
A Treatment of Correlated Attribute Uncertainty in Array
Database Systems

David Grabiner
Department of Computer Science

Brown University

grabiner@cs.brown.edu

ABSTRACT
The purpose of this document is to summarize ongoing research
into handling uncertainty in database systems, and present my
contributions to that research. Uncertainty presents a particular
problem for databases because the relational model leaves no
room for ambiguity in database fields. Traditional database
operators such as selection and join operate on constant values as
opposed to probability distributions. In order for a database
system to correctly handle this uncertainty, values must be
sampled from the distributions and the operators must operate on
those sampled values. If this process is not done intelligently, one
join operation on deterministic data can turn into one thousand
join operations on probabilistic data. Additionally, if the
uncertainty of different attributes is correlated, the entire joint
distribution of all the correlated attributes must be sampled at
once, as opposed to sampling from each distribution individually.
In this paper, I describe the query semantics for handling
correlated uncertainty, jointly developed with Tingjian Ge. I then
describe the S-Join algorithm that efficiently performs a join
when the join attribute is a continuous distribution, also
codeveloped with Tingjian Ge. Finally, I present experimental
results that I obtained from an implementation of the algorithms
that I constructed. This work is discussed in much greater detail
in a paper of the same name, authored by Tingjian Ge, David
Grabiner, and Stan Zdonik [1].

1. INTRODUCTION
Uncertainty arises in multiple applications, especially in the
scientific world. Any sensor that monitors a continuous value,
such as temperature or position, is likely to have uncertainty in
that value. A database system needs to account for that
uncertainty in answering queries. For example, let’s imagine a
temperature sensor whose readings have a known variance of one
degree, and the results of the sensor are stored in a database.
Imagine this database contains a tuple T1 which indicates that on
Sunday the temperature was 79 degrees. Now someone queries
the database for all rows with temperature greater or equal to 80.
Should R1 be included in the result set? In a traditional database,
the answer would be no. However, there is a 16% chance that the
temperature represented by T1 was actually over 80 degrees
because of the uncertainty in the sensor. Databases for scientific
applications need to be able to handle this uncertainty and it
should manifest itself in query results.
The uncertainty problem is further complicated when the
uncertainty between different values is correlated. Imagine that
my database can handle the situation above and when queried for

temperatures above 80 will tell me that the probability that T1 is
in the result set is 16%. Now imagine that the database contains
another tuple T2 which indicates that on Monday the temperature
was also 79 degrees. Now the database is queried for two
consecutive days in which the temperature was above 80 degrees.
Since T1 and T2 both have a probability of .16 of representing a
temperature over 80 degrees, the probability of the result set
containing the combination (T1,T2) is 0.16*0.16 = 0.0256,
assuming the measurements are independent. However, the
measurements are not independent; they come from the same
sensor. What if the sensor is precise but inaccurate and all
measurements have the same error due to the sensor itself? In that
case, the database needs to handle this correlated uncertainty and
report that combination (T1,T2) should actually be in the result set
with probability 0.16 rather than probability 0.0256.
The rest of the paper is organized as follows. Section 2 describes
the query semantics developed to handle correlated uncertainty.
Section 3 presents a join algorithm designed to efficiently handle
uncertain join attributes. Section 4 summarizes experiments
performed on an implementation of the join algorithm, and
Section 5 concludes the paper.

2. QUERY SEMANTICS
It is not immediately obvious what the semantics of queries in the
presence of correlated uncertainty should be. Not only must the
semantics incorporate probabilistic membership in the result set,
they must also incorporate uncertainty in result values. As an
example, consider the query from the introduction of all rows
with temperatures greater than 80. Tuple T1 has a temperature of
79 with a variance of 1, and should thus be in the result set with
probability 0.16. However, it does not make sense for a row in the
result set to have a mean temperature value of 79. Since the
results should only include values greater than 80, all rows in the
result set must have means above 80. To rectify this problem, we
must treat the distribution on the temperature attribute of the tuple
in the result set as a conditional probability distribution. The
value in the temperature field should be the mean value of the
temperature given that it is above 80 degrees, even though its
unconditioned mean was 79. In this case, the result set should
contain the result row RT1, derived from T1, with probability
0.16. The value of the temperature field in RT1 must be 80.5,
which is the conditioned mean of T1 having a temperature above
80.
Thus, two uncertain elements must be well-defined in the query
semantics: The probability of membership in the result set and the
value of uncertain fields given membership in the result set.

Tingjian Ge and I have jointly developed two formalizations of
what the query semantics should be. The first is integral-based,
and the second, more practical formalization is sampling-based.

2.1 Integral-Based Semantics
For a full description of the integral-based semantics, see section
2.1 of [1]. The intuition behind these semantics is that the
probability density function of an uncertain attribute X covers
some area A. Given a query q, there is a subregion A+

 of A in
which q(X) produces a tuple t in the result set and a
complimentary region in which no result tuple is produced. We
would like to know the total mass of the probability density
function that falls within A+. To find this mass, we integrate over
the region. In our temperature example query, the probably
density function of T1 is a normal distribution with mean 79 and
variance 1 where the A+ region is everything greater than 80.
Thus Pr(RT1) is the integral from 80 to positive infinity of that
distribution.

When multiple input tuples are correlated, their joint probability
density function must be integrated over. The query q can be
thought of as a function that takes in a series of values and returns
the result tuple t when those values satisfy q’s predicate. The
integral that calculates the probability of the result tuple t, Pr(t), is
presented below.

1 2
1

1 2
, ,...,

(,...,)

Pr() (, ,...,)
n

n

n
x x x
q x x t

t f X X X

→

= ∫ dA

n

In this integral, f(X1,X2,…,Xn) is the joint probability density
function over correlated attributes X1 through Xn. When the input
tuples are correlated it will often be the case that result tuples are
correlated as well. In this case, the query q maps input values to a
set of result tuples t1 through tk. The probability of that set of
tuples being in the result set is given by:

1 2
1 1

1 2 1 2
, ,...,

(,...,) ,...,

Pr(, ,...,) (, ,...,)
n

n k

k
x x x
q x x t t

t t t f X X X dA

→

= ∫

Now consider the case of uncertain values in result tuples. If a
result tuple t has an uncertain attribution y, then the probability
densifty function over y, f(y), can be calculated using a similar
procedure. In this case, the function q returns a value for y given a
set of input tuple values. The function f(y) can be calculated as
follows:

1 2
1

1 2
, ,...,

(,...,)

() (, ,...,)
n

n

n
x x x
q x x y

f y f X X X

→

= ∫ dA

2.2 Sampling-Based Semantics
The integral-based semantics is correct but not very practical. To
realize an actual database system, integration must be replaced by
Monte Carlo sampling. As the number of samples N approaches
infinity, the result Pr(t) will approach the true Pr(t) that would be
obtained from solving the integral. In this framework, query
evaluation proceeds as follows: For every uncertain value in an
input tuple, a random sample is drawn from its distribution. The
query then operates on these values as if they were deterministic
values and produces a result set. This process is then repeated N
times. Going back to our temperature example, this is akin to
drawing N samples from the normal distributions represented by

tuples T1 and T2 and evaluating the query every time a pair of
samples is drawn.
Because result tuples will likely be correlated, the results of query
evaluation must reflect this correlation. To achieve this end, each
result tuple is augmented with a bit vector which delineates which
sampling rounds yielded that tuple. For example, if N = 5 and
tuple RT1 was produced in the first and fourth round while tuple
RT2 was produced in the first and third round, RT1 will be
augmented with the bit string 10010 and RT2 will be augmented
with 10100. Now, Pr(RT1) can be obtained by taking the
cardinality of the RT1 bit string and dividing by N. In this case
Pr(RT1) = 0.4 and Pr(RT1) = 0.4. Pr(RT1, RT2) can be obtained by
performing the logical AND of the two bit strings and dividing
the cardinality of the result by N. In this case, Pr(RT1, RT1) = 0.2
as opposed to 0.16 which would be the result of multiplying the
two marginal probabilities together. Performing query evaluation
through Monte Carlo sampling thus provides a powerful
framework that can handle and express correlated uncertainty in
tuples.

3. SAMPLING-BASED JOIN (S-JOIN)

3.1 The S-Join Algorithm
One of the drawbacks to query evaluation through sampling is
that it is a very time-intensive process. If 1000 rounds of sampling
are used, then every query must be evaluated 1000 times.
Traditionally, the join operation has been one of the larger
bottlenecks in query evaluation. Performing 1000 joins every time
a join query is posed would be a painful process. To alleviate this
pain, we have developed a join algorithm that takes advantage of
the structure of the sampling problem to provide a significant
speedup over running a standard join algorithm over and over. We
call our algorithm the S-Join algorithm.
The S-Join algorithm performs a join where the join attribute is
uncertain. Returning to the temperature example, what if we are
interested in finding two days that have the same temperature?
To realize this query in SQL, a self-join must be performed where
the join attribute is the uncertain temperature attribute:
SELECT temp1.day, temp2.day
FROM temperature as temp1, temperature as temp2
WHERE ABS(temp1.value – temp2.value) < ε AND

temp1.day != temp2.day
In this query, value of the temperature table is an uncertain
attribute. Assuming that the uncertain attribute is sampled from
1000 times, naively evaluating this relatively simple query will
result in performing 1000 join operations on a table that could be
very large.
The intuition behind the S-Join algorithm is that given a series of
uncertain values, the order of samples drawn from their
distributions should be similar to their expected values. Thus if
the uncertain values are sorted by their expected values and then
samples are drawn in that order, the samples themselves should be
pseudo-sorted. We refer to the order of the tuples when sorted by
expected value as the expected order. For example, assume the
temperature table has the following tuples in expected order
(presorted by expected value), each with a variance of 1:

ID Day Expected Value

1 Monday 79.0

3 Wednesday 82.0

2 Tuesday 85.0

Now imagine the following samples are drawn from the three
distributions:

ID Day Sampled Value

1 Monday 79.5

3 Wednesday 82.4

2 Tuesday 84.9

Notice that the sampled values, drawn in the same order as the
expected values, are in correct sorted order. This will not always
be the case but it will be most of the time.
We can thus sort the expected values once using a fast sort
algorithm, such as quicksort, draw samples, and use an insertion
sort to correct the order of the samples. While an insertion sort
takes time N^2 to sort a random series of values, if it can be
guaranteed that any one value is only k spots away from its
correct location, where k << N, the time decreases to N*k.
Because sampling should not drastically alter the order of values
from the order of their expected values, we feel confident in this
guarantee for some small k.
The algorithm thus proceeds as follows. Perform an external sort
on the input tuples according to their expected value, putting them
in expected order. We assume that sampling will not change the
order of a tuple more than k pages. Let’s take k = 2. Now allocate
3 pages in memory for each side of the join for some number of
rounds R. R is selected so that 2*3*R pages are able to fit in
memory at once. Read in the first three pages of the externally
sorted tuples. As each tuple is read in, draw R samples from the
distribution on its join attribute. When a sampled value is drawn
for round r, insert that value into r’s pages using an insertion sort,
maintaining sorted order in each round.
In the example above, the process entails reading in the Monday
tuple from the table in expected order, drawing R samples from
that tuple and populating R rounds with those R samples. Then
the Wednesday tuple is read in and sampled R times. Those R
samples are inserted into their respective buffers, which each
already contain a sample from the Monday tuple, using an
insertion sort. The process is then repeated for the Tuesday tuple.

Figure 1. Sampling and sorting the first three example tuples

over four rounds
After this sampling process is complete, we can perform a merge-
join on the first page of every round. Because of our assumption
that tuples can only deviate k=2 pages from expected order, the
first of these pages will be in final sorted order while the next two
will be temporarily sorted. This is because only values sampled
from tuples in the first three pages can end up in the first page.
Tuples whose expected order puts them in the fourth page cannot
be in the first page when ordered by sample values, so the first
page must be in final sorted after reading and sampling the first
three pages. The second and third pages are temporarily sorted but
are not in final sorted order because tuples from the fourth and
fifth page, which have not yet been sampled from, may need to be
interspersed within the second and third page. Now the merge
process is performed over the first page in every round. After
enough memory has been freed up through consuming pages
while merging, a new page is read in and sampled from and
another insertion sort is performed with the samples from this new
page. As a result, another page is now in final sorted order and
can be merged in each round. This process continues until
sampling and merging is complete.
Let’s assume we use 0.5 for epsilon in the original temperature
query:
SELECT temp1.day, temp2.day
FROM temperature as temp1, temperature as temp2
WHERE ABS(temp1.value – temp2.value) < 0.5 AND

temp1.day != temp2.day
If the three tuples (Monday, Tuesday, and Wednesday) are the
only tuples in the temperature table and only four rounds of
samples are drawn as shown in Figure 1, the results of the join
are:

temp1.day temp2.day bitVector

Tuesday Wednesday 0100

Monday Wednesday 0010

Analyzing the two result bit vectors as described in Section 2.2
yields Pr(T,W) = 0.25 and Pr(M,W) = 0.25.

The S-Join algorithm provides a significant speedup over naively
performing all joins independently because only one external sort
must be performed (on the expected values of the original tuples).
The only subsequent sorts are in-memory insertion sorts on tuples
that are already nearly sorted. Additionally, by performing
multiple rounds together, unnecessary disk accesses are
eliminated. If 200 rounds can be performed at once out of a total
of 1000 rounds, the externally sorted tuples need to be read from
disk only 5 times as opposed to 1000 times.

Figure 3. The S-Join Algorithm

4. EMPIRICAL STUDY

I have implemented the S-Join algorithm in Java. The
implementation takes in two representations of database tables
and performs a join on them, using a configurable number of
rounds. The number of rounds to perform at once is also
configurable, as is the maximum displacement of a tuple after
sampling. I also implemented two naïve join algorithms. The first
algorithm performs the join on every round independently. The
second algorithm externally sorts the expected values as in the S-
Join algorithm and then resorts the pseudo-sorted samples with an
insertion sort. However, sampling and merging of rounds is done
in series so the input tuples must be read from disk every round.
The experiments were run on a Debian Linux workstation with an
AMD Athlon-64 2 Ghz processor, 512 MB memory and a
Samsung HD160JJ disk. Additional results can be found in [1].

T2T1 T2 T2 T1 T1

S
P
P

S
P
P

Round 1

Page 1

Page 2

Page 3

S
P
P

S
P
P

Round 2

S
P
P

S
P
P

Round 3

……

……

In this section, I use a real world application, multi-sensor
tracking [2], to empirically study the following issues:

• Using our proposed correlation model and sampling
algorithms, how does the query result compare with a
model that assumes independence on the attribute
values of different tuples?

• How is the performance of our S-Join algorithm? How
does it compare with a naïve algorithm that performs a
multi-round join operation?

4.1 Problem and Setup
A common vexing problem in multi-sensor tracking is to devise a
mapping between the tracks of one sensor and the tracks of
another sensor, assuming both sensors are tracking the same
objects [2]. Once a mapping has been verified, tracks from
different sensors on the same object can be fused together to form
a single object track. This problem, known as the track-to-track
correlation problem, is well-suited for our study because of the
nature of errors in sensor tracks. Track errors are often the result
of bias in the sensor that maintains the track. Thus, it can be
expected that errors in tracks that originate from the same sensor
will be correlated in some fashion. I generate synthetic datasets
for the tracks of different sensors and model correlation of errors
for tracks originating from the same sensor with a simple
graphical structure (cliques of size two). Each track itself also has
a random error independent of other tracks.

4.2 Correctness
As an example, Figure 4 shows the positions in X and Y of six
objects, each being tracked by two sensors. Tracks 1-6 belong to
sensor 1 and are illustrated with dots in solid-lined circles. Tracks
A-F belong to sensor 2 and are illustrated with dots in dashed-
lined circles. The dots in the center depict the reported position of
each track, the original value in our model. The circles around
those dots are drawn one standard deviation away from the center
and serve to demarcate the correction value in our model. The
actual position of a track is the original plus the correction. The
errors of the tracks from the same sensor are correlated due to the
common sensor error. Individual tracks also have a random error.

Figure 2. Illustrating sampling-based join algorithm. Multiple
unds are carried out in parallel. Each round has 3 pages in

uffer for each side of the join (T1 and T2). Pages for round 1 are
ll sorted. For other rounds, initially the 3 pages of a relation are
eudo-sorted. As insertion sort is performed, the 1st page is

sorted while the other two are still not in their final sorted form,
ince tuples from following pages may need to be mixed in.

ro
b
a
ps

s

(1) Externally sort the input tuples according to their
expected value

(2) Allocate 3 pages in buffer for each side of the JOIN for
each round (for a number of rounds that can fit in the
buffer space).

(3) For each round:
(4) Obtain fresh samples for the 3 pages in buffer (for

each side of JOIN) and arrange them in pseudo-
sorted order determined by (1).

(5) Perform an insertion sort on the pseudo-sorted 3
pages (for each side of JOIN). After doing this,
according to our assumption, the first of the 3
pages will be exactly sorted, and the other two
pages will remain pseudo-sorted.

(6) End
(7) For each round, repeat the following until JOIN

finishes (all rounds in parallel, e.g., in a lockstep or in
round-robin fashion),

(8) Do the “merge” step of the JOIN on the exactly
sorted pages.

(9) Replaced consumed pages with new ones
(10) Obtain a set of fresh samples for the new pages and

perform insertion sort to adjust the order. This
converts another page (the oldest among the three)
from pseudo-sorted to sorted.

(11) End

Figure 4. Example track from two sensors

Let us define T1 as the set of all tracks belonging to sensor 1 and
T2 as the set of all tracks belonging to sensor 2. A mapping M is
defined as a set of pairs such that each t1 1 2 2(,t T t T∈ ∈) 1 and t2
appear exactly once. The probability of a mapping M being valid
is the probability that distance (t1, t2) < ε for all pairs (t1, t2) in M.
Under an (erroneous) independence assumption,

1 2Pr() Pr()M t t= ≈∏ .

The query necessary to create this mapping is:
SELECT sensor1.trackID, sensor2.trackID
FROM sensor1, sensor2
WHERE SQRT(POWER(sensor1.x – sensor2.x, 2) +

 POWER(sensor1.y – sensor2.y, 2)) < ε

In this case, the result of note is not any individual result tuple but
a joint distribution on many result tuples. In the semantics defined
in Section 2.2, each result tuple will be accompanied by a k-bit
array where k is the number of rounds of sampling. The value of
bit i for tuple t will be 1 if that tuple is a member of the result set
in the i’th round of sampling. Thus I can compute the probability
of any mapping M by doing a bit-wise AND of all the bit arrays of
result tuples in M, counting the number of 1s, and dividing by k.
To the naked eye, it looks obvious that track 1 should be paired
with track A, track 2 with track B, and so on. However, our
experiments show that if independence between track errors is
assumed, the probability of this mapping being valid quickly
approaches zero as the number of tracks increases.
I drew 10,000 rounds of samples for each track using the
correlated model and the uncorrelated model. The uncorrelated
model has the same variance as the marginal distribution of the
correlated model. I tallied up the number of rounds that yielded
sampled track states such that distance (t1, t2) < ε = 5 for all pairs
(t1, t2) in our hypothesis M under each model. I then divided that
tally by the number of rounds to yield Pr(M). Figure 5 shows the
average Pr(M) over 10 distinct trials under both models as the
number of tracks increases. Even though the error circles seem to
overlap quite a bit, the direction of each error is unknown, and the
chance that solid-circled tracks have negative error in X and Y

while dashed-circle tracks have positive error in X and Y so that
the actual track positions are the same for all pairs is quite small
(approximately 0.1 for each track). Thus, if the correlation
between errors of a given sensor’s tracks is ignored, the
probability that all six pairs of tracks are caused by the same six
objects is 0.16. In contrast, if most of the track error is attributed
to correlated sensor error, the effects of adding more tracks on
Pr(M) is mitigated. It is clear from the figure that if correlations in
error are ignored, simple queries yield highly erroneous results
even when the number of correlated tuples is fairly small.

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p(
va

lid
 m

ap
pi

ng
)

number of tracks per sensor

Handling correlated error
Assuming error independence

Figure 5. Probability of a valid mapping of tracks in
Figure 3 under correlated and uncorrelated model.

4.3 Performance
In order to process queries of the form:
SELECT A.ID, B.ID
FROM A,B
WHERE ABS(A.value – B.value) < ε

as in the previous example, it becomes necessary to process
JOINs efficiently over multiple rounds of sampled data. Imagine
hundreds of sensors each tracking thousands of objects. In this
case, efficiently processing the JOIN is of the utmost importance.
I implemented our JOIN algorithm presented in Section 4 and
tested it against two standard naïve JOIN algorithms. The first
naïve algorithm (1) performs a sort-merge join on each round of
samples independently. It reads in all the data, samples from the
data, and performs an in-memory quick-sort if space allows or an
external merge-sort otherwise. It then does the standard merge on
the sorted samples. The second slightly-less naïve algorithm (2)
performs one external sort on the original values (expected
values). It then reads the values, samples, resorts with insertion
sort, and merges one round at a time. This algorithm should take
the same amount of time to sample and sort as our algorithm but
must read in the sorted expected values in each of the n rounds.
In contrast, if x rounds can fit in memory with each round
occupying k+1 pages, our join algorithm only needs to read the
data n/x times. They all undertook 1000 rounds of sampling and
joined tables of equal size.

Figure 6(a) shows the average runtime of 4 trials for sample-based
merge join and the naive merge-join algorithms presented above
on tables of various sizes. The results of the experiments show
that our algorithm has roughly linear performance until the cost of
doing one external sort outweighs the cost of doing 1000 rounds
of linear traversals. In contrast, the naive sort-merge-join
algorithm (1) is slower than our algorithm even when the entire
sort can be done in memory. The dramatic bump in run-time of
(1) occurs around table size = 100,000 when the internal sort
becomes an external sort. After this point, the cost of repeated
sorts becomes overbearing. Algorithm (2) performs better for
smaller datasets mainly because it requires less overhead than our
algorithm which must keep track of multiple rounds of sampling
at once. However, once the entire table can no longer fit in
memory, it must be reread from disk during every round, and the
cost of the disk-reads slows it down considerably. Figure 6(b)
shows a log plot of the same data to better illustrate performance
on the smaller datasets.

0 1 2 3 4 5 6

x 105

0

5000

10000

15000

input tuples

ru
nt

im
e

in
 s

ec
on

ds

sample-based merge join
sort-merge-join (1)
sort-merge-join (2)

9 10 11 12 13 14 15 16 17 18 19
-2

0

2

4

6

8

10

12

14

16

log(# input tuples)

lo
g(

ru
nt

im
e

in
 s

ec
on

ds
)

sample-based merge join
sort-merge-join (1)
sort-merge-join (2)

5. CONCLUSION
Uncertain data occurs naturally in many scientific applications. In
many cases, correlations between the uncertainties must be dealt
with as well. Tingjian Ge and I have developed sampling-based

semantics for database systems to handle correlated uncertainty.
We have also developed an efficient join algorithm that performs
well when the join attribute consists of uncertain values that must
be sampled and joined multiple times. I have implemented this
algorithm and ran extensive experiments on the implementation.

6. REFERENCES
[1] Tingjian Ge, David Grabiner, and Stan Zdonik: A Treatment

of Correlated Attribute Uncertainty in Array Database
Systems

[2] Y. Bar-Shalom, D. William Dale Blair. Multitarget-Multi-
sensor Tracking: Applications and Advances, Vol. III,
Artech House, Boston, London, 2001.

Figure 6(a). Runtimes of the three join algorithms.

Figure 6(b). Log runtimes of the three join algorithms.

	1. INTRODUCTION
	2. QUERY SEMANTICS
	2.1 Integral-Based Semantics
	2.2 Sampling-Based Semantics

	3. SAMPLING-BASED JOIN (S-JOIN)
	3.1 The S-Join Algorithm

	4. EMPIRICAL STUDY
	4.1 Problem and Setup
	4.2 Correctness
	4.3 Performance

	5. CONCLUSION
	6. REFERENCES

