
RSS Feed Complex Event Detection
Matt Fuller

RSS (really simple syndication) feeds have become largely popular over the last few years. RSS is a web format for
publishing frequently updated content such as news articles or blog updates [10]. In this paper we present an RSS feed
complex event detection (CED) system and simple SQL language we call RSSQL used for declaring our complex events.

1. Introduction

Traditionally users subscribe to RSS feeds of interest
using an RSS feed reader. The RSS feed reader
periodically polls the subscribed feeds for updates or
items to be displayed to the user. Many RSS feeds
usually pertain to a single news source or blog. Others
may aggregate various feeds usually on some topic and
produce a single RSS feed. Middleware publish-
subscribe systems allow users to subscribe a list of
keywords of topics. The middleware may crawl RSS
feeds and filters relevant items matching the users’
subscription [1]. This architecture decouples the
publisher from the subscriber. This type of system can
be described as stateless [2].

We present an RSS Complex Event Detection (CED)
system that allows for more stateful [2] queries on RSS
feeds. Our RSS Query Language (RSSQL) is a
declarative language used to define events of interest on
RSS feeds. We provide a thin client user interface
deployed as a web application for interacting with the
system to register queries and retrieve the results of
these queries. In section 2 we explain how the event
detection works and terminology that will be used
throughout the paper. In Section 3 we describe our
RSSQL language. Section 4 will explain the system
architecture of the RSS CED system. In Section 5 we
discuss some results which our system produced. Section
6 will discuss some related work. Section 7 provides a
conclusion and potential future work for the system.
Finally we include an Appendix that will provide a
“How To” of building and running our system from the
source code.

2. Complex Event Detection & Terminology

A user can register events in our system through our
client interface. The events are declared by our RSSQL
language which we describe in the following section.
Events are defined as activities of interest in our system
[3]. For example, a user may only want to be notified
when comments are left on a blog entry of a certain
topic. A user can define such a query using our RSSQL
language. Once the query is registered into our system it
will be continuously executed so long as the feeds of
interest continue to publish new items.

We refer to individual RSS items as primitive events or
atomic occurrences of interest in the system. Complex
events are built on top of primitives or other complex
events [3]. In our RSS system, primitives that match our
filters and operator (which we will describe in the next
section) will be referred to as complex events. Our
system runs what we will call RSS Sensors which
periodically poll the RSS feeds for new items or
primitives. The primitives that are published on feeds are
recognized by the sensors which then push these new
items for query execution. The results of the complex
events are appended to a file of previously occurred
events. At any time a user can retrieve the current
results. Each registered query has unique MD5 hash
which is used to retrieve the results for a particular
query. The commands are explained in 4.5.

3. RSSQL Language

Our RSSQL language allows for more expressive
queries of RSS content other than keyword queries.
Currently we support a tiny subset of SQL, namely the
SELECT and FROM clauses. Additionally, we support a
subset of the MATCH_RECOGNIZE clause as described
in the paper for pattern matching in sequences of rows
[4]. The content within the MATCH_RECOGNIZE is
where the complex events of interest are expressed. The
paper describes two options for outputting matches: All
Matches or One row per Match. For our RSS application
it makes the most sense to output all matches. One
match per row would be a summary row of all the
matches and not very useful for our application. The
paper describes using regular expressions syntax to
define the patterns for matching. Instead of regular
expressions to define our complex events, we borrowed
event operators from active database research [3]:

And Operator: and(e1, e2,...,en ;w) outputs a complex event when
every ei occurs within the window w in any order.
Sequence Operator: seq(e1, e2,…,en ;w) outputs a complex event
when every ei occurs within the window w in sequential order where
the end time of the previous event does not overlap with the start time
of the net event.
Or Operator: or(e1,e2,…,en) outputs a complex event whenever any
ei occurs. There is no window frame for this reason.

The following is an example query one may register to
be notified of the event where a comment is left on a
blog posting of a certain topic.

SELECT title, description, link, pubDate
FROM all_news, all_blogs
MATCH_RECOGNIZE(
PATTERN and(A, B; 5)
DEFINE A AS keyword_filter({*}, {“Baseball”,
“Scandal”}) AND feed_name = “all_ news”
 B AS keyword_filter({title}, {A.link}) AND
feed_name = “all_blogs”
);

When the query is registered, it registers itself to listen
for new items on our all_news and all_blogs views. A
view is a logical mapping of one to many different feeds.
For example, when new items arrive on all_news we
check to see if the items match our keyword filter. After
we have found matches on our A variable, we look for
matches on our B variable from all_blogs. In this case
we assume a comment on an item matched in A will
contain the title on an item matched in A. If both A and
B occur within the 5 day window, we output a match.

Users can also define their own views on feeds to be
used in their query. To create a view or add a new url to
the system the user can type:

MONITOR feedurl AS viewname;

If a Feed Sensor already exists for that feed url, we
create a logical mapping from the view to our Feed
Sensor. If a Feed Sensor does not exist for the feed url,
we create a new Feed Sensor as well as a logical
mapping from the view to our new Feed Sensor.

4. System Architecture

4.1 Overview

Our system consists of 4 major components. The first
component is the Feed Manager which deploys the RSS
Feed Sensors to poll RSS feeds for updates. The second
component is the Plan Manager which handles
registering RSS Query Plans to be continuously executed
by the query executor. The third component is the query
executor component which handles the execution of a
RSS query plan and interacting with the Storage
Manager to store complex and primitive events. The
final component is the Client interface deployed as a thin
client web application or a command line tool.

4.2 Feed Manager

The feed manager is responsible for spawning new RSS
Sensors and storing their relationships to various views.
Each RSS Sensor runs on a separate thread and
autonomously monitors a feed url. It maintains a hash set
of all previously seen items. At each polling interval, the
RSS Sensor polls the RSS feed for new items. For each
item, if the item’s hash does not exist in the hash set, the
Sensor caches the item and pushes it to any interested
RSS query plans. Every so often the in-memory cache
should be purged to disk by the storage manager.

4.3.1 Plan Manager

The plan manger’s role is to store the RSS query plan
which is continuously executed. After the query is
parsed, the RSS query planner registers the plan with the
interested RSS Sensors. When any sensor receives new
items, it will push the items to the plan. The plan will
call the query executor to run the query. Each plan is
given a unique id by the plan manager. When the plan is
registered with the plan manager, it has to option to call
the query executor on the cached RSS Feed items.

4.3.2 Query Parser

The query parser takes in the RSSQL as text and outputs
a syntax tree for further semantic analysis and plan
generation. The lexical analyzer and parser are generated
using the Java versions of Flex and Bison which are
basically equivalent to the more well known Lex and
Yacc. The Flex generated scanner separates the text into
a stream of tokens defined by regular expressions and
passes the tokens to the parser as needed. A grammar for
RSSQL similar to BNF is used by Bison to generate a
Look Ahead Left to Right (LALR) parser.

This is a “Yes/No” parser with appropriate error
messages. From this we want to build the parse tree.
Within each production of the grammar we can construct
the necessary nodes to build a parse tree. Later this tree
is traversed for semantic analysis and RSS query plan
generation. For semantic analysis, as we traverse the

tree, we check that the views specified in the FROM
clause are registered in the system. Additionally, any
column references in the SELECT or DEFINES clauses
are validated against the RSS Sensor schemas to make
sure that are valid as well. The RSS Query planner is
discussed next.

4.3.3 Query Planner

The Query planner takes as input the valid parse tree and
outputs an RSS Query Plan. The role of the RSS Query
plan is to listen to the RSS Sensors of interest. When the
new items are pushed to the plan it calls on the Query
Executor to check for a complex event match.

As with the semantic analysis, we traverse the syntax
tree to create the plan. We store the projections from the
SELECT list and views defined in the FROM list. Filter
chains are created for each DEFINE AS variable
statement. Filter chains are defined as the predicates that
specify a match for a variable.

4.4.1 Query Executor

The query executor’s function is to detect events of
interest from the primitive events. It takes as input the
RSS query plan and the new items from the RSS Sensor.
For each primitive item, we check to see what variables
the primitive matches. As described in the previous
section, a match on the variable is determined by the
filter chain. For each variable match, we check with the
state of the RSS query plan operator (and, seq, or) for a
complex event match. If there is a match, we output a
complex event. If there is no match, we buffer it in the
operator for subsequent events to match. Complex
events are sent to the Query Result Dispatcher for each
plan. Each plan has an associated output stream.

Currently, the items are written to a file. But,
theoretically, the output stream could be to the output
stream of a socket.

4.4.2 Filters

Currently we support two filters in our system. The
keyword filter takes two vector arguments. The first
vector consists on the columns of the RSS Feed we will
search on. The second vector contains the keywords. The
filter takes a single primitive and outputs either true or
false if the primitive contains the specified keywords.
The keyword filter has two options for matching: all
items or some items.

The price filter takes a product name and price predicate.
We experimented with two price sources. The first
source we send an HTTP post request to the search page
of http://dealsea.pricegrabber.com [5].We attempt the
parse the html for the price of the item returned in the
search result. The html was inconsistent and many times
we fail to retrieve a price.

A better source for a price of a product is using
Amazon.com API Web Service. Using the Simple
Access Object Protocol (SOAP) we send a product name
and Amazon returns results relating to that product name
[6]. There is always a price if the product exists. We
return true or false for the filter if it passes the predicate.

4.5 Client

The client creates a socket connection to our server
running with our RSS CED system. For each client
connection, the server spawns a worker thread for
further client-server communication. The client code
writes the RSSQL bytes to the input stream of the
socket. We came up with our own simple protocol for
sending messages. Using known RPC mechanisms incur
two much overhead for our purposes. We have three
different request types sent in the form RequestType:
message

RegisterRequest is used for registering RSSQL queries and Monitor
requests.
SimpleCommandRequest is used to request information from the
RSS CED system
views: Requests the list of views in the system
feeds: Requests the list of RSS Sensors in the system by URL
[feed name]: Requests the items current and cached for that feed
[view name]: Requests the corresponding Feed URLs associated
with the View
ResultsRequest is sent when the user enters events followed by the
RSSQL hash. This requests a list of the match complex events.

4.5.1 Client Command Line

The command line client is run within a terminal. Users
enter their queries at the command line. The input is read

via stdin. The server response is written to stdout. It runs
continuously until the user enters or types “quit”.

4.5.2 Thin Client Ajax Interface.

For a better user experience, the client is also deployed
as a thin client web application. The web application
provides a text area for entering queries and commands
as well as a read only text area for displaying the results.
The typical HTTP model is synchronous. That is when a
browser sends a request to the server it must wait until
the server sends a response as HTML in which the page
then reloads. If the user is entering many commands, a
page reload after each command will become irritable.
Instead we use the Ajax model to send asynchronous
requests to the server. The user can continuously enter
queries and not have to wait for the responses. The
dynamic changes on the html are done by manipulating
the Document Object Model (DOM) representing the
html. The XMLHttpRequest object is used for data
retrieval. The logic to manipulate the html is
implemented in JavaScript. Getting the Javascript
correct and for all types of browsers and browser version
is a daunting task. Google provides web toolkit for easily
creating Ajax application [7]. The entire web
application can be programmed in Java utilizing the
standard java packages. Serlvet code is written to handle
the request. The Google web toolkit cross-compiles the
Java code into Javascript, XML, and HTML. This can
then be deployed to Apache Tomcat (which we do).

5. Results

We are currently monitoring approximately 230 RSS
feeds obtained from popular news sites such as Reuters,

CNN, ABC, Yahoo News, and the Boston Globe. Some
of the queries we ran were inspired by the example
queries of the Cayuga system as we will explain in the
related work section [2]. One query (as described in our
RSSQL Language section) was to generate a complex
event when someone left a comment about a blog article
about a Major League Baseball scandal. We were able to
obtain many results for that query as there was a
professional baseball player who blogged about the
incident. Many people thus commented on his blog
yielding results for our query.

For another query we were trying to take a step toward
identifying which types of stories new sources were
more interested in different presidential candidates. We
registered a query to search for articles mentioning any
of the 2008 Presidential runners from the two major
political parties. The idea would be to have a count
aggregate count each variable in the operator to
determine which news source favored which political
party. By trying to run some of these queries we realized
that our language made it very difficult to do so.
Languages like Cayuga’s can be more expressive but
with greater complexity. We will describe more in the
next section.

6. Related Work

This system was designed to work with the event
detection as described in Combining Proactive and
Retroactive Processing for Distributed Complex Event
Detection [3]. Although we never integrated, the
primitives written to disk by our storage manager could
also be sent to the query executor of another system.

Cayuga is a system developed in the Cornell Database
Systems group. It is a publish/subscribe system for
stateful event monitoring. Some of our queries for our
system were inspired by some of the example queries of
Cayuga. The Cayuga language appears to be very
expressive and can express more than our RSSQL
language can. Although our RSSQL was a step towards
using simple SQL, it was limited with what it could do.

The subset of the language we used for RSSQL came
from the Pattern Matching over Sequences of rows paper
[4]. This extension of SQL is very useful for stock data.
It performs matching by defining regular expressions
and only does the matching on a single table or a view.
As our events do not generally appear sequentially in
rows of data, we had to loosen that restriction for our
application.

Cobra is a content based filtering and aggregator of
blogs and RSS feeds. It presents a three tiered system of
crawlers to pull the data of many RSS feeds and blogs,

filters to match the published feeds with user
subscriptions, and reflectors to provide a personal RSS
for the subscribed users [1]. Our system has similarities
with the tiers of Cobra. In addition to the filters, we
execute our active database operators for complex
events.

Yahoo Pipes was another inspiration of our system.
Yahoo Pipes is described as a composition tool to
aggregate, manipulate, and mashup content from around
the web. The output of a Yahoo pipe is a chain simple
operators that are combined together to produce a
desired output. In a Unix system, simple commands are
piped together to produce a desired results. Hence the
name, Pipes. Yahoo Pipes is geared for bloggers types
and provides a very intuitive user interface to layout the
pipe chain [8]. It is a stateless system and executes fully
each time one goes to visit the feed. Our system differs
in that we look for events over the RSS feeds as well as
only execute on the newly arrived items storing the
previous matches.

Our system is a continuous query system in the aspect
that for each newly published item we execute the
queries that are interested in this data to produce results.
However unlike a continuous query system such as
TinyDB for wireless sensor networks or Borealis for
stream processing application, our system remains silent
until our complex events occur [3].

7. Future Work & Conclusions

Future work includes working on our RSSQL language
so that we can express queries similar to those of the
Cayuga system while also keeping the language simple.
We should also include more system functions such as
the keyword filter. Cayuga had some seemingly
intelligent functions such as an IsPositive function which
returned true or false if the content was of positive
sentiment.

To scale, we should run our RSS Sensors on different
node. We could create or use a dissemination system
such as XPORT [9]. Another problem we encountered
was when we polled certain RSS feeds at too frequent of
a rate; we got shut off from the source to poll the RSS
feed. We should also look into how often to poll certain
feeds. Some are updated more than others.

We presented a RSS complex event detection system.
Users can register queries to define complex events of
interest. Our system continuously polls RSS feeds and
pushes the new items to our query executor to match

events. We also provide a client command line tool and
web interface to interact with our RSS CED system.

8. References

[1] I. Rose, R. Murty, P. Pietzuch, J. Ledlie, M. Roussopoulos, M.
Welsh. Cobra: Content-based Filtering and Aggregation of Blogs and
RSS Feeds.

[2] A. Demers, J. Gehrke, M. Hong, M. Riedewald, W. White.
Towards Expressive Publish/Subscribe Systems. In Proceedings of
the 10th International Conference on Extending Database
Technology (EDBT 2006), Munich, Germany , March 2006.

[3] M. Akdere. Combining Proactive and Retroactive Processing for
Distributed Complex Event Detection.

[4] Anonymous. Pattern Matching in Sequences of Rows. March
2007.

[5] Dealsea. http://dealsea.pricegrabber.com.

[6] Amazon Associate Web Service. http://www.amazon.com.

[7] Google Web Toolkit. http://code.google.com/webtoolkit.

[8] Yahoo Pipes. http://pipes.yahoo.com/pipes.

[9] O. Papaemmanouil, Y. Ahmad, U. Çetintemel, J. Jannotti, Y.
Yildirim. Extensible Optimization in Overlay Dissemination Trees.
In SIGMOD, June 2006.

[10] RSS. http://en.wikipedia.org/wiki/RSS_(file_format).

Appendix

The contents are package in two tars. rssced.tar is the server side of the system. rsscedweb.tar is the Ajax web application.
It also contains the war file to deploy as a web app. A list of client commands is listed in the Ajax client as well as in 4.5.

rssced.tar

src (the source code)
events (the directory when primitive events are stored)
lib (any jars needed by the system)
properties (when the system parameters are stored)
rss (when the primitives are stored)
sources (where our system feeds urls are stored)
tools (lex, yacc tools)
build.xml (the ant build file)

Edit any system parameters in the server.properties file in the properties directory. Such parameters are the polling
intervals for the RSS Sensors, the server port number, and directories of where to store events.

To run the server type: “ant” or “ant server”
To run the command line client type: “ant client”
To compile type: “ant compile” (typing ant server and ant client also compiles)
To generate a new parser and lexer type: “any parser-compile”

rsscedweb.tar

The only directory to be concerned with is
src (the source code)

To generate a web directory type: “ant” or “ant webify”
To generate a war file type: “ant war”

Then just deploy to Apache Tomcat or some other web application server.

