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EXECUTIVE SUMMARY

This paper reports a series of experiments to investigate the hypothesis that a 
Hidden Markov Model (HMM) may provide the basis for estimating core body 
temperature from observed variables such as heart rate and skin temperature. 
The hypothesis suggests that core body temperature can be estimated 
successfully if the temporal nature of core body temperature transitions is know 
along with the probabilities of observing heart rate and skin temperature for a 
given core temperature are also known. In the first two experiments an HMM is 
learned from a set of 12 subjects engaged in a simple exercise regime on a 
treadmill. The HMM is tested against a set of hold out data of an additional 31 
subjects. The HMM in both experiments performs worse than a simple least 
squares linear regression. It is concluded that skin temperature actually hinders 
the HMM and that substantially more data over a greater dynamic range are 
needed. In the third experiment the HMM is learned directly from a data set of 
seven subjects engaged in a multi-day military field exercise. This HMM however, 
performs worse than the HMM trained from the laboratory data. It is concluded 
that noise in the field data collection artificially allows very rapid transitions of the 
core temperature effectively negating the time dependent nature of the core 
temperature transitions. Experiment 4 builds an HMM from the same field data 
but models the core temperature transition probabilities with a lite tailed 
probability density function, and the observation probabilities with a Normal 
distribution. The mean and sigma for the normal distribution are derived directly 
from the field data. This HMM model performs well against the laboratory data on 
average beating the least squares regression by 0.05ºC. In Experiment 5 the 
HMM developed in Experiment 4 is tested against a second completely different 
set of field data. The second field data set comprises 5 subjects engaged in a 
one day military exercise. The HMM model performance is compared to a real 
time thermoregulatory physics model (Initial Capability Decision Aid (ICDA)). On 
average the HMM model provides a significantly closer estimate of core 
temperature 0.3 vs 0.4 ºC than the ICDA model and a significantly higher 
correlation of R=0.72 vs R=0.59 than the ICDA model. It is concluded that the 
developed HMM model can be used as a basis for core body temperature 
estimation in real time monitoring situations, and that the model provides scope 
for individualization.
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INTRODUCTION

Heat stress and the possibility of heat injury is a very real concern to the military 
during both training and active operations (Steinman, 1987). In 2005, the US 
Army reported over 1100 cases of heat injury, with 204 cases of heat stroke. (“US 
Army Heat Injuries”, 2006). Heat illness concerns are not just confined to a 
military setting. Firefighters and first responders while encapsulated in personal 
protective ensembles have an increased risk of thermal stress (Muza et al, 2001; 
Givoni et al, 1972). Thermal strain has also been suggested as a possible 
contributing factor in the sudden cardiac death of firefighters -- the leading cause 
of US firefighter deaths (Fahy and LeBlanc 2006) -- where the cardiovascular 
system is stressed from the competing needs of thermoregulation and strenuous 
work (Smith, 2001).
Various techniques have been suggested to monitor and assess thermal 
strain/stress. The National Institute for Occupational Safety and Health (NIOSH) 
suggest the monitoring core body temperature, skin temperature, sweat, and 
heart rate may be appropriate to indicate thermal strain (“Occupational Exposure 
to Hot Environments” (1986)). The convergence of core body temperature and 
skin surface temperature has also been put forward as a criterion for heat 
tolerance (Pandolf, 1978). Because of the complex interactions between 
physiological parameters, clothing, and environmental conditions finding a 
universal heat strain index has been difficult (Moran et al, 1998). Moran reviews 
and compares a number of historical heat stress indices and proposes a new 
Physiological Strain Index (PSI) for evaluating heat stress using core body 
temperature and heart rate. Retrospective data analysis has demonstrated the 
efficacy of PSI for determining heat stress for Hot-Dry and Hot-Wet environments 
with or without personal protective clothing (Moran 2000). Thus it follows that 
with an effective index, heat stress can be monitored and heat injury or illness 
can be prevented.
The US Army’s warfighter physiological status monitoring – initial capability 
(WPSM-IC) (Tharion et al 2007, Buller et al 2005) is a wearable integrated 
system of sensors and algorithms that was developed to allow remote monitoring 
of a number of health states including thermal state. The WPSM-IC system 
utilizes PSI as a primary means of assessing the thermal state. Although PSI is 
quite robust, its continuous use in an ambulatory setting is hampered by the need 
to obtain reliable core body temperatures. In the lab or even a controlled field 
experiment core body temperatures can be obtained from rectal or esophageal 
probes. During continuous operations, be they training or real missions, these 
instruments are untenable. In certain circumstances a thermometer radio pill (e.g. 
Mini Mitter Inc. Bend, OR)  can be ingested and used (O’brien 1998) in these 
settings.  However, continual use of this device, is restricted by the logistical 
burden imposed by continually replacing pills every day or so.
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To overcome the difficulties of measuring core body temperatures directly a 
number of methods have been developed to estimate core body temperature 
from indirect and more readily obtainable physiologic measures. Models based 
upon thermodynamic equations and physiological models of heat production and 
heat loss to the environment have been proposed as one solution. SCENARIO 
(Kraning & Gonzalez, 1997) takes a range of inputs: metabolic work rate, 
environmental conditions, clothing configurations, and biometric data as inputs, 
and estimates core body temperature. However, these models replace the 
difficulty of measuring core body temperature with the problem of estimating work 
rate which is difficult to accurately measure in the field (Hoyt et al., 2004).
Other methods try to find surrogate measures for core body temperature. The 
measurement of heat flux does appear to show some promise as a core 
temperature surrogate (Gunga HC, 2005) but has been plagued with 
practicalities of location and mounting. Skin temperature is often proposed for a 
core temperature surrogate but individually this technique has been shown to 
have some complications (Taylor NAS & Amos D, 1997). 
While individual parameters may not provide robust core body temperature 
surrogates recent work has shown that the use of multiple physiological 
measures used in conjunction can provide insight into thermal state (Yokota et al 
2005, Buller et al 2008). Buller demonstrated that heart rate and chest skin 
temperature, together, could accurately classify individuals into PSI based 
thermal state categories of "At Risk" and "Not At Risk". Additionally, future core 
body temperature values have been successfully predicted given a sequence of 
previous core temperature values (Gribok et al 2008, 2007). By applying time 
series statistical machine learning learning techniques to multiple physiological 
parameters such as skin temperature and heart rate, this work hopes to to 
generate a model that can estimate core body temperature based upon a time 
series of readily observable parameters. This work effort has three phases: 
theoretical model development, model experimentation and refinement using 
laboratory data, and model training and validation using field data. This paper 
focuses on model development and refinement from experimentation.

HIDDEN MARKOV MODELS
The autoregressive core body temperature time series work of Gribok et al 
(2008) has shown that core body temperature data can predict future core body 
temperature values with some success. In this work the core temperature data 
are not treated as independent and identically distributed (i.i.d.) observations, but 
as having time related dependencies. Very simply the work follows the intuition 
that a future core temperature value at time t+1 will be very similar to the core 
temperature value at time t. In its simplest form this can be modeled by a first 
order Markov chain shown in figure 1. 
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Figure 1: First Order Markov Chain

In this first order Markov model the probability of observing any sequence of N 
observations can be written as:

p x1,⋯, xN = p x1∏
n=2

N

p xn∣xn−1
(1)

Thus the probability of any observation at time n, given all the prior observations 
simplifies to:

p xn∣x1,⋯, x n−1= px n∣x n−1 (2)

Here the probability of the observation xn depends only on the probability of the 
observation itself given the previous observation. However, in our case the goal 
is to estimate core temperature from more readily observed parameters such as 
heart rate and skin temperature. In this case we can treat the core temperature 
as a latent variable. Here at each time point we do not observe core temperature 
directly but observe other physiological parameters that are dependent on core 
temperature. The graphical model is depicted in Figure 2 and indicates that the 
observed variables (X1, ..., XN) - where X can be a single parameter or a vector of 
multiple parameters such as heart rate and skin temperature - are not dependent 
on each other but dependent on the current core temperature (Zt) which itself is 
dependent on the previous core temperature.
Figure 2: Markov Chain of Latent Variables and Observed Dependent Variables
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Thus it is possible to generate a model that can explain a sequence of observed 
parameters by identifying the most likely sequence of latent variables. This can 
be found from the model joint probability distribution:

p  X 1,⋯, X N , z1,⋯, zN = p  z1[∏n=2
N

p  zn∣zn−1]∏n=1
N

p X n∣zn
(3)

1 2 3

The model is composed of three components. Component 1, p  z1 , is the 
probability of latent variable start value. Component 2 , p  zn∣z n−1 , can be 
thought of as the transition probability, or the probability distribution of how the 
latent variable may change from the previous time step to the current time step. 
Component 3, p  X n∣z n is the probability of observing variables given the 
current latent variable. If the latent variable is discrete the model takes the form 
of a Hidden Markov Model (HMM). 
If our core temperature problem is posed as an HMM we wish to answer the 
following question. Given a set of observations (X1, ..., Xt) where Xt is a vector 
containing (HRt , Tskint, and maybe other readily measured physiological 
parameters ) what is the most likely sequence of core temperature states?  This 
question can be solved by using the dynamic programming approach of the 
Viterbi algorithm. 

PHYSIOLOGICAL BASIS OF AN HMM
To construct an effective HMM model we need to understand the physiological 
basis of how each of our model parameters can be expected to behave. For 
example, how does core temperature change over time. How do heart rate and 
skin temperature respond or reflect changes in core temperature. 

Core Body Temperature
As "warm blooded" creatures our bodies regulate our internal body core 
temperature usually between 36.5 and 38.5 ºC. Temperatures outside of this 
range increasingly begin to negatively affect our well being. Heat is either lost or 
gained by the body depending on  environmental conditions. Heat is generated in 
our bodies by our base metabolic functions and any additional work performed by 
our muscles. The body thermoregulates by applying several control mechanisms. 
If the body is getting too hot, warm blood will be diverted from the core to the skin 
surface increasing the skin surface temperature, additionally sweat will be 
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produced to allow fast evaporative cooling of the skin and thus of the blood. 
Cooler blood will then return to the core allowing the core temperature to drop. If 
the body is getting too cold, blood will be diverted away from the skin to try and 
reduce the speed of cooling. Additionally the skin will raise the hairs to trap air 
and increase the insulation around the body. If cooling is still occurring the body 
will begin to shiver to produce heat from muscle action (Castellani 2003).
Since the body is mostly composed of water changes in internal temperature are 
not rapid (usually no more than 0.2 ºC per minute) , and will often show a 
temporal lag from the initiation of work or a temperature control mechanism until 
the desired change has been accomplished.

Heart Rate
In a young and fit military population the major driver of heart rate is exercise. 
Other non-exercise drivers may affect heart rate such as fear and the 
thermoregulation system (Moore 2006). 
A simple assumption is made that heart rate provides both an indication of the 
amount of work being conducted and the degree of thermoregulatory stress the 
body is experiencing.

Skin Temperature
Skin temperature can vary by external temperature, and whether the body is 
trying to shed or conserve heat. If the body is trying to shed heat, skin 
temperature may increase as blood flow increases to the skin and then decrease 
as sweating and evaporative cooling decreases the skin temperature. 
The assumption is made that skin temperature provides some information 
regarding the thermoregulataory system control mechanisms, but should be 
taken in the context of the environmental temperature.

Model Construction
To construct an HMM model the state transition probabilities of core temperature 
and the observation probabilities of heart rate and skin temperature need to be 
determined. In our case these can be learned directly from model training data 
sets. In constructing these probabilities several questions need to be addressed:
1. How does core temperature vary over time? 
2.  What order of Markov model does core temperature change exhibit?
3. If there is a lag in the change of core temperature how do past heart rates 
provide a better understanding of current core temperature than current heart 
rate?
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4. Does Tskin play a confounding role during normal thermoregulation? 
5. Does Tskin play a helpful role when thermoregulation is under stress or 
collapsed?

METHODS
A series of experiments are planned to incrementally develop a core temperature 
HMM. 

Experiment 1: Proof of Concept Hidden Markov Model
The goal of experiment 1 was to generate a proof-of-concept HMM to 
demonstrate the potential of this technique, and to provide an initial performance 
baseline.
In this experiment 43 subjects from a heat tolerance study (Moran 2004) 
exercised at 1.39 m/s at a 2% grade on a treadmill in shorts and a t-shirt for 
approximately 2 hours in an environment of 40 ºC with 40% relative humidity. 
Twelve subjects were labeled as "non-heat tolerant" and 31 subjects labeled as 
"heat  tolerant". The "non-heat tolerant" subjects exhibited a larger range of core 
temperature data over the exercise period and were thus used as the HMM 
training data. 
The HMM comprised of core temperature (discretized into 30 states ranging from 
36.0ºC  to 42.0ºC in 0.2ºC increments) as the first order Markov chain latent 
variable; and heart rate and skin temperature as the observed variables. Heart 
rate was discretized into 30 observed values in the range 50 BPM to 200 BPM in 
5 beat increments, and skin temperature was also discretized into 30 observed 
values in the range 30ºC to 45ºC in 0.5ºC increments. The observed variables 
were combined into a single observation variable with 900 possible values.
A discrete transition probability distribution was formed from the training data by 
computing the state transition frequency counts and normalization term for each 
training subject and then combining these transition frequencies and 
normalization terms to provide discrete transition probability distribution. The 
observation probability distributions given each state were computed from all 
training subjects in a similar way.
The learned HMM model described by the transition probability matrix and the 
state observation matrix was then tested against the 31 "heat tolerant" subjects. 
The model was tested by generating the most likely state sequence given each 
subject's set of observed heart rates and skin temperatures. The most likely core 
temperature sequence was then compared to the actual recorded core body 
temperatures using the root mean squared deviation (RMSD) descriptive 
statistic.
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rmsd=∑t=1
N

 Tt−T t
2 (4)

Where t = each 1 minute time step.
For a comparison core temperature was also estimated using a linear regression 
of heart rate and skin temperature to predict core body temperature. The 
multivariate regression model was learned from the training data, and used to 
estimate core temperature for each of the 31 test subjects. The RMSD 
descriptive static was also calculated for the regressed core temperatures. 

Results Experiment 1
Figure 3 shows the typical physiological responses of the subjects during the 
experimental exercise bout. Table 1, shows the RMSD of HMM and Linear 
Regression estimated core temperature values from actual core temperature 
values. Appendix A contains plots for each of the 31 test subjects showing the 
actual core temperature during the course of the exercise bout along with the 
core temperature estimated from the regression model and core temperature 
estimated from the HMM. 

Figure 3: Typical Laboratory Test Data (Subject 20)
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Table 1: RMSD of HMM and Linear Regression estimated core temperature 
values from actual core temperature values

Subject RMSD
Linear Regression (ºC)

RMSD
HMM (ºC)

1 0.3145 0.5798

2 0.1487 0.213

3 0.136 0.3283

4 0.3057 0.3029

5 0.3238 0.4393

6 0.1695 0.3667

7 0.2265 0.2283

8 0.1619 0.2623

9 0.3037 0.2365

10 0.2419 0.4822

11 0.4044 0.5464

12 0.3207 0.4612

13 0.4687 0.9007

14 0.2495 0.2245

15 0.262 0.2112

16 0.2394 0.4899

17 0.2926 0.4503

18 0.1812 0.2600

19 0.186 0.2982

20 0.2545 0.3691

21 0.2901 0.3623

22 0.2778 0.3567

23 0.3208 0.3856

24 0.4904 0.3629

25 0.4227 0.6457

26 0.1462 0.2805

27 0.2206 0.3264

28 0.264 0.4349

29 0.4359 0.4200

30 0.8908 0.8459

31 0.2459 0.3054

Mean 0.2967 0.3992

SD 0.1444 0.1677

Max 0.8908 0.9007
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Discussion Experiment 1
The simple HMM did not perform as well as the multivariate linear regression 
model with a mean RMSD of 0.40ºC vs 0.30ºC; indicating that on average the 
HMM model estimated core temperature was within +/- 0.4ºC of the actual core 
body temperature. Given the fact that the HMM model was discretized in 0.2ºC 
increments this result would indicate that the HMM was on average +/- two states 
off from the true core temperature state. Additionally, with the limited training data 
and 900 possible observation values from the combination of the two observed 
variables the observation probability distributions likely suffer from very low 
frequency counts. 

Experiment 2: Proof of Concept HMM No Tskin
The goal of experiment 2 was to examine whether the large number of 
observation states in experiment 1 were a factor in the HMM poor performance. 
In this experiment the same data from experiment 1 were used.
The HMM comprised of core temperature (discretized into 30 states ranging from 
36.0ºC  to 42.0ºC in 0.2ºC increments) as the first order Markov chain latent 
variable; and only heart rate was used as the observed variable. Heart rate was 
discretized into 30 observed values in the range 50 BPM to 200 BPM in 5 beat 
increments.
A discrete transition probability distribution was formed from the training data by 
computing the state transition frequency counts and normalization term for each 
training subject and then combining these transition frequencies and 
normalization terms to provide discrete transition probability distribution. The 
observation probability distributions given each state were computed from all 
training subjects in a similar way.
As in experiment 1 the learned HMM model described by the transition 
probability matrix and the state observation matrix was tested against the 31 
"heat tolerant" subjects. The model was tested by generating the most likely state 
sequence given each subject's set of observed heart rates. The most likely core 
temperature sequence was then compared to the actual recorded core body 
temperatures using the root mean squared deviation (RMSD) descriptive 
statistic.
Results Experiment 2
Table 2, shows the RMSD values of the HMM from experiments 1 and 2, and the 
Linear Regression estimated core temperature values from the actual core 
temperature values. Appendix B contains plots for each of the 31 test subjects 
showing the actual core temperature during the course of the exercise bout along 
with the core temperature estimated from the regression model and core 
temperature estimated from the HMM. 
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Table 2: RMSD of Experiment 1 HMM and Linear Regression estimated core 
temperature values from actual core temperature values

Subject RMSD Linear 
Regression (ºC)

RMSD
Exp 1: HMM (ºC)

RMSD
Exp 2: HMM (ºC)

1 0.3145 0.5798 0.4355

2 0.1487 0.213 0.3833

3 0.136 0.3283 0.203

4 0.3057 0.3029 0.3695

5 0.3238 0.4393 0.4719

6 0.1695 0.3667 0.3315

7 0.2265 0.2283 0.1774

8 0.1619 0.2623 0.2564

9 0.3037 0.2365 0.1772

10 0.2419 0.4822 0.3954

11 0.4044 0.5464 0.2669

12 0.3207 0.4612 0.5202

13 0.4687 0.9007 0.7821

14 0.2495 0.2245 0.1446

15 0.262 0.2112 0.2489

16 0.2394 0.4899 0.4958

17 0.2926 0.4503 0.502

18 0.1812 0.2600 0.2613

19 0.186 0.2982 0.233

20 0.2545 0.3691 0.3536

21 0.2901 0.3623 0.4545

22 0.2778 0.3567 0.3006

23 0.3208 0.3856 0.3865

24 0.4904 0.3629 0.3373

25 0.4227 0.6457 0.4595

26 0.1462 0.2805 0.2329

27 0.2206 0.3264 0.397

28 0.264 0.4349 0.1491

29 0.4359 0.4200 0.2432

30 0.8908 0.8459 0.7269

31 0.2459 0.3054 0.407

Mean 0.2967 0.3992 0.3582

SD 0.1444 0.1677 0.1522

Max 0.8908 0.9007 0.7821
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The mean RMSD for the HMM estimated core temperature from experiment 2 is 
significantly better than that from experiment 1 (0.3582 and 0.3992 respectively, 
t=2.16, df=30, P=0.039).
Discussion Experiment 2
While the simple HMM did not perform as well as the multivariate linear 
regression model with a mean RMSD of 0.36ºC vs 0.30ºC the simplified model 
did provide improved results over experiment 1. However, a closer examination 
of the HMM responses from Appendix B indicate that the HMM very rapidly 
transitions through the core temperature states to arrive at a core temperature 
with the most likely observed heart rate. The actual core temperature data 
indicate that this transition process is much slower than that captured in the HMM 
model. 

Experiment 3: HMM Generated from Field Data (Discrete Probability 
Distribution)
The goal of experiment 3 was to develop a more realistic core temperature 
transition matrix and heart rate observation matrix from a data set with 
significantly more data points and containing a larger dynamic range of observed 
variables. 
In this experiment data from 8 subjects collected continuously over a 5 day 
period were used to generate the HMM. The subjects were engaged in a military 
field training exercise where sleep deprivation and hard physical activity was 
normal (Hoyt et al 2004). The data set comprised of over 16,000 data points.
The HMM comprised of core temperature (discretized into 150 states ranging 
from 36.0ºC  to 39.0ºC in 0.02ºC increments) as the first order Markov chain 
latent variable. Heart rate was discretized into 145 observed values in the range 
55 BPM to 200 BPM in 1 BPM increments. 
A discrete transition probability distribution was formed from the field data by 
computing the state transition frequency counts and normalization term for each 
training subject and then combining these transition frequencies and 
normalization terms to provide a discrete transition probability distribution. The 
observation probability distributions given each state were computed from all field 
exercise subjects in a similar way.
The trained HMM model described by the transition probability matrix and the 
state observation matrix was tested against the 31 "heat tolerant" subjects from 
experiment 1. The model was tested by generating the most likely state 
sequence given each subject's set of observed heart rates. The most likely core 
temperature sequence was then compared to the actual recorded core body 
temperatures using the root mean squared deviation (RMSD) descriptive 
statistic.
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Results Experiment 3
Table 3, shows the RMSD values away from the true core temperature of the 
HMM from experiments 1, 2, 3, and the Linear Regression estimated core 
temperature. Appendix C contains plots for each of the 31 test subjects showing 
the actual core temperature during the course of the exercise bout along with the 
core temperature estimated from the regression model and core temperature 
estimated from the HMM. 
Table 3: RMSD values of Experiment 1,2 & 3, HMMs and Linear Regression 
estimated core temperature values from actual core temperature values

Subject Linear 
Regression (ºC) Exp 1: HMM (ºC) Exp 2: HMM (ºC) Exp 3: HMM (ºC)

1 0.3145 0.5798 0.4355 0.6082

2 0.1487 0.213 0.3833 0.696

3 0.136 0.3283 0.203 0.5187

4 0.3057 0.3029 0.3695 0.6986

5 0.3238 0.4393 0.4719 0.4259

6 0.1695 0.3667 0.3315 0.6041

7 0.2265 0.2283 0.1774 0.285

8 0.1619 0.2623 0.2564 0.6195

9 0.3037 0.2365 0.1772 0.7769

10 0.2419 0.4822 0.3954 0.3253

11 0.4044 0.5464 0.2669 0.7147

12 0.3207 0.4612 0.5202 0.3124

13 0.4687 0.9007 0.7821 0.774

14 0.2495 0.2245 0.1446 0.7294

15 0.262 0.2112 0.2489 0.2189

16 0.2394 0.4899 0.4958 0.6512

17 0.2926 0.4503 0.502 0.4805

18 0.1812 0.2600 0.2613 0.846

19 0.186 0.2982 0.233 0.5538

20 0.2545 0.3691 0.3536 0.6138

21 0.2901 0.3623 0.4545 0.6915

22 0.2778 0.3567 0.3006 0.7312

23 0.3208 0.3856 0.3865 0.4656

24 0.4904 0.3629 0.3373 0.6896

25 0.4227 0.6457 0.4595 0.6541

26 0.1462 0.2805 0.2329 0.6416

27 0.2206 0.3264 0.397 0.5739

28 0.264 0.4349 0.1491 0.587
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29 0.4359 0.4200 0.2432 0.7846

30 0.8908 0.8459 0.7269 0.9815

31 0.2459 0.3054 0.407 0.7508

Mean 0.2967 0.3992 0.3582 0.6130

SD 0.1444 0.1677 0.1522 0.1717

Max 0.8908 0.9007 0.7821 0.9815

The mean RMSD for the HMM estimated core temperature from experiment 3 is 
significantly worse than that from experiment 2 (0.6130 and 0.3582 respectively, 
t=-6.80, df=30, P<0.00001).
Discussion Experiment 3
The field data trained HMM perform significantly less well than the HMM trained 
from the laboratory data.  The HMM responses from Appendix C again show that 
the HMM transitions very rapidly through the core temperature states to arrive at 
a core temperature with the most likely observed heart rate. The actual core 
temperature data indicate that this transition process is a much slower than that 
captured in the HMM model. A closer examination of the field data revealed that 
there were a significant number of "noisy" data points. So while the transition 
probabilities could be captured from the field data rapid transitions would also be 
represented as having probabilities >0, leading the model to rapidly transition to 
the state with the most likely observation value.
Experiment 4: HMM Generated from Field Data (Modeled Probability 
Distributions)
The goal of experiment 4 was to develop a core temperature transition probability 
matrix based upon the underlying field data but with a light tail. That is for every 
core temperature only a limited number of transitions are possible. Transitions 
above or below a certain rate will be assigned a zero probability of occurring. 
This experiment also aims to model the observation probability matrix with a 
Gaussian distribution. 
The field data from experiment 3 were used to generate the HMM in this 
experiment. Again the HMM comprised of core temperature (discretized into 150 
states ranging from 36.0ºC  to 39.0ºC in 0.02ºC increments), and heart rate 
discretized into 150 observed values in the range 50 BPM to 200 BPM in 1 BPM 
increments. 
Core Temperature Transition Probability Model
To build a general core temperature transition probability matrix model several 
questions had to be examined:
1) Do transition probabilities vary with respect to core body temperature?
2) What are the transition probabilities?
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To examine whether the transition probabilities vary with core temperature the 
correlation coefficient was calculated for the change in core temperature by 
temperature. The correlation coefficient was close to zero (0.0163) indicating that 
change in core temperature varies independently of the actual core temperature 
value. Figure 4 shows a plot of change in core temperature by core temperature.

Figure 4 Change in core temperature by core temperature

Given that the core temperature changes independently of core temperature 
value a histogram of absolute core temperature changes was developed. Figure 
5 shows a histogram of the absolute change in core temperature over a one 
minute interval. The figure shows the raw values with no filtering for outliers. It 
should be noted that there are very few 0.01ºC changes found in the data set. 
This is due to the limitations of the core temperature pill and receiver technology 
in use at the time. The core temperature pill technology in use at that time 
indicated temperature by the transmission frequency. The receiver technology 
was only capable of reliably decoding 0.02ºC changes in pill temperature. Given 
this fact odd changes in temperature were ignored and a symmetric discrete 
probability distribution was generated from the even temperature changes. This 
probability distribution is shown in figure 6.
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Figure 5: Histogram of absolute change in core temperature during a one minute 
period.

Figure 6 Discrete Probability Distribution for Change in Core Temperature
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Table 4 shows the core temperature probability distribution used to define the 
core temperature transition probability matrix for every discrete core temperature. 

Table 4 Discrete Probability Distribution for Change in Core Temperature
dTc (+/-) 0.00 0.02 0.04 0.06 0.08 0.10 0.12

P 0.4051 0.2197 0.0586 0.0147 0.0030 0.0010 0.0004

Heart Rate Observation Probability Model
In developing the Heart Rate Observation Probability Matrix several questions 
were asked. First to ensure that no complex interactions existed between core 
temperature change and heart rate the following questions were examined:
1) Is there a relationship between heart rate and change in core temperature? 
2) Is there a relationship between the change in heart rate and the change in 
core temperature?
To answer both of these questions correlation coefficients for change in core 
temperature by heart rate and change in core temperature by change in heart 
rate were calculated. The correlation coefficients for both of these analyses were 
close to 0 (0.0162 and -0.0053 respectively) indicating no relationship existed. 
Figure 7 shows a plot of change in core temperature by heart rate and figure 8 
shows a plot of change in core temperature by change in heart rate.

Figure 6 Change in Core Temperature Per Minute By Heart Rate
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Figure 8 Change in Core Temperature by Change in Heart Rate

A correlation coefficient was calculated for the relationship between core 
temperature and heart rate (r=0.43 P<0.05) . We know that due to the thermal 
heat capacity of water a rise or fall in core temperature lags behind an input or 
emission of heat. With this in mind correlation coefficients were calculated for 
each subject for the relationship between core temperature at time t=0 and heart 
rates from t=0 to t=-32. Figure 9 shows the mean correlation coefficients at each 
of the time points for heart rate. The highest correlation between core 
temperature and heart rate occurs with heart rates from 16 minutes earlier than 
the current core temperature. Thus, the heart rate observation probability matrix 
was built using the heart rate data 16 minutes prior to the core temperature data. 
Figure 10 shows a scatter plot of core temperature (t=n) and heart rates (t=n-16). 
A linear least squares regression derived from the data shown in figure 10 forms 
the basis of the heart rate observation probability matrix. 
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Figure 9 Correlation Coefficient for Core Temperature at time t=0 and Heart Rate 
at Time t=0 to t=-32 Min.

Figure 10. Scatter Plot of Core Temperature By Heart Rate
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For a given core temperature the heart rate observed probability distribution is 
given by a Gaussian distribution with the mean calculated from a least squares 
linear regression of core temperature and heart rate from the data shown in 
figure 10. Heart rate is given by the following formula:

HR=66.6667⋅Tcore−2400 (4)

The standard deviation for the Gaussian distribution was also derived from 
experimental field data. For every discrete core temperature a mean heart rate 
and standard deviation was calculated. Over all discrete core temperatures the 
median standard deviation was 18. Thus for each discrete core temperature the 
probability of observing a given heart rate is estimated from:

P HR∣T core=
1

 2
exp−HR−HR

2

2 2  (5)

The trained HMM model described by the transition probability matrix and the 
state observation matrix was tested against the 31 "heat tolerant" subjects from 
experiment 1. The model was tested by generating the most likely state 
sequence given each subject's set of observed heart rates. The most likely core 
temperature sequence was then compared to the actual recorded core body 
temperatures using the root mean squared deviation (RMSD) descriptive 
statistic.

Results Experiment 4
Table 5, shows the RMSD values away from the true core temperature of the 
HMM from the current experiment, experiment 2 and the Linear Regression 
estimated core temperature. Appendix D contains plots for each of the 31 test 
subjects showing the actual core temperature during the course of the exercise 
bout along with the core temperature estimated from the regression model and 
core temperature estimated from the HMM. 
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Table 5: RMSD values of Experiment 2 & 4, HMMs and Linear Regression 
estimated core temperature values from actual core temperature values

Subject RMSD Linear 
Regression (ºC)

RMSD
Exp 2: HMM (ºC)

RMSD
Exp 4: HMM (ºC)

1 0.3145 0.4355 0.1668

2 0.1487 0.3833 0.2395

3 0.136 0.203 0.2498

4 0.3057 0.3695 0.2098

5 0.3238 0.4719 0.0515

6 0.1695 0.3315 0.27

7 0.2265 0.1774 0.07

8 0.1619 0.2564 0.2781

9 0.3037 0.1772 0.4507

10 0.2419 0.3954 0.1015

11 0.4044 0.2669 0.1906

12 0.3207 0.5202 0.1363

13 0.4687 0.7821 0.605

14 0.2495 0.1446 0.387

15 0.262 0.2489 0.4138

16 0.2394 0.4958 0.3668

17 0.2926 0.502 0.3115

18 0.1812 0.2613 0.134

19 0.186 0.233 0.3719

20 0.2545 0.3536 0.102

21 0.2901 0.4545 0.4179

22 0.2778 0.3006 0.1703

23 0.3208 0.3865 0.0948

24 0.4904 0.3373 0.1866

25 0.4227 0.4595 0.2487

26 0.1462 0.2329 0.1831

27 0.2206 0.397 0.1484

28 0.264 0.1491 0.0697

29 0.4359 0.2432 0.1825

30 0.8908 0.7269 0.5707

31 0.2459 0.407 0.3079

Mean 0.2967 0.3582 0.2480

SD 0.1444 0.1522 0.1438

Max 0.8908 0.7821 0.6050
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The mean RMSD for the HMM estimated core temperature from experiment 4 is 
significantly better than that from experiment 2 (RMSD = 0.2480 and 0.3582 
respectively, t=3.76, df=30, P<0.0008). While the mean RMSD score of the 
current experiment is less than that of the linear regression it is not significantly 
different (RMSD = 0.2480 and 0.2967 respectively, t=-1.68, df=30, P<0.103).
Figures 11, 12, and 13 show examples of the HMM performance with selected 
subjects. Figure 11 and 12 show how the HMM accurately models the gradual 
rise in core temperature, while Figure 13 is an example where the HMM does not 
model the response as well.
Figure 11 HMM estimated and actual core temperature for laboratory subject 5
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Figure 12 HMM estimated and actual core temperature for laboratory subject 28

Figure 13 HMM estimated and actual core temperature for laboratory subject 30
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Discussion Experiment 4
The field data trained with modeled probability distributions performs better than 
the HMM trained with the laboratory data. Figures 11 and 12 demonstrate how 
the lite tailed core temperature transition probability matrix effectively models the 
true core temperature transitions. While in general this model is effective there 
are some subjects where the model fails to capture the rise in core temperature 
or transitions too quickly to a high core temperature. This difference between 
subjects could be expected as the model is based upon probabilities derived 
from group data. Given enough data individual transition and observation 
probability matrices could be learned.
Experiment 5: Validation of HMM Model With Field Data
The goal of this experiment is to test the HMM  model developed in experiment 4 
against a set of field data and compare the results to a physics based core 
temperature prediction model. Data from five subjects engaged in a multi-day 
military field exercise (Yokota et al 2004) are used to examine the performance of 
the HMM model. The core temperature for one day of the exercise is estimated 
for the five subjects using the HMM, and the Initial Capability Decision Aid (ICDA) 
(Yokota and Berglund 2006). ICDA is a light weight physics based model that 
simulates the human thermoregulatory physiological system. The ICDA model 
requires the following inputs: Height, Weight, Clothing Configuration, Ambient 
Temperature, Relative Humidity, Solar Load, Wind Speed, and Heart Rate to 
estimate metabolic work rate. RMSD and correlation coefficients are calculated 
for both the HMM and ICDA models compared to the actual core temperature. 
The relative performance of the two models are compared using a paired 
Students  t-test.
Experiment 5 Results
Table 6 shows the RMSD and correlation coefficients for the ICDA and HMM 
techniques. Figures 14 though 18 show the actual core temperatures and the 
core temperatures estimated from the HMM and ICDA models.
Table 6: RMSD and Correlation Coefficients for ICDA and HMM models

RMSD Correlation

Subject HMM ICDA HMM ICDA

1 0.275 0.338 0.891 0.840

2 0.231 0.343 0.827 0.663

10 0.257 0.389 0.356 0.238

11 0.211 0.292 0.766 0.567

15 0.522 0.604 0.751 0.657

Mean 0.299*1 0.393*1 0.718*2 0.593*2

SD 0.127 0.123 0.210 0.222
*1 HMM RMSD is significantly lower than ICDA (t=-7.58, P<0.002)
*2 HMM Correlation Coefficient is significantly larger than ICDA (t=2.13, P<0.009)
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Figure 14: Actual, ICDA, and HMM estimated core temperatures - subject 01 

Figure 15: Actual, ICDA, and HMM estimated core temperatures - subject 02
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Figure 16: Actual, ICDA, and HMM estimated core temperatures - subject 01

 
Figure 17: Actual, ICDA, and HMM estimated core temperatures - subject 11
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Figure 18: Actual, ICDA, and HMM estimated core temperatures - subject 15

Experiment 5 Discussion
The HMM provides a significantly closer estimation of core temperature than the 
ICDA model and also has a significantly higher correlation with the actual core 
temperature than the ICDA model. Additionally the HMM is predicting core 
temperature 16 minutes into the future using only one input parameter - heart 
rate. Conversely the ICDA model is predicting core temperature at the current 
time step using 5 input parameters and subject individualization parameters 
(height, weight, and clothing configuration).

CONCLUSIONS
This series of experiments has lead to the successful construction of an HMM 
that can estimate core body temperature 16 minutes into the future more 
accurately than the state of the art physical core temperature estimation model. 
To the original five questions the experiments provide the following answers:
1. How does core temperature vary over time? 
Core temperature varies in a systematic way that can be modeled by a light 
tailed probability distribution.
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2.  What order of Markov model does core temperature change exhibit?
A first order Markov model appears to be adequate.
3. If there is a lag in the change of core temperature how do past heart rates 
provide a better understanding of current core temperature than current heart 
rate?
Heart rates sixteen minutes in the past provide a better understanding of the 
current core temperature.
4. Does Tskin play a confounding role during normal thermoregulation? 
There is probably not enough data to answer this question fully, however, the 
HMM trained on the laboratory data showed a significant improvement when skin 
temperature was removed as an input variable.
5. Does Tskin play a helpful role when thermoregulation is under stress or 
collapsed?
There currently is not enough data to address this question. However, 
theoretically skin temperature will add information in these circumstances.

It can be concluded that the HMM developed in this series of experiments can be 
used as the basis for core body temperature estimation in real time monitoring 
situations. The model provides scope for individualization, and for use in 
conjunction with other real time models.
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