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ABSTRACT 
The purpose of this document is to summarize ongoing research 
into handling uncertainty in database systems, and present my 
contributions to that research. Uncertainty presents a particular 
problem for databases because the relational model leaves no 
room for ambiguity in database fields. Traditional database 
operators such as selection and join operate on constant values as 
opposed to probability distributions. In order for a database 
system to correctly handle this uncertainty, values must be 
sampled from the distributions and the operators must operate on 
those sampled values. If this process is not done intelligently, one 
join operation on deterministic data can turn into one thousand 
join operations on probabilistic data. Additionally, if the 
uncertainty of different attributes is correlated, the entire joint 
distribution of all the correlated attributes must be sampled at 
once, as opposed to sampling from each distribution individually. 
In this paper, I describe the query semantics for handling 
correlated uncertainty, jointly developed with Tingjian Ge. I then 
describe the S-Join algorithm that efficiently performs a join 
when the join attribute is a continuous distribution, also 
codeveloped with Tingjian Ge. Finally, I present experimental 
results that I obtained from an implementation of the algorithms 
that I constructed.  This work is discussed in much greater detail 
in a paper of the same name, authored by Tingjian Ge, David 
Grabiner, and Stan Zdonik [1]. 

1. INTRODUCTION 
Uncertainty arises in multiple applications, especially in the 
scientific world. Any sensor that monitors a continuous value, 
such as temperature or position, is likely to have uncertainty in 
that value. A database system needs to account for that 
uncertainty in answering queries. For example, let’s imagine a 
temperature sensor whose readings have a known variance of one 
degree, and the results of the sensor are stored in a database.  
Imagine this database contains a tuple T1 which indicates that on 
Sunday the temperature was 79 degrees. Now someone queries 
the database for all rows with temperature greater or equal to 80.  
Should R1 be included in the result set? In a traditional database, 
the answer would be no. However, there is a 16% chance that the 
temperature represented by T1 was actually over 80 degrees 
because of the uncertainty in the sensor. Databases for scientific 
applications need to be able to handle this uncertainty and it 
should manifest itself in query results. 
The uncertainty problem is further complicated when the 
uncertainty between different values is correlated. Imagine that 
my database can handle the situation above and when queried for 

temperatures above 80 will tell me that the probability that T1 is 
in the result set is 16%. Now imagine that the database contains 
another tuple T2 which indicates that on Monday the temperature 
was also 79 degrees. Now the database is queried for two 
consecutive days in which the temperature was above 80 degrees. 
Since T1 and T2 both have a probability of .16 of representing a 
temperature over 80 degrees, the probability of the result set 
containing the combination (T1,T2) is 0.16*0.16 = 0.0256, 
assuming the measurements are independent. However, the 
measurements are not independent; they come from the same 
sensor. What if the sensor is precise but inaccurate and all 
measurements have the same error due to the sensor itself? In that 
case, the database needs to handle this correlated uncertainty and 
report that combination (T1,T2) should actually be in the result set 
with probability 0.16 rather than probability 0.0256. 
The rest of the paper is organized as follows. Section 2 describes 
the query semantics developed to handle correlated uncertainty.  
Section 3 presents a join algorithm designed to efficiently handle 
uncertain join attributes. Section 4 summarizes experiments 
performed on an implementation of the join algorithm, and 
Section 5 concludes the paper. 

2. QUERY SEMANTICS 
It is not immediately obvious what the semantics of queries in the 
presence of correlated uncertainty should be. Not only must the 
semantics incorporate probabilistic membership in the result set, 
they must also incorporate uncertainty in result values. As an 
example, consider the query from the introduction of all rows 
with temperatures greater than 80. Tuple T1 has a temperature of 
79 with a variance of 1, and should thus be in the result set with 
probability 0.16. However, it does not make sense for a row in the 
result set to have a mean temperature value of 79. Since the 
results should only include values greater than 80, all rows in the 
result set must have means above 80. To rectify this problem, we 
must treat the distribution on the temperature attribute of the tuple 
in the result set as a conditional probability distribution.  The 
value in the temperature field should be the mean value of the 
temperature given that it is above 80 degrees, even though its 
unconditioned mean was 79. In this case, the result set should 
contain the result row RT1, derived from T1, with probability 
0.16.  The value of the temperature field in RT1 must be 80.5, 
which is the conditioned mean of T1 having a temperature above 
80. 
Thus, two uncertain elements must be well-defined in the query 
semantics: The probability of membership in the result set and the 
value of uncertain fields given membership in the result set.  



Tingjian Ge and I have jointly developed two formalizations of 
what the query semantics should be. The first is integral-based, 
and the second, more practical formalization is sampling-based.  

2.1 Integral-Based Semantics 
For a full description of the integral-based semantics, see section 
2.1 of [1]. The intuition behind these semantics is that the 
probability density function of an uncertain attribute X covers 
some area A. Given a query q, there is a subregion A+

 of A in 
which q(X) produces a tuple t in the result set and a 
complimentary region in which no result tuple is produced. We 
would like to know the total mass of the probability density 
function that falls within A+. To find this mass, we integrate over 
the region. In our temperature example query, the probably 
density function of T1 is a normal distribution with mean 79 and 
variance 1 where the A+ region is everything greater than 80.  
Thus Pr(RT1) is the integral from 80 to positive infinity of that 
distribution.   

When multiple input tuples are correlated, their joint probability 
density function must be integrated over. The query q can be 
thought of as a function that takes in a series of values and returns 
the result tuple t when those values satisfy q’s predicate.  The 
integral that calculates the probability of the result tuple t, Pr(t), is 
presented below.     
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In this integral, f(X1,X2,…,Xn) is the joint probability density 
function over correlated attributes X1 through Xn. When the input 
tuples are correlated it will often be the case that result tuples are 
correlated as well. In this case, the query q maps input values to a 
set of result tuples t1 through tk.  The probability of that set of 
tuples being in the result set is given by: 
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Now consider the case of uncertain values in result tuples. If a 
result tuple t has an uncertain attribution y, then the probability 
densifty function over y, f(y), can be calculated using a similar 
procedure. In this case, the function q returns a value for y given a 
set of input tuple values.  The function f(y) can be calculated as 
follows: 
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2.2 Sampling-Based Semantics 
The integral-based semantics is correct but not very practical. To 
realize an actual database system, integration must be replaced by 
Monte Carlo sampling. As the number of samples N approaches 
infinity, the result Pr(t) will approach the true Pr(t) that would be 
obtained from solving the integral. In this framework, query 
evaluation proceeds as follows: For every uncertain value in an 
input tuple, a random sample is drawn from its distribution. The 
query then operates on these values as if they were deterministic 
values and produces a result set. This process is then repeated N 
times. Going back to our temperature example, this is akin to 
drawing N samples from the normal distributions represented by 

tuples T1 and T2 and evaluating the query every time a pair of 
samples is drawn. 
Because result tuples will likely be correlated, the results of query 
evaluation must reflect this correlation. To achieve this end, each 
result tuple is augmented with a bit vector which delineates which 
sampling rounds yielded that tuple. For example, if N = 5 and 
tuple RT1 was produced in the first and fourth round while tuple 
RT2 was produced in the first and third round, RT1 will be 
augmented with the bit string 10010 and RT2 will be augmented 
with 10100. Now, Pr(RT1) can be obtained by taking the 
cardinality of the RT1 bit string and dividing by N. In this case 
Pr(RT1) = 0.4 and Pr(RT1) = 0.4. Pr(RT1, RT2) can be obtained by 
performing the logical AND of the two bit strings and dividing 
the cardinality of the result by N. In this case, Pr(RT1, RT1) = 0.2 
as opposed to 0.16 which would be the result of multiplying the 
two marginal probabilities together. Performing query evaluation 
through Monte Carlo sampling thus provides a powerful 
framework that can handle and express correlated uncertainty in 
tuples. 

3. SAMPLING-BASED JOIN (S-JOIN) 

3.1 The S-Join Algorithm 
One of the drawbacks to query evaluation through sampling is 
that it is a very time-intensive process. If 1000 rounds of sampling 
are used, then every query must be evaluated 1000 times. 
Traditionally, the join operation has been one of the larger 
bottlenecks in query evaluation. Performing 1000 joins every time 
a join query is posed would be a painful process. To alleviate this 
pain, we have developed a join algorithm that takes advantage of 
the structure of the sampling problem to provide a significant 
speedup over running a standard join algorithm over and over. We 
call our algorithm the S-Join algorithm. 
The S-Join algorithm performs a join where the join attribute is 
uncertain. Returning to the temperature example, what if we are 
interested in finding two days that have the same temperature?  
To realize this query in SQL, a self-join must be performed where 
the join attribute is the uncertain temperature attribute: 
SELECT temp1.day, temp2.day  
FROM temperature as temp1, temperature as temp2 
WHERE ABS(temp1.value – temp2.value) < ε AND  

temp1.day != temp2.day 
In this query, value of the temperature table is an uncertain 
attribute. Assuming that the uncertain attribute is sampled from 
1000 times, naively evaluating this relatively simple query will 
result in performing 1000 join operations on a table that could be 
very large. 
The intuition behind the S-Join algorithm is that given a series of 
uncertain values, the order of samples drawn from their 
distributions should be similar to their expected values. Thus if 
the uncertain values are sorted by their expected values and then 
samples are drawn in that order, the samples themselves should be 
pseudo-sorted. We refer to the order of the tuples when sorted by 
expected value as the expected order. For example, assume the 
temperature table has the following tuples in expected order 
(presorted by expected value), each with a variance of 1: 

ID Day Expected Value 



1 Monday 79.0 

3 Wednesday 82.0 

2 Tuesday 85.0 

 
Now imagine the following samples are drawn from the three 
distributions: 

ID Day Sampled Value 

1 Monday 79.5 

3 Wednesday 82.4 

2 Tuesday 84.9 

 
Notice that the sampled values, drawn in the same order as the 
expected values, are in correct sorted order. This will not always 
be the case but it will be most of the time. 
We can thus sort the expected values once using a fast sort 
algorithm, such as quicksort, draw samples, and use an insertion 
sort to correct the order of the samples. While an insertion sort 
takes time N^2 to sort a random series of values, if it can be 
guaranteed that any one value is only k spots away from its 
correct location, where k << N, the time decreases to N*k. 
Because sampling should not drastically alter the order of values 
from the order of their expected values, we feel confident in this 
guarantee for some small k. 
The algorithm thus proceeds as follows. Perform an external sort 
on the input tuples according to their expected value, putting them 
in expected order. We assume that sampling will not change the 
order of a tuple more than k pages. Let’s take k = 2. Now allocate 
3 pages in memory for each side of the join for some number of 
rounds R. R is selected so that 2*3*R pages are able to fit in 
memory at once. Read in the first three pages of the externally 
sorted tuples. As each tuple is read in, draw R samples from the 
distribution on its join attribute. When a sampled value is drawn 
for round r, insert that value into r’s pages using an insertion sort, 
maintaining sorted order in each round.  
In the example above, the process entails reading in the Monday 
tuple from the table in expected order, drawing R samples from 
that tuple and populating R rounds with those R samples.  Then 
the Wednesday tuple is read in and sampled R times.  Those R 
samples are inserted into their respective buffers, which each 
already contain a sample from the Monday tuple, using an 
insertion sort. The process is then repeated for the Tuesday tuple. 

 
Figure 1. Sampling and sorting the first three example tuples 

over four rounds 
After this sampling process is complete, we can perform a merge-
join on the first page of every round. Because of our assumption 
that tuples can only deviate k=2 pages from expected order, the 
first of these pages will be in final sorted order while the next two 
will be temporarily sorted. This is because only values sampled 
from tuples in the first three pages can end up in the first page. 
Tuples whose expected order puts them in the fourth page cannot 
be in the first page when ordered by sample values, so the first 
page must be in final sorted after reading and sampling the first 
three pages. The second and third pages are temporarily sorted but 
are not in final sorted order because tuples from the fourth and 
fifth page, which have not yet been sampled from, may need to be 
interspersed within the second and third page.  Now the merge 
process is performed over the first page in every round. After 
enough memory has been freed up through consuming pages 
while merging, a new page is read in and sampled from and 
another insertion sort is performed with the samples from this new 
page. As a result, another page is now in final sorted order and 
can be merged in each round. This process continues until 
sampling and merging is complete. 
Let’s assume we use 0.5 for epsilon in the original temperature 
query: 
SELECT temp1.day, temp2.day 
FROM temperature as temp1, temperature as temp2 
WHERE ABS(temp1.value – temp2.value) < 0.5 AND  

temp1.day != temp2.day 
If the three tuples (Monday, Tuesday, and Wednesday) are the 
only tuples in the temperature table and only four rounds of 
samples are drawn as shown in Figure 1, the results of the join 
are: 

temp1.day temp2.day bitVector 

Tuesday Wednesday 0100 

Monday Wednesday 0010 

 
Analyzing the two result bit vectors as described in Section 2.2 
yields Pr(T,W) = 0.25 and Pr(M,W) = 0.25. 



The S-Join algorithm provides a significant speedup over naively 
performing all joins independently because only one external sort 
must be performed (on the expected values of the original tuples). 
The only subsequent sorts are in-memory insertion sorts on tuples 
that are already nearly sorted. Additionally, by performing 
multiple rounds together, unnecessary disk accesses are 
eliminated. If 200 rounds can be performed at once out of a total 
of 1000 rounds, the externally sorted tuples need to be read from 
disk only 5 times as opposed to 1000 times.   

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. The S-Join Algorithm 

 

4. EMPIRICAL STUDY 
 
I have implemented the S-Join algorithm in Java. The 
implementation takes in two representations of database tables 
and performs a join on them, using a configurable number of 
rounds. The number of rounds to perform at once is also 
configurable, as is the maximum displacement of a tuple after 
sampling. I also implemented two naïve join algorithms. The first 
algorithm performs the join on every round independently. The 
second algorithm externally sorts the expected values as in the S-
Join algorithm and then resorts the pseudo-sorted samples with an 
insertion sort. However, sampling and merging of rounds is done 
in series so the input tuples must be read from disk every round. 
The experiments were run on a Debian Linux workstation with an 
AMD Athlon-64 2 Ghz processor, 512 MB memory and a 
Samsung HD160JJ disk. Additional results can be found in [1]. 
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In this section, I use a real world application, multi-sensor 
tracking [2], to empirically study the following issues: 

 

• Using our proposed correlation model and sampling 
algorithms, how does the query result compare with a 
model that assumes independence on the attribute 
values of different tuples? 

• How is the performance of our S-Join algorithm? How 
does it compare with a naïve algorithm that performs a 
multi-round join operation? 

4.1 Problem and Setup 
A common vexing problem in multi-sensor tracking is to devise a 
mapping between the tracks of one sensor and the tracks of 
another sensor, assuming both sensors are tracking the same 
objects [2]. Once a mapping has been verified, tracks from 
different sensors on the same object can be fused together to form 
a single object track. This problem, known as the track-to-track 
correlation problem, is well-suited for our study because of the 
nature of errors in sensor tracks. Track errors are often the result 
of bias in the sensor that maintains the track. Thus, it can be 
expected that errors in tracks that originate from the same sensor 
will be correlated in some fashion. I generate synthetic datasets 
for the tracks of different sensors and model correlation of errors 
for tracks originating from the same sensor with a simple 
graphical structure (cliques of size two). Each track itself also has 
a random error independent of other tracks.  

4.2 Correctness 
As an example, Figure 4 shows the positions in X and Y of six 
objects, each being tracked by two sensors. Tracks 1-6 belong to 
sensor 1 and are illustrated with dots in solid-lined circles.  Tracks 
A-F belong to sensor 2 and are illustrated with dots in dashed-
lined circles. The dots in the center depict the reported position of 
each track, the original value in our model. The circles around 
those dots are drawn one standard deviation away from the center 
and serve to demarcate the correction value in our model. The 
actual position of a track is the original plus the correction. The 
errors of the tracks from the same sensor are correlated due to the 
common sensor error. Individual tracks also have a random error. 

Figure 2. Illustrating sampling-based join algorithm. Multiple 
unds are carried out in parallel. Each round has 3 pages in 

uffer for each side of the join (T1 and T2). Pages for round 1 are 
ll sorted. For other rounds, initially the 3 pages of a relation are 
eudo-sorted. As insertion sort is performed, the 1st page is 

sorted while the other two are still not in their final sorted form, 
ince tuples from following pages may need to be mixed in. 
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(1) Externally sort the input tuples according to their 
expected value 

(2) Allocate 3 pages in buffer for each side of the JOIN for 
each round (for a number of rounds that can fit in the 
buffer space). 

(3) For each round: 
(4) Obtain fresh samples for the 3 pages in buffer (for 

each side of JOIN) and arrange them in pseudo-
sorted order determined by (1). 

(5) Perform an insertion sort on the pseudo-sorted 3 
pages (for each side of JOIN). After doing this, 
according to our assumption, the first of the 3 
pages will be exactly sorted, and the other two 
pages will remain pseudo-sorted. 

(6) End 
(7) For each round, repeat the following until JOIN 

finishes (all rounds in parallel, e.g., in a lockstep or in 
round-robin fashion), 

(8) Do the “merge” step of the JOIN on the exactly 
sorted pages. 

(9) Replaced consumed pages with new ones 
(10) Obtain a set of fresh samples for the new pages and 

perform insertion sort to adjust the order. This 
converts another page (the oldest among the three) 
from pseudo-sorted to sorted. 

(11) End 



 
Figure 4. Example track from two sensors 

 
Let us define T1 as the set of all tracks belonging to sensor 1 and 
T2 as the set of all tracks belonging to sensor 2. A mapping M is 
defined as a set of pairs  such that each t1 1 2 2( ,t T t T∈ ∈ ) 1 and t2 
appear exactly once. The probability of a mapping M being valid 
is the probability that distance (t1, t2) < ε for all pairs (t1, t2) in M. 
Under an (erroneous) independence assumption, 

1 2Pr( ) Pr( )M t t= ≈∏ .  

The query necessary to create this mapping is: 
SELECT sensor1.trackID, sensor2.trackID  
FROM sensor1, sensor2 
WHERE SQRT( POWER(sensor1.x – sensor2.x, 2) +  

          POWER(sensor1.y – sensor2.y, 2)) < ε 
 
In this case, the result of note is not any individual result tuple but 
a joint distribution on many result tuples. In the semantics defined 
in Section 2.2, each result tuple will be accompanied by a k-bit 
array where k is the number of rounds of sampling. The value of 
bit i for tuple t will be 1 if that tuple is a member of the result set 
in the i’th round of sampling. Thus I can compute the probability 
of any mapping M by doing a bit-wise AND of all the bit arrays of 
result tuples in M, counting the number of 1s, and dividing by k. 
To the naked eye, it looks obvious that track 1 should be paired 
with track A, track 2 with track B, and so on. However, our 
experiments show that if independence between track errors is 
assumed, the probability of this mapping being valid quickly 
approaches zero as the number of tracks increases.  
I drew 10,000 rounds of samples for each track using the 
correlated model and the uncorrelated model. The uncorrelated 
model has the same variance as the marginal distribution of the 
correlated model. I tallied up the number of rounds that yielded 
sampled track states such that distance (t1, t2) < ε = 5 for all pairs 
(t1, t2) in our hypothesis M under each model. I then divided that 
tally by the number of rounds to yield Pr(M). Figure 5 shows the 
average Pr(M) over 10 distinct trials under both models as the 
number of tracks increases. Even though the error circles seem to 
overlap quite a bit, the direction of each error is unknown, and the 
chance that solid-circled tracks have negative error in X and Y 

while dashed-circle tracks have positive error in X and Y so that 
the actual track positions are the same for all pairs is quite small 
(approximately 0.1 for each track). Thus, if the correlation 
between errors of a given sensor’s tracks is ignored, the 
probability that all six pairs of tracks are caused by the same six 
objects is 0.16. In contrast, if most of the track error is attributed 
to correlated sensor error, the effects of adding more tracks on 
Pr(M) is mitigated. It is clear from the figure that if correlations in 
error are ignored, simple queries yield highly erroneous results 
even when the number of correlated tuples is fairly small. 
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Figure 5. Probability of a valid mapping of tracks in 
Figure 3 under correlated and uncorrelated model.

 

 

4.3 Performance 
In order to process queries of the form:  
SELECT A.ID, B.ID  
FROM A,B 
WHERE ABS(A.value – B.value) < ε 
  
as in the previous example, it becomes necessary to process 
JOINs efficiently over multiple rounds of sampled data. Imagine 
hundreds of sensors each tracking thousands of objects.  In this 
case, efficiently processing the JOIN is of the utmost importance. 
I implemented our JOIN algorithm presented in Section 4 and 
tested it against two standard naïve JOIN algorithms. The first 
naïve algorithm (1) performs a sort-merge join on each round of 
samples independently.  It reads in all the data, samples from the 
data, and performs an in-memory quick-sort if space allows or an 
external merge-sort otherwise. It then does the standard merge on 
the sorted samples. The second slightly-less naïve algorithm (2) 
performs one external sort on the original values (expected 
values). It then reads the values, samples, resorts with insertion 
sort, and merges one round at a time. This algorithm should take 
the same amount of time to sample and sort as our algorithm but 
must read in the sorted expected values in each of the n rounds.  
In contrast, if x rounds can fit in memory with each round 
occupying k+1 pages, our join algorithm only needs to read the 
data n/x times. They all undertook 1000 rounds of sampling and 
joined tables of equal size. 



Figure 6(a) shows the average runtime of 4 trials for sample-based 
merge join and the naive merge-join algorithms presented above 
on tables of various sizes. The results of the experiments show 
that our algorithm has roughly linear performance until the cost of 
doing one external sort outweighs the cost of doing 1000 rounds 
of linear traversals. In contrast, the naive sort-merge-join 
algorithm (1) is slower than our algorithm even when the entire 
sort can be done in memory. The dramatic bump in run-time of 
(1) occurs around table size = 100,000 when the internal sort 
becomes an external sort.  After this point, the cost of repeated 
sorts becomes overbearing.  Algorithm (2) performs better for 
smaller datasets mainly because it requires less overhead than our 
algorithm which must keep track of multiple rounds of sampling 
at once.  However, once the entire table can no longer fit in 
memory, it must be reread from disk during every round, and the 
cost of the disk-reads slows it down considerably. Figure 6(b) 
shows a log plot of the same data to better illustrate performance 
on the smaller datasets. 
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5. CONCLUSION 
Uncertain data occurs naturally in many scientific applications. In 
many cases, correlations between the uncertainties must be dealt 
with as well. Tingjian Ge and I have developed sampling-based 

semantics for database systems to handle correlated uncertainty. 
We have also developed an efficient join algorithm that performs 
well when the join attribute consists of uncertain values that must 
be sampled and joined multiple times. I have implemented this 
algorithm and ran extensive experiments on the implementation. 
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