GestureBar allows for multi-stroke gestures,
and helps to reinforce the ordered nature of
even a single-stroke gesture. Since gestures are
fundamentally a motion of the hand, the added
time information in an animation is valuable. In
addition, the cheat sheet approach does not
include a practice area and so the user cannot
try a gesture in a scoped environment, receiving
feedback on their performance from the
system. The user must instead experiment in
their real browser, with the very real possibility
of invoking the wrong command by accident —a
very jarring experience, as not only is the user
confused as to why the expected operation did
not take place, they will be confused as to why
a different, probably unrelated operation, did in
fact take place. Because the docked crib sheet
does not include familiar icons, but instead the
images of the gestures themselves (which are
often abstract in nature, for example a line
down and to the right for “close window”), the
crib sheet is not as inviting as the GestureBar
which can make use of familiar, ubiquitous
icons. Along these lines, the list of gestures is
quite long when fully expanded and so it
actually scrolls off the screen at the standard
resolution of 1024x768. This makes the list
harder to navigate, and also harder to
comprehend as a whole. The GestureBar, on
the otherhand, is designed to fit onscreen at
standard resolutions, and makes use of
groupings to help users understand the space of
commands available. In addition, the additional
space afforded by the Gesture Explorer drop-
down interface provides additional room for a

text description of the command and the
gesture, and also a larger, richer gesture
diagram which can point out essential features
(such as “Right Angle” or “Closed Loop”).

Marking menus have been shown to be an
effective way to disclose, and teach over time, a
specific class of menu-like unparamaterized
gestures (6). GestureBar is intended to address
a different, broader class of gestures —and in
fact, can be used in conjunction with marking
menus, as is the case in Line-o-grammer (7).

Final System Design

GestureBar is a middleware platform for
creating user interface content specific to an
application. Thus, these two aspects — the
middleware platform, and the application-
specific content — form the crux of GestureBar.
The middleware platform governs all aspects of
the way the GestureBar works, looks and feels —
and the application-specific content takes the
form of XML markup (using the XAML standard)
which defines gesture information, icons, tool
tip text, and so on.

In order to test GestureBar effectively, an
underlying application with gestural commands
was needed. Thus, GestureBar was tested
within a diagramming application called Line-o-
grammer (7), and all of the content was tailored
for this application.

GestureBar is comprised of a top-level interface
which is always visible, and a drop-down
Gesture Explorer interface which can be opened
on demand. Application-specific content is
displayed in both.

Top-Level Interface
GestureBar functions, at the top level, just like a
toolbar or ribbon (8). Moreover, because the

commands presented in the GestureBar are
always visible, the user can browse all of the
commands available in the application from one
place no matter what command they are
looking for. The contextual design of the
approach taken in (1) was avoided because
users must guess the correct context to press-
and-hold in to find a command; for example a
user looking for the scrolling gesture mentioned
in (1) would not be able to find these gestures
unless they discovered that they must press-
and-hold in the margins of the drawing area;
thus the contextual approach effectively makes
the available commands harder to browse. In a
large application, many possible contexts may
exist — making it very difficult for a user to find
the command they are looking for due to the
aforementioned press-and-hold command
search process.

The top-level interface is comprised of a series
of tabs. Each tab is divided into sections, and
each section contains one or more buttons.
These logical groupings were introduced to help
users understand the space of commands
available. The user may switch tabs by clicking
on the appropriate tab, changing the buttons
displayed.

Home | Manipulate Alternates File Unimplemented

@ RN (:)31 L] ABC =

Delete Complex Text Fonts + Undo~ Zoom +

Figure 1 — The top-level interface of GestureBar, shown
here with content from Line-o-grammer

Each button consists of an icon and text. If the
user hovers the pointer (using the pen or a
mouse) over a button, a tooltip will appear.
Tooltips display the name of the command and

a description of the feature(s) associated with
the button.

GestureBar’s use of icons rather than static
images of gestures, such as those used in (1),
can be advantageous to new users for many
commands. Consider for example, the
command “Zoom” which is often represented
by the ubiquitous “magnifying glass” icon — this
image is more likely to be familiar/meaningful
to a new user than an image of the double circle
gesture that might be used for zoom in a given
application. Moreover, the overall approach of
using a toolbar/ribbon-like top-level interface
makes GestureBar more approachable due to
its familiar appearance.

Many applications have a need for both
gestural and WIMP commands. For example, in
Line-o-grammer the delete command is gestural
as this creates a fluid and cognitively
lightweight interface for deleting objects and
parts of objects. Page Setup, on the other
hand, is a command which is seldom used on
average and does not require parameters —
since the command simply launches the
standard Page Setup dialog box. Thus, a unique
gesture specific to Page Setup is not necessary
or beneficial, and so a simple WIMP command
can be used instead.

Thus, there are two types of buttons: gesture
buttons and WIMP buttons. Gesture buttons
include a dropdown “chevron” on the right-
hand side of the text. When a user clicks a
gesture button, the Gesture Explorer interface
appears via a transition animation below the
button. When a user clicks a WIMP button, the
corresponding command (specified in content
XML) is executed.

Gesture Explorer Interface

The Gesture Explorer interface consists of a
series of tabs for each gesture variant, a gesture
demonstration unit, a gesture practice unit, and
a text description of the feature.

Home I Manipulats Alternates

Figure 2 — The Gesture Explorer interface drops down
when a user taps on a button in the top-level Ul, and is
comprised of gesture variation tabs, the Gesture
Demonstration Unit, the Gesture Practice Unit, and a
feature description

Each gesture variant tab consists of an icon and
a text label. A user may switch gesture variants
by tapping on a tab. The approach used by (1)
was considered, in which each gesture variation
animation is played sequentially, but this
approach does not allow the user to see the
completed gesture after the animation has
finished, and it also forces users to skip
animations to access the desired variation (or
simply watch a potentially long series of
animations). The gesture variant tab approach
allows the user to both see the completed
gesture and also easily browse to the desired
gesture variation.

Gesture Demonstration Unit

Gestures are presented to the user via a
procedurally generated demonstration
animation of the gesture. Recorded stroke data

is used to animate a virtual penicon as if an
instructor were demonstrating the gesture. The
pen animates “down” at the start of a stroke,
and “up” at the end to help communicate the
nature of multi-stroke gestures. A green dot is
displayed at the beginning of a stroke to
indicate its starting location. A context image is
displayed as well, to help communicate the
contextual or parameterized nature of some
gestures. For example, in the delete gesture
from Line-o-grammer, the animation depicts a
scribble scribble gesture over a background
context of several shapes.

GestureBar shows context in-place by
integrating context into the animations shown
in the Gesture Explorer, and by using canonical
examples — rather than the contextual examples
used in (1). This allows all commands to be
displayed all the time, and moreover, it allows
gestures which use parameters to be more
clearly presented. Consider, for example a
lasso-like gesture for “Select” which asks a user
to draw a lasso around the items they wish to
select. In GestureBar this can be shown directly
through one or more canonical examples,
shown in the Gesture Explorer. However, in (1)
such a parameter becomes increasingly difficult
to show with a static set of example animations.
Consider a case in which a number of complex
shapes are arranged together, and the user
performs a press-and-hold on one of the
shapes. If the user then taps on the “Select”
gesture, how will the system dynamically show
a lasso animation which only lassoes one shape,
and not part (or all of) a smaller neighboring
shape which fits into it, when using a static set
of animations? It is straightforward to conclude
that it would be very difficult to create
contextual gesture examples in the general
case. This problem is avoided through the
GestureBar’s use of canonical examples.

In initial pilot testing, it was found that many
users were not noticing essential aspects of
certain gestures. For example, the Recognize
Text gesture in Line-o-grammer requires a user
to underline the handwritten text and then
perform a vertical flick at the end of the
underline at a sharp angle. Some users did not
understand that the sharp angle was necessary
and drew it at a more relaxed angle, resulting in
recognition failure. As a result gesture detail
tooltips were added; after the gesture
animation is complete, gesture detail tooltips
slide in from the right and point out essential
aspects of certain gestures. Each detail tooltip
includes a red arrow and text. As an example,
the tooltip “Right Angle” transitions in pointing
out this essential attribute of the Recognize
Text gesture in Line-o-grammer.

A green replay button is included below the
animation, as during pilot testing many users
expressed the need to “watch it again.”

During pilot testing, some users mentioned that
they missed the first part of the animations
because they started immediately. As a result,
a brief transition animation was added when
the user first opens a Gesture Explorer
(switching gesture variation tabs does not
trigger the animation). The animation simply
consists of an expanding rectangle, which
serves to introduce a short delay and also
catches a user’s attention.

Gesture Practice Unit

A user’s understanding of a gesture, and the
overall concept of gestural commands, can be
reinforced by using the Practice Unit, after
watching the demonstration animation.
Gestures can be tried in the Practice Unit by
tracing the example overlay, and the user
receives feedback via the result tooltip. If the
user successfully executes the gesture, a green

“Nice job” button is displayed via an animation.
If the user is unsuccessful, a red “Not quite
right.” Button is displayed instead. Tapping the
button will reset the practice area; allowing
them to try again.

In (1) a user may perform any gesture on any
element, which could quite conceivable cause
problems and frustration if the user does not
perform the gesture correctly, and another
action than the one intended takes place — as
the actions taken while tracing directly affect
the user’s document. For example, consider a
scenario in which a user attempts to perform a
move gesture but instead performs a delete.
The GestureBar approach of an integrated
practice area as part of the Gesture Explorer
interface avoids this problem. Because the
practice area is scoped to the specific command
the user has chosen, feedback on the user’s
execution of the gesture can be provided.
Moreover, the practice area is separate from
their document which means that they may
safely experiment in it.

- Rectangle Ellipse

Draw an ellipse in a single smooth
stroke,

Figure 3 — The Gesture Practice Unit gives the user
feedback on their performance of a gesture, shown here
for the Ellipse gesture (top left) and Lasso Select gesture
(bottom right) from Line-o-grammer

The try it area instantiates an instance of the
main application’s interaction canvas inside the
practice area; thus the practice unit behaves
exactly as the real application does. However,
actions taken inside the practice unit by the
user will not affect their real document, giving
them the ability to experiment without fear of
accidentally altering their work.

The practice unit also incorporates context as
well as a tracing overlay. For example, the try it
unit for the Lasso Select gesture in Line-o-
grammer incorporates a rectangle for the user
to select, and a semi-transparent overlay of the
Lasso Select gesture around it.

Gesture Invocation Notifications

To help reinforce the connection between
gestures executed in the application’s
interaction canvas and the GestureBar —and to
give feedback to users that a command has
been successfully invoked, the icon and name of
a command is faded when a gestural command
is invoked. Thus, for example, if the user
performs the delete gesture on a shape, the
delete icon will be faded out next to the user’s
pen-up position (on the right side for left-
handed users, and on the left side for right-
handed users; the operating system-level
setting for handedness is used).

GestureBar Content

The GestureBar platform displays content based
on XAML (a Windows Presentation Foundation
standard) property definitions stored in XML
within an application. The GestureBar supports
Microsoft Expression Blend integration, making
it a straightforward process to create content
for the GestureBar, as the WYSIWYG designer in
Expression Blend can be used to create the
icons, context information, text, gesture stroke
paths, and tab sections and layout.

Designing Content for Line-o-grammer
Because the initial content created for
GestureBar is based on the features of Line-o-
grammer, there were a range of gestures to
disclose to the user, including single-stroke
gestures, parameterized gestures, and multi-
stroke gestures. It is important to note that the
overall effectiveness of GestureBar for a specific
application is impacted by the quality of the
content created for GestureBar.

As the design of GestureBar evolved based on
pilot testing, so did the content design of
GestureBar. Specific changes were made to the
organization of gestures, and the gesture
examples were revised. Additional content was
added to provide more examples to
communicate the nuances of some features,
and additional detail was added in the form of
Practice Unit traceable overlays and detail
tooltips to point out the essential aspects of the
gestures.

The GestureBar content created for the Home
tab of Line-o-grammer is presented below. The
left-most column shows the top-level button,
the center column shows each gesture variation
tab, and the right column shows the Gesture
Demonstration Unit after the animation is
completed.

o

Lasso

5

Tap

J

Drawing

>
Line »

N

D]

2

Editing

h ol
odes- |

Rectangle

D]

4§ Sharp Corners

C

Line

2l
e

One Line

<

Multi Line

Modify
D{ Scrl‘bhEO ut :nwa nted Lines]
Text
ABC ABC b
Teuts Add C,\ C.} \
B fu
Fonts » Apply
(Untitled Section)
- D || p—
1
Redo

E'—T@

Multi-Unda

4

Zoom In

J‘

G

Q

Zoom Out

®

Zoom In

Reverse

Reverse
| »

G

Table 1 — GestureBar content for the Home tab in Line-o-
grammer

In addition, the content of the GestureBar was
also tailored to communicate a high-level
“strategy” for using Line-o-grammer. In Line-o-
grammer, lines are the fundamental primitives,
rather than shapes, which means that users can
draw in additional lines and remove partial line
segments from existing shapes. To emphasize
this difference to new users, additional
variations of the Delete gesture and Complex
Shape gesture were added. A variation of
Delete showing how to delete one line segment
from a square was added to Delete, and a
variation of Complex Shape titled “Modify
Shape” was added, showing a notch being
drawn onto the edge of a rectangle, and then
the excess line being erased to form a closed

polygon.

This approach of illustrating higher-level
strategies can be shown with canonical
examples, and is an advantage of the
GestureBar approach. However, because the
example given may not be the result a user
desires, the contextual approach used in (1)
would run into difficulties. The system would
have to make an assumption about what
geometry the user would want to add, and
what geometry the user would want to remove.
Since the user is then expected to trace the
animation, the user would end up with a result
that is very likely to not be the desired one.
Secondly, the system will have to handle all
possible input geometries via some sort of
procedural animation system (which may not
be as simple as a rectangle) — a hard problem in
its own right.

Evaluation

To evaluate the final design of GestureBar, a
pilot user study was conducted with four test
subjects. Two of the subjects were tested solely
with GestureBar, and two of the subjects were
tested on both a crib sheet and GestureBar.

The overall goal of the evaluation was to
determine whether a user, who had no prior
experience with Tablet PCs or pen-based
gestures, could accomplish a specific series of
tasks with no training, introduction or
assistance. This training-free approach was
critical to evaluating the goal set forth for the
project. In all tests, subjects were told that they
would be using an application for creating
diagrams, that they would be given a series of
tasks to accomplish, that the person running
the study would not be able to answer
guestions related to the software, and that
their use of the software would be observed.

First Test Suite

The first subject was tested against a near-final
version of GestureBar which did not include
tracing overlays in the Practice Urea, several
changes to content, the addition of the delay
animation in the demonstration unit, the
addition of the replay button, or the addition of
the attract animation in the Practice Unit. The
test suite included a series of specific tasks such

”n u

as “draw a rectangle,” “draw an ellipse,” “zoom

in on a corner of the rectangle,” “label the
diagram with the characters ‘abc’,” “create the
following diagram,” etc. For a full list of the
tasks, see Appendix A. Both subjects had no
prior experience with a Tablet PC or performing

pen-based gestures.

The first test subject was a “novice” computer
user, and a student at Brown University. She
was able to perform all of the tasks successfully

10

with no assistance. However, she did
encounter some problems. For the Zoom In
animation, she missed the beginning of the
animation and had to watch the animation
several times to learn the gesture. In addition,
she had trouble replaying animations as the
replay button had been removed in the build.
She also had difficulty learning the alternate
Zoom In command which uses a double-hitch
gesture. She also did not notice the Practice
Unit for most of the test. Overall, though — with
the exception of the alternate Zoom In gesture
—she was able to accomplish all of the tasks
successfully and on the first or second attempt.

The second subject was an experienced
computer user and a recent graduate of Brown
University. The second test subject was run
against a further refined version of GestureBar
which included a replay button, improved
GestureBar content, traceable overlays in the
Practice Unit, and green dots which indicated
the start of a gesture in the Demonstration
Unit. She was able to accomplish all tasks on
her first try. She noticed and made use of the
Practice area right away and was even able to
learn the alternate “double-hitch” Zoom In
gesture easily, possibly due to the
improvements, which the first subject had had
so much trouble with. Overall, the second
subject was able to accomplish the tasks very
quickly and smoothly.

Second Test Suite

After the initial success of the first two subjects,
the test suite was expanded to include more
tasks, as well as a set of descriptive general
tasks where a user was given a specific goal
such as “Make a simple house with a door and
window, and label the house ‘House’ in
underlined text. Don’t forget the chimney.”
See Appendix A for a full list of tasks.

In addition, to create a baseline for a
comparison, a crib sheet in the format of the
Firefox Mouse Gesture crib sheet was created.
This crib sheet format was chosen as the
current “state of the art” in gesture crib sheets,
after examining a number of other similar
approaches. This format is similar to the format
used by Grafiti in the Palm Pilot handhelds, and
other gesture systems. The approach used in
InkSeine (9) was also considered, but it does not
appear to directly translate to general
applications, as the gestures in that system
have a contextual (and often localized) nature.
The Firefox Mouse Gesture approach appeared
to be the best example available of a general
gesture crib sheet. A “crib sheet mode” was
added to Line-o-grammer in which the crib
sheet was displayed with content for Line-o-
grammer on the left-hand side of the
application, just as in the Firefox add-on.
Comparable/analagous content was used to the
GestureBar, and command names were kept
the same as much as possible. All gestures
were displayed in the black-and-white diagram
style used in the Firefox add-on. The crib sheet
was not interactive, except for a vertical scroll

bar.

| Beown University Degartment of . i

Brown Computer Science: The Honors
Acc
cn

S LN ZTXITAS

Browser

[Cless D

Figure 4 — Gesture crib sheet from the Mouse Gesture
add-on for Mozilla Firefox

diting ! Editing
FPPRE— _‘1-;' ‘‘‘‘‘‘‘‘‘ W
Fes ‘j S
—— |
Uriming []
E | -
mes [N\ | pm—
S] e
O - B
- ’1 o e
— A
ot e 1]
e [

- [
=
s [
o)
o 7]
e |

Figure 5 — Line-o-grammer in crib sheet-mode (left), full
crib sheet contents (right)

Each test subject was first tested against Line-o-
grammer in crib sheet mode first, and then
against Line-o-grammer in GestureBar mode —
with the same set of tasks. Initially, it was
planned to use separate subjects for the crib
sheet and GestureBar modes, however, subjects
ended up performing very poorly with the crib
sheet mode — and were unable to complete
many tasks. Thus, as this was still a pilot study,
it seemed worthwhile to run the same subjects
again on the GestureBar mode to see if they
were able to learn the same gestures and
accomplish the same tasks which they failed on
in the crib sheet mode.

The third subject was a computer user of
“intermediate to expert” experience and is a
student at the Rhode Island School of Design.
He ran into a very large number of problems
while using crib sheet mode. He did not appear
to understand, and later confirmed, that he
believed the crib sheet was a series of buttons
used to perform mode switches. It is worth
noting here that the crib sheet does not
respond in any way to taps, and can only be
scrolled vertically. It seems, however, that
because no introduction was given explaining

what the purpose of the crib sheet was, he had
a great deal of difficulty understanding its
purpose. After many false starts, he did
eventually determine that he needed to draw
certain gestures onscreen to execute
commands, but he still appeared to believe that
he needed to tap on the crib sheet to execute
the command. It also seemed apparent that he
did not fully understand the concept of a
gesture, as in many cases he would first try to
use a command by tapping on it in the crib
sheet and then circling what he wanted it to
apply to. Most commands took a minimum of 4
or 5 attempts, and much tapping on the crib
sheet —and many commands required more
attempts than this. He was unable to
successfully complete any tasks related to text
even after numerous attempts, forcing us to
move on to the next task when this occurred.
He appeared to have difficulty locating
commands, and often scrolled the list all the
way up and then all the way back down
repeatedly while searching for a command. In
one particular instance, he said out loud that he
was looking for the Undo command and after
searching the list he was unable to find it.

Later, however, he looked again and he was
able to locate the Undo command in the list. By
the end of the test, he still did not appear to
understand that the images in the crib sheet
were gesture diagrams — and in fact afterward,
he said that he thought they were command
icons. He also complained that the crib sheet
was “hard to scroll” and that it was “difficult” to
find a command. Overall, it seemed clear that
he did not understand the crib sheet/gesture Ul
metaphor.

Thus, the study was continued by running him
against Line-o-grammer in GestureBar mode to
determine if similar problems occurred. The
study started by running him against the family

12

tree task (see Appendix A for details), which
involves drawing boxes, lines and typeset text.
He immediately began using the GestureBar
and learned the Rectangle gesture by using the
Simple Shape button and its Practice Unit. He
then learned the Select gesture by using its
Practice Unit (a gesture he had a lot of trouble
with, and which he did not appear to have fully
learned before) and was able to rearrange some
of the rectangles he had created after selecting
them. He then used the Text Practice Unit to
learn the Text gesture and was able to
immediately start adding text to his diagram, a
task he had tried repeatedly before and had
never succeeded with. He was able to complete
all of the tasks he was given on the first try.
Afterward, he said that the “practice area was
very helpful,” and that it “feels safe” to try a
gesture in. He also said that the “animation
demos were very helpful” and that “the
categories helped a lot” when looking for a
command. He also said that the icons in the
GestureBar were helpful for finding a
command.

The fourth test subject is a computer user of
“intermediate” experience and is an employee
of Brown University. While using Line-o-
grammer in crib sheet mode, she was unable to
successfully complete any tasks — even after
repeated attempts, with the exception of the
first two (“make a rectangle,” and “make an
ellipse inside the rectangle”). Like the first test
subject, she appeared to believe that the crib
sheet was actually a series of buttons and that
the gesture diagrams were actually icons. She
repeatedly tapped on crib sheet items and then
circled shapes in the interaction canvas in an
attempt to execute the commands. She did not
appear to understand that the crib sheet was a
list of gestural commands.

As before, she was then run against Line-o-
grammer in GestureBar mode. When using the
GestureBar she was now able to complete all of
the tasks on her first attempt, or on the second
attempt in one instance; with the exception
that she was unable to perform the alternate
double-hitch Zoom In gesture successfully. She
was able to use the Practice unit to learn
gestures, and appeared to immediately
understand the concept of gestural commands
(a concept which she had previously not
grasped). Overall, it seemed that she was
successful with the GestureBar in learning and
accomplishing the tasks given.

Discussion/Future Work

Pilot testing has shown that users with no prior
experience with Tablet PCs or pen-based
gestures are able to begin using a new software
application and accomplish specific and general
tasks with no introduction whatsoever. In
addition, pilot testing also strongly suggests
that users have significant problems — to the
point of actually not being able to complete any
tasks in the case of one subject — when put in
the same situation and given a crib sheet of the
gestures available in a system, instead of the
GestureBar. Moreover, when these users are
then switched to the same application using
GestureBar they are able to successfully
complete the same tasks. In addition, it is
apparent from the initial testing that users
understand the underlying test application,
Line-o-grammer, and its user interface much
more clearly when the GestureBar is used.

However, there are many opportunities for
future work. The initial pilot testing included
only four test subjects and is thus not
statistically significant. More extensive,
statistically significant user testing of

13

GestureBar and a competing crib sheet is
warranted. New metrics for speed,
understanding, and user satisfaction should be
developed to measure the success in such a
study.

In addition, the author believes there is an
opportunity to add an additional test in which
the approachability of a crib sheet-based
gestural system, and a GestureBar-based
system is compared. In such a test, a user could
be told that they are testing an application for
creating diagrams, and that at any time during
the test they can request a different
application. However, if they change
applications they will not be able to change
back. Thus, a separate set of test subjects could
be brought in to measure the “give up rate” —in
other words, the percentage of users who
become unhappy enough with either of the two
systems to request a different one. If the
GestureBar “give up rate” is much lower than
the crib sheet “give up rate,” this would be a
significant demonstration of the value of the
GestureBar approach — beyond the metrics
measured above.

Future work which investigates adding multi-
touch gesture support to the GestureBar is also
warranted. Moreover, future work which
investigates a multi-modal version of
GestureBar, which incorporates voice
recognition, multi-touch, pen-based gestures,
keyboard interaction, and other interface
paradigms together in one system is also
warranted.

Issues also remain with GestureBar, and the
opportunity for further refinement exists.
Users do not always make use of the Practice
area. In addition, the Practice area does not
give detailed feedback on why a user has
unsuccessfully performed a gesture. In future

studies, exploring a slightly modified crib sheet
which includes more explanatory text is also
warranted.

Acknowledgements

The author wishes to acknowledge the
assistance, advice and sponsorship of Andries
van Dam, Robert Zeleznik, and Andrew
Forsberg.

Conclusion

GestureBar has been presented, a novel system
for making gestures browseable, discoverable,
learnable and training-free. The details of the
approach, a toolbar-like top-level interface, a
drop-down Gesture Explorer interface hosting
an animated Gesture Demonstration Unit and
Gesture Practice Unit, and the content created
specifically for the gesture-based Line-o-
grammer application were presented. In
addition, the details of the iterative design
process used were presented. The results of a
pilot study which tested GestureBar separately,
and also compared it against a “state of the art”
gesture crib sheet were also presented.
Preliminary testing indicates that this is a
promising and successful approach, and that
the GestureBar performs significantly better
than a crib sheet.

References

1. Contextual Animation of Gestural Commands.
Kurtenbach, G. and Moran, T. 1994.
Eurographics Computer Graphics Forum. Vol.
13(5), pp. 305-314.

2. Microsoft. Tablet PC Music Composition Tool.

[Software Application]. 1998.

14

3. The music notepad. Forsberg, Andrew,
Dieterich, Mark and Zeleznik, Robert. 1998.
Proceedings of the 11th annual ACM
symposium on User interface software and
technology. pp. 203-210.

4. Designing Ul Techniques for Handwritten
Mathematics. Zeleznik, R., Miller, T. and Li, C.
2007. Eurographics Workshop on Sketch-Based
Interfaces and Modeling.

5. Mouse Gestures 1.5.2 Add-on for Mozilla
Firefox. [Software Application]. 2008.

6. Kurtenbach, G. The Design and Evaluation of
Marking Menus. [Ph. D. Thesis]. s.1. :
Department of Computer Science, University of
Toronto, 1993.

7. Zeleznik, Robert, et al. Line-o-grammer.
[Software Application]. 2008.

8. Microsoft. Ribbon User Interface, Office
2007. [Software Application]. 2007.

9. InkSeine: In Situ Search for Active Note
Taking. Hinckley, K., et al. 2007. CHI'07. pp.
251-260.

10. SATIN: A toolkit for informal ink-based
applications. Hong, J. and Landay, J. 2000.
UIST'00 ACM User Interface Software &
Technology. pp. 63-72.

11. Gestures without libraries, toolkits or
training: a S1 recognizer for user interface
prototypes. Wobbrock, J., Wilson, A. and Li, Y.
2007. UIST'07 ACM User Interface Software &
Technology. pp. 159-168.

12. Fluid inking: augmenting the medium of
free-form inking with gestures. Zeleznik, Robert
and Miller, Timothy. 2006. Graphics Interface.
pp. 155-162.

13. Can People Use Gesture Commands? Wolf,
C. G. 1986, ACM SIGCHI Bulletin, Vol. 18, pp. 73-
74.

14. Behavioral Experiments in Handmarks.
Gould, J. D. and Salaun, J. New York : ACM,
1987. Proceedings of the CHI + Gl '87
Conference on Human Factors in Computing
Systems and Graphics Interface. pp. 175-181.

15. Automated explanations as a component of
a computer-aided design system. Cullingford, R.
E., et al. 1982. IEEE Transactions on System,
Man and Cybernetics. Vol. March/April, pp.
168-181.

16. Coupling a Ul framework with automatic
generation of context-sensitive animated help.
Sukaviriya, P. and Foley, J. D. New York : ACM,
1990. Proceedings of the ACM Symposium on
User Interface Software and Technology '88. pp.
152-166.

17. Blinkenstorfer, C. Graffiti. Pen Computing.
1995, 50, pp. 30-31.

18. Modeling human performance of pen stroke
gestures. Cao, X. and Zhai, S. 2007. CHI'07 ACM
Human Factors in Computing Systems. pp.
1495-1504.

19. The limits of expert performance using
hierarchic marking menus. Kurtenbach, G. and
Buxton, W. 1993. CHI'93 ACM Human Factors in
Computing Systems. pp. 482-487.

20. Visual Similarity of Pen Gestures. Long, A.,
et al. 2000. CHI'00 ACM Human Factors in
Computing Systems. pp. 360-367.

21. Microsoft. Pen Flicks, Windows Vista.
[Operating System]. 2007.

15

22. Hover widgets: using the tracking state to
extend the capabilities of pen-operated devices.
Grossman, T., et al. 2006. CHI'06. pp. 861-870.

23. Design and Analysis of Delimiters for
Selection-Action Pen Gesture Phrases in Scriboli.
Hinckley, K., et al. 2005. CHI'05. pp. 451-460.

Appendex A: Pilot User Study
Tasks

The series of tasks given to pilot study subjects
for the two tests are given below.

First Test Suite

1 Draw a rectangle

2 Draw an ellipse inside the rectangle

3. Zoom in on a corner of the rectangle

4 Zoom out

5 Zoom in using alternate method (in this
case, hitch gesture)

6. Label the circle with “abc” typeset text
7. Delete all shapes

8. Draw the following diagram:

quite

brown fox >

9. Select all shapes

Second Test Suite
Part |

1 Make a rectangle

2 Make an ellipse inside the rectangle

3. Zoominon a corner of the rectangle

4 Zoom out

5 Zoom in using alternate method (in this
case, hitch gesture)

6. Label the circle with “quick” typeset text
7. Delete all shapes

8. Draw the following shape:

quite

brown fox >

9. Select all shapes

10. Deselect all shapes

10.5. Delete all shapes

11. Make three triangles in a row

12. Select the first triangle and the last triangle,
but not the middle triangle

13. Now select the middle triangle but not the
first or last triangle

14. Delete the first and last triangle

15. Delete the remaining triangle

16. Make a simple house with a door and
window, and label the house “House” in italic
text

17. Add a chimney to the house

18. Undo the chimney

Part Il

16

1. Draw your family tree using boxes, lines and
text. It doesn’t have to be accurate —the goal is
really to draw a tree diagram.

2. Make a simple house with a door and
window, and label the house “House” in
underlined text. Don’t forget the chimney.

	Abstract
	Introduction
	Prior Work
	Final System Design
	Top-Level Interface
	Gesture Explorer Interface
	Gesture Demonstration Unit
	Gesture Practice Unit

	Gesture Invocation Notifications
	GestureBar Content
	Designing Content for Line-o-grammer

	Evaluation
	First Test Suite
	Second Test Suite

	Discussion/Future Work
	Acknowledgements
	Conclusion
	References
	Appendex A: Pilot User Study Tasks
	First Test Suite
	Second Test Suite

