
Duplication Distance

Research Comprehensive Project

Crystal Kahn
Advised by Ben Raphael

December 17, 2007

1 Introduction

Genome sequences mutate and rearrange through the course of evolution. Genome rearrangement is
an important and rich area of computational biology, and has many applications, including inferring
phylogenetic trees. Some genome rearrangement problems, such as reversal distance [6], [1] and
translocation distance [5], have been studied. Reversal distance, for example, measures the number
of substring inversions necessary to transform one signed permutation into another. Translocation
distance measures the number of substring “cut-paste” operations that are necessary to transform
one signed permutation into another. See [7] for a survey of rearrangement problems. However,
there remain many genomic rearrangements that are not well understood, and there does not exist
a unified genome rearrangement metric that can be used to quantify the similarity of two arbitrary
genomes.

Recently, it has become possible to study mutations and rearrangements in cancer. The types of
rearrangement operations that have been observed in cancer development include previously studied
operations, such as reversals and translocations, but also include new classes of rearrangement
operations. One such operation is duplication via amplisome, a genetic extrachromosomal plasmid
or molecule that can replicate autonomously and integrate itself into a chromosome [8], [2], [9],
[11]. As a step toward developing a model for this type of genome rearrangement, we define the
amplisome distance between a healthy genome G and a tumor genome T to be the minimum number
of rearrangement operations needed to create an extrachromosomal string A from substrings of G
and then to transform G into T by inserting substrings of A into G. The Amplisome Distance
Problem is to determine the shortest sequence of operations necessary to build the string A and
then to transform G into T . We believe that the Amplisome Distance Problem is difficult, in
general.

In Section 2 we describe a subproblem of the Amplisome Distance Problem, the Duplication Dis-
tance Problem. Computing the duplication distance between strings can be seen as a subproblem of
both computing the minimum number of rearrangements to build the string A and of computing the
minimum number of rearrangements to transform G into T , given the extrachromosomal element
A. In Section 3, we describe a polynomial-time algorithm for the Duplication Distance Problem. In
Section 4 we describe a closely related problem, the Reversal/Duplication Transposition Distance
Problem. We demonstrate that the the current best-known algorithm for the problem is flawed
and show that Duplication Distance is a lower bound on Duplication Transposition Distance and
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thus yields a more parsimonious rearrangement scenario.

2 The Duplication Distance Problem

Given a string T , a substring of T is a contiguous set of characters of T . For example, given a
string T = abcd, the string S′ = bc is a substring of T , but the string S′′ = ac is not a substring
of T . We let |S| denote the length of the substring S. For a string Y = y1 . . . yn, let Ys,t be the
substring ysys+1 . . . yt−1yt.

Given two strings X and Z, a duplicate operation copies a substring of X and pastes it into Z,
resulting in a new, longer string.

Example 2.1.
Consider the strings:
X = abcdefgh,
Z = abhhefhgh.

Using X as a source string, we can transform Z into the the string abhcdhfhgh by copying the
substring cd of X and inserting it into Z at the fourth position. Formally, we have the following
definition.

Definition 2.2 (Duplicate Operation). A duplicate operation, δs,t,p(X), copies a substring xs . . . xt
of a source string X and pastes it into a target string at position p. Specifically, if X = x1 . . . xm
and Z = z1 . . . zn, then Z ◦ δs,t,p(X) = z1 . . . zp−1xs . . . xtzp . . . zn. (Figure 1).

Figure 1: A duplicate operation in which a substring of X is copied and pasted into Z.

Given a string X, we define the duplication distance between strings Y and Z as the minimum
number of duplicate operations with source X and target Z that transforms Z into Y . The
duplication distance, therefore, quantifies the similarity of the strings Z and Y , given the existence
of an exterior string X. Note that we use the term “distance” loosely throughout this paper; in
particular, duplication distance is not symmetric.

Example 2.3.
Consider the strings:
X = abcdefgh,
Y = abhcdhefhgh,
Z = ∅,
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where Z is the empty string, denoted ∅. Note that the substrings ab, h, cd, h, ef, h, gh of Y are
also substrings of X. Therefore, we can copy each of these substrings from X and paste them into
Z, giving a sequence of seven individual duplicate operations. Specifically, Y = Z ◦ δ1,2,1(X) ◦
δ8,8,3(X) ◦ δ3,4,4(X) ◦ δ8,8,6(X) ◦ δ5,6,7(X) ◦ δ8,8,9(X) ◦ δ7,8,10(X), where the duplicate operations
are applied to Z in a left-to-right order. The question remains: is it possible to construct Y by a
sequence of fewer than seven duplicate operations? This question is answered by computing the
duplication distance.

To define the Duplication Distance Problem formally, we require the following definition.

Definition 2.4 (Ambiguous). A string S is ambiguous if there exists a character c in S such that
c appears in multiple instances in S. A string S is non-ambiguous provided it contains at most one
instance of every character.

For example, the string T = abcadaefb is ambiguous because it contains multiple instances of the
characters ‘a’ and ‘b.’

We now state the Duplication Distance Problem.

Input: Strings X, Y , Z, where X is non-ambiguous, Y is ambiguous, Z is a non-contiguous sub-
sequence of Y , and {X} the set of characters comprising X, is a superset of {Y } \ {Z}.
Output: A minimum sequence ∆ = (δs1,t1,p1(X), δs2,t2,p2(X), . . . , δsr,tr,pr(X)) of duplicate opera-
tions such that Z ◦ δs1,t1,p1(X) ◦ δs2,t2,p2(X) ◦ · · · ◦ δsr,tr,pr(X) = Y .

We let DX(Z, Y ) denote the length of a minimum sequence ∆. Returning to Example 2.3, we have
already seen that it is possible to transform Z into Y in seven operations. However, an alternative
approach to constructing Y would be to copy all of X in one duplicate operation, and then insert
the substring h three times into the third, fifth, and seventh indices of Z, respectively. Thus, we
can build Y in a total of four duplicate operations. Note that one of the duplicated substrings of
X is not a substring of Y : namely, abcdefgh. Thus, to compute the minimum duplication distance
between Z and Y it will not suffice to consider only substrings of Y that are also substrings of X.
However, we will show that considering non-contiguous subsequences of Y and the ways in which
they overlap leads to an efficient algorithm for duplication distance.

2.1 Preliminaries

We define some terminology.

Definition 2.5 (Subsequence). A string S = s1s2 . . . sm is a subsequence of a string T = t1t2 . . . tn
if there exists an integer sequence IT (S) = (i1, i2, . . . , im) satisfying 1 ≤ i1 < i2 < · · · < im ≤ n
such that sk = tik for k = 1, . . . ,m.

For example, given a string T = abcd, the string S = abd is a subsequence of T and the corre-
sponding integer sequence is IT (S) = (1, 2, 4). For a subsequence S, we denote the index of its
first character in Y by IT (S)[1], the index of its second character by IT (S)[2], the index of its third
character by IT (S)[3], and so on. We let |S| denote the length of the subsequence. Also, for a
character x, let IY (x) = {k | Yk = x}, i.e. the set of indices k such that yk = x.

Note that, given a string T , a substring of T is also a subsequence of T , but a subsequence need
not be a substring.
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Definition 2.6 (Inside). Given two increasing integer sequences, σ = (σ1, . . . , σm) and τ =
(τ1, . . . , τn), σ is inside τ if there exists an integer k such that σ1 > τk and σm < τk+1. If R
and S are subsequences of a string T , then R is inside S if IT (R) is inside IT (S).

For example, in the string T = abcdef , the subsequence σ = bd = (2, 4) is inside the subsequence
τ = aef = (1, 5, 6).

Definition 2.7 (Internal Strings). Given a string T = t1 . . . tn and an integer sequence σ =
(σ1, . . . , σm) corresponding to a subsequence of T , we denote by T \σ, the set of maximal substrings
of T that are inside σ. That is, T \ σ = {tσi+1tσi+2 . . . tσi+1−1 | 1 ≤ i < m, σi + 1 6= σi+1}. We call
these the set of internal strings of σ in T .

For example, given the string T = abcdefghijk and the subsequence σ = (1, 2, 4, 6, 9), the internal
strings of σ are T \ σ = {c, e, gh}.
Definition 2.8 (Overlap). Given two integer sequences σ and τ , σ overlaps τ if either (i) there
exist integers k and j such that σk = τj ; or (ii) there exist integers k1, k2, j1, j2, satisfying k1 < k2

and j1 < j2 such that σk1 < τj1 < σk2 < τj2 . We say that σ and τ are overlapping if either σ
overlaps τ or τ overlaps σ. If R and S are subsequences of a string T , we say that R overlaps S if
IT (R) overlaps IT (S).

For example, in the string T = abcdef , the subsequence R = abd overlaps the subsequence S = ce
because IT (R) = (1, 2, 4) overlaps IT (S) = (3, 5). The subsequences R and R′ = bc are also
overlapping because IT (R) ∩ IT (R′) contains 2.

3 A Polynomial Algorithm for Duplication Distance

We shall give an algorithm for the Duplication Distance problem that is polynomial in the lengths
of the input strings. Our main result is stated in the following theorem.

Theorem 3.1. Let X,Y and Z be strings such that X is non-ambiguous, Z is a subsequence
of Y , and {Z} \ {Y } ⊆ {X}. There is an algorithm to compute a minimum sequence ∆ =
(δs1,t1,p1(X), δs2,t2,p2(X), . . . , δsr,tr,pr(X)) of duplicate operations such that Z◦δs1,t1,p1(X)◦δs2,t2,p2(X)◦
· · · ◦ δsr,tr,pr(X) = Y that is polynomial in |Y |.

In general, the input strings represent genomes and the characters of the strings represent conserved
segments, i.e. genes. For each character c in Z that appears multiple times in Y , exactly one of
those instances in Y corresponds to the “original” copy of c, i.e. the copy of c that did not result
from a duplicate operation. Therefore, we can define a mapping from the characters (or genes) in
Z and the indices of their respective original copies in Y . Sometimes, this mapping is known or can
be inferred from biological data; however, sometimes it cannot. In Sections 3.1 and 3.2, we give an
algorithm for computing the minimum duplication distance DX(Z, Y ) where we suppose that we
are given the mapping from indices of Z to the indices of the original copies in Y as part of the
input. Then, in Section 3.3, we show how to compute such a mapping if it is not known.

3.1 Computing Minimum Duplication Distance

Suppose we are given a mapping from the characters of Z to the indices of their respective original
copies in Y = y1 . . . yn. Let σ = σ1 . . . σm denote the subsequence of Y to which all the characters
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of Z are mapped. Then the problem of computing the duplication distance DX(Z, Y ) reduces
to a number of smaller duplication distance problems of the form DX(∅, Yi) where Yi ∈ Y \ σ ∪
{y1 . . . yσ1−1, yσm+1 . . . yn}. Note that

∑
Yi
|Yi| ≤ n. In this section, we show how to compute

DX(∅, Yi) where Yi is some substring of Y . Therefore, in this section, we assume that Z is the
empty string unless otherwise stated. We demonstrate, in Section 3.3, that there is an efficient
algorithm for computing the mapping from characters of Z to indices of Y that yields the minimum
duplication distance.

We define d(Y ) = DX(∅, Y ). A sequence of duplicate operations to build the string Y defines a
set of substrings of X that are copied and pasted into Z. Let S = {σ1, . . . , σt} be such a set.
Every element of S is both a substring of X and a subsequence of the final string Y . Moreover,
the corresponding integer sequences IY (σ1), . . . , IY (σt) are a partition of the set {1, . . . , |Y |}. We
have the following definition.

Definition 3.2 (Candidate Set). Let X and Y be strings where X is non-ambiguous. A set
S = {σ1, . . . , σt} of subsequences of Y is a candidate set provided each σi is a substring of X and
the corresponding integer sequences IY (σi) partition {1, . . . , |Y |}.

Example 3.3.
Consider the following strings:
X = abcdef,
Y = adbecf,
Z = ∅.

Consider the set S = {abc, def} of subsequences of Y . It is clear that both elements of S are
substrings of X and that

⋃
σ∈S IY (σ) = {1, 3, 5} ∪ {2, 4, 6} = {1, 2, 3, 4, 5, 6}. Therefore, S is a

candidate set of subsequences. However, there is no order on S of duplicate operations correspond-
ing to copying an element of S from X and producing Y . This is because the subsequences abc
and def overlap in Y . On the other hand, the sets S′ = {abc, d, e, f}, S′′ = {def, a, b, c} and
S′′′ = {a, b, c, d, e, f} are all candidates sets of subsequences for which there do exist corresponding
sequences of duplicate operations to produce Y . For example, the elements of S′ can be duplicated
in the following order to create Y : Y = ∅ ◦ δ1,3,1(X) ◦ δ4,4,2(X) ◦ δ5,5,4(X) ◦ δ6,6,6(X).

Lemma 3.4. Given a candidate set S = {σ1, . . . , σk} of subsequences of Y , there exists a sequence
∆S = δs1,t1,p1(X) ◦ · · · ◦ δsk,tk,pk

(X) of duplicate operations such that Y = Z ◦ δs1,t1,p1(X) ◦ · · · ◦
δsk,tk,pk

(X) and the copied substrings of X are {Xs1,t1 , . . . , Xsk,tk} = {σ1, . . . , σk} if and only if σi
and σj are non-overlapping for all σi, σj ∈ S, i 6= j.

Proof. Let S = {σ1, . . . , σt} be a candidate set where the elements of S are all mutually non-
overlapping in Y . We shall exhibit an ordering on S that corresponds to a sequence of duplicate
operations that builds Y .

Let σi, σj ∈ S with i 6= j. Since the elements of S are mutually non-overlaping, either σi is inside
σj , σj is inside σi, or the convex hulls of IY (σi), IY (σj) are disjoint. We define the following relation
on elements of S. σi ≺ σj if σj is inside σi or if the convex hulls of IY (σi) and IY (σj) are disjoint
and IY (σi)[1] < IY (σj)[1].

We now show that ≺ defines an ordering on S, i.e. we show that for all σi, σj , σk ∈ S, if σi ≺ σj
and σj ≺ σk, then σi ≺ σk. Let σi, σj , σk ∈ S be ordered such that σi ≺ σj and σj ≺ σk. There
are two cases to consider for how σi and σj are related: (1) σj is inside σi. (2) The convex hulls of
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IY (σi) and IY (σj) are disjoint and IY (σi)[1] < IY (σj)[1]. Similarly, there are two cases to consider
for σj and σk: (A) σk is inside σj . (B) The convex hulls of IY (σj) and IY (σk) are disjoint and
IY (σj)[1] < IY (σk)[1].

There are a total of four cases for how all three subsequences are related: (1A) σk will be inside
σi, so σi ≺ σk in the ordering. (1B) Either (i) σk is inside σi or (ii) the convex hulls of IY (σi)
and IY (σk) are disjoint and IY (σi)[1] < IY (σk)[1] because σi and σk are non-overlapping and
IY (σj)[1] < IY (σk)[1]. In either case, σi will be ordered before σk. (2A) The convex hulls of σi
and σk will be disjoint and IY (σi)[1] < IY (σk)[1], so σi will be ordered before σk. (2B) The convex
hulls of σi and σk will be disjoint and IY (σi)[1] < IY (σk)[1], so σi will be ordered before σk.

Conversely, let C = {σ1, . . . , σt} be a candidate set for which there exists an order on C corre-
sponding to a sequence of duplicate operations to build Y . Let σi, σj ∈ C and suppose, without
loss of generality, that σi is before σj in the ordering. Consider the operation, δj , that copies σj
into the target string. Because σi is before σj in the ordering, σi will already be a subsequence of
the target string. The operation, δj , will insert the string σj into the target string as a contiguous
substring. Therefore, σj can either be inserted at some index before the first character of σi, after
the last character of σi or inside σi. In any case, σi and σj will be non-overlapping.

A result of Lemma 3.4 is that a candidate set S of subsequences of Y for which all the elements
of S are mutually non-overlapping corresponds to a sequence of duplicate operations to build Y
whose length equals the cardinality of S. We call such sets feasible sets of subsequences.

Definition 3.5 (Feasible Set of Subsequences). Let X and Y be strings where X is non-ambiguous.
A feasible set F = {σ1, . . . , σk} is a candidate set where σi and σj are non-overlapping for all
σi, σj ∈ F with i 6= j.

Claim 3.6. Let X and Y be strings where X is non-ambiguous and {Y } ⊆ {X} and let n = |Y |.
Given a feasible set S of minimum cardinality, there is an O(n2) algorithm to compute ∆, a
minimum-length sequence of duplicate operations to build Y from the empty string. Moreover,
d(Y ) = |S|.

Proof. By Lemma 3.4 and Definition 3.5, every sequence of duplicate operations that builds Y from
the empty string corresponds to a feasible set, and the length of a sequence of duplicate operations
that builds Y is equal to the cardinality of its corresponding feasible set. Therefore, a minimum-
cardinality feasible set of subsequences of Y will corresponding to the minimum-length sequence of
duplicate operations.

Moreover, in the proof of Lemma 3.4, we defined an ordering on the elements of a feasible set S
that corresponds to an order of duplicate operations that builds Y . The ordering can be computed
by first ordering every pair of elements of S with respect to each other. Then, we compute the
total ordering on elements of S using an insertion-sort-like algorithm. This computation takes time
O(s2) where s = |S|. If |Y | = n, s ∈ O(n).

Therefore, given a feasible set of subsequences of Y with minimum cardinality, we can compute the
duplication distance and the corresponding order of duplicate operations. In the next section, we
shall describe how to compute a feasible set of subsequences of minimum cardinality.
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3.2 Computing a Minimum-Cardinality Feasible Set of Subsequences

We present here an efficient dynamic programming algorithm to compute the cardinality of the
minimum feasible set of subsequences of Y which, by Claim 3.6, gives a minimum sequence of
duplicate operations. It is straightforward to augment the algorithm to compute also the feasible
set itself.

Given a string s = x1 . . . xr that appears as a subsequence of Y with multiple corresponding integer
sequences, i.e. s = σi = σj , but IY (σi) 6= IY (σj), we call each integer sequence IY (σi) a placement
of s.

For integers 1 ≤ s ≤ t ≤ |X|, letXs,t denote the substring ofX that begins with the character ys and
ends with the character yt. Note that Xs,t may not be defined, but if it is defined, then it is unique
becauseX is non-ambiguous. Define the set S(Xs,t) = {σ | IY (σ) is a placement of Xs,t in Ys,t, with IY (σ)[1] =
s, IY (σ)[|σ|] = t}.

For example, letX = abcdefghij, Y = bcdedefg. The substring cdef ofX appears as a subsequence
of Y2,7 in multiple placements. The set S(X2,7) contains the subsequences with corresponding
integer sequences {(2, 3, 4, 7), (2, 5, 6, 7), (2, 3, 6, 7)}.

For completeness, define d(Ys,t) = 0 for indices s > t.

Theorem 3.7. Given a string Ys,t and indices s ≤ t, the value d(Ys,t) satisfies the following
recurrence.

d(Ys,t) =

{
1 if s = t,
min {as,t, bs,t} otherwise,

(1)

where

as,t =

{
∞ if Xs,t is undefined

minτ∈S(Xs,t)

(
1 +

∑
Yi,j∈Ys,t\τ d(Yi,j)

)
otherwise,

(2)

and

bs,t = min
r=s,...,t−1

(d(Ys,r) + d(Yr+1,t)) .

(3)

Proof. As a base case, if s = t, then d(Ys,t) = 1 because a string of one character requires exactly
one duplicate operation for its construction.

We assume, inductively, that we have already computed d(Ys,t) for every substring Ys,t with |Ys,t| =
t− s+ 1 ≤ i− 1.

Now consider a string Ys,t with |Ys,t| = t− s+ 1 = i, and consider all feasible sets of subsequences
of Ys,t. In every feasible set, there must exist some element σ such that s ∈ IYs,t(σ). There are two
classes of feasible sets: either t ∈ IYs,t(σ) or t /∈ IYs,t(σ).
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Suppose S is a feasible set of subsequences with σ ∈ S and s, t ∈ IYs,t(σ). Because σ contains
both s and t, it corresponds to a placement of the substring Xs,t of X ranging between indices
IX(Ys) and IX(Yt). As noted above, the substring Xs,t is uniquely defined. Given σ, the indices
of {s, s + 1, . . . , t − 1, t} not covered by σ consist of substrings of Ys,t that are inside σ. Each of
these substrings are mutually non-overlapping and, moreover, do not overlap with σ. Therefore,
the minimum-cardinality feasible set that includes an element σ such that s, t ∈ IYs,t(σ) will be
comprised of: the element σ and the minimum-cardinality feasible sets for each Yi,j ∈ Ys,t \ σ.
Thus, the feasible set of minimum cardinality is obtained by considering the minimum sum of the
cardinalities of the minimum feasible sets for each Yi,j ∈ Ys,t \ τ for every possible placement τ of
Xs,t in Ys,t. The placement τ∗ of Xs,t that minimizes this sum is the optimal placement. The value
of as,t is the value of this sum plus one for the subsequence τ∗.

Now suppose S is a feasible set of subsequences with σ ∈ S, s ∈ IYs,t(σ) but t /∈ IYs,t(σ). Then
the element σ contains some maximal index r < t, and S can be partitioned into two subsets of
elements: a set of feasible subsequences of Ys,r, consisting of σ and some set of subsequences inside
σ, and a feasible set of subsequences of Yr+1,t. The elements in the union of these two subsets are
mutually non-overlapping. Therefore, the value of d(Ys,t) where t /∈ IYs,t(σ) will be the minimum
value of d(Ys,r) + d(Yr+1,t), taken over all values s ≤ r < t. This value is bs,t.

Note that in computing the recurrence in Equation 1, the value bs,t can be computed in time linear
in the size of Ys,t.

Now we describe how to compute the value as,t efficiently.

Let a′s,t(X
s,t) = as,t − 1.

Lemma 3.8. Given a substring Xs,t of X whose first and last characters are located at indices s
and t in Y , the value a′s,t(X

s,t) satisfies the following recurrence.

a′s,t(X
s,t) =


∞ if Xs,t is undefined,
d(Ys+1,t−1) if |Xs,t| = 2 (base case)

minr∈IYs,t (X
s,t
2 )

(
d(Ys+1,r−1) + a′r,t(X

s,t
2,∗)
)

otherwise
(4)

where Xs,t
2 is the second character of Xs,t, and Xs,t

2,∗ is the substring of Xs,t containing all but the
first character.

Moreover, for fixed values of s and t, we compute a′s,t(X
s,t) in a total of O(l2) time, where l = |Ys,t|.

Proof. Recall that as,t = minσ∈S(Xs,t)

(
1 +

∑
Yi,j∈Ys,t\σ d(Yi,j)

)
where s, t ∈ IYs,t(σ). And as,t =

1 + a′s,t(X
s,t).

Consider the substring Ys,t of Y and the substring Xs,t of X such that the first character of Xs,t is
Ys and the last character is Yt. First, we note that if Xs,t is undefined, as,t should equal infity, and
thus, a′s,t(X

s,t) should return infinity.

Next we show that the base case is correct. If Xs,t has only two characters, then there is only one
placement σ = (s, t) of Xs,t in Ys,t, and Ys,t \ σ = {Ys+1,t−1}. So, a′s,t(X

s,t) = d(Ys+1,t−1).

Finally, if |Xs,t| > 2, then there could exist more than one placement of Xs,t in Ys,t. And, for a
placement σ, the set Ys,t \ σ may contain more than one element. Consider the suffix Xs,t

i,∗ of Xs,t
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for 1 < i < |Xs,t|. Assume, inductively, that for all i < k ≤ |Xs,t| and for all rk ∈ IYs,t(X
s,t
k ) the

value a′rk,t(X
s,t
k,∗) has already been computed and equals the sum

∑
Yi,j∈Yr,t\σk

d(Yi,j) where σk is

the optimal placement of Xs,t
k,∗ in Yrk,t. For every placement ri+1 of Xs,t

i+1 in Ys+1,t, we compute
d(Ys+1,ri+1−1) and add it to a′ri+1,t(X

s,t
i+1,∗).

The recurrence, therefore, considers all possible placements of Xs,t, and for each placement, it sums
the values of d(Yi,j) of the maximal substrings Yi,j between successively placed characters of Xs,t.
The placement that minimizes this sum is the placement that optimizes the sum a′s,t(X

s,t).

Consider a substring Xs,t of X and some suffix Xs,t
i,∗ including all but the first i − 1 charac-

ters. We assume, by induction, that the value of a′s,t(X
s,t
k,∗) has already been computed for every

value of i < k ≤ |Xs,t| and that it is equal to the sum of the values d(Yi,j) for each element
in {Yi,j |Yi,j ∈ Ys,t \ σ, σ is optimal placement of Xs,t

k,∗ inYs,t}. For a fixed i, the time to compute
a′s,t(X

s,t
i,∗) is bounded by |IYs+1,t(X

s,t
i )| ∗ |IYs+1,t(X

s,t
i+1)| where IYs+1,t(X

s,t
i ) is the number of place-

ments of the character Xs,t
i in the substring Ys+1,t. Therefore, the total time to compute a′s,t(X

s,t)

is bounded by
∑|Xs,t|

i=1

[
|IYs,t(X

s,t
i )| ∗ |IYs,t(X

s,t
i+1)|

]
. However, every character of the substring Ys+1,t

can correspond to at most one character of Xs,t because Xs,t is non-ambiguous. Therefore, this
sum is bounded by

∑t
j=s |IYj+1,t(Xi+1)| where yj = xi which is, in turn, bounded by O(l2).

Let n = |Y |. Note that l ∈ O(n). The running time for computing d(Ys,t) is dominated by the time
to compute as,t. The value as,t is computed once for every substring of Y , of which there are O(n2),
so the total running time to compute the cardinality of the smallest feasible set of subsequences of
Y takes O(n4) time. Combining Theorem 3.7 and Lemma 3.8 obtains:

Theorem 3.9. Let X and Y be strings such that X is non-ambiguous and {Y } ⊆ {X}. Let
n = |Y |. There is an O(n4) algorithm for computing DX(∅, Y ).

Furthermore, as stated above, the algorithm described by the recurrences in Equations 1 and 4 can
be augmented to output, not only the value of DX(∅, Z), but also the elements of the minimum-
cardinality feasible set of subsequence of Y . Then by Claim 3.6, the corresponding sequence of
duplicate operations to build Y can be computed in O(n2) time.

3.3 Computing the Mapping from Z to Y

Suppose we have two strings Z and Y where Z is a subsequence of Y , and we would like to
understand the process by which Z evolved or mutated into Y . Also suppose that Y is ambiguous.
A particular gene in Z may exhibit multiple homologs or copies in Y . Sometimes, we may have
biological information about which genes in Y correspond to the original or exemplar copy of each
gene in Z. That is, sometimes we may have a mapping from the characters of Z to indices in Y .
However, sometimes this mapping is not known.

Consider the following strings:

Example 3.10.
Z = abcd
Y = aaabbbcccddd
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In the example, there are 34 possible mappings from genes in Z to exemplar genes in Y . If the
true mapping is not known, we would like to find the most parsimonious mapping, the one that
minimizes duplication distance. We call this mapping optimal.

Given a mapping, finding the minimum sequence of duplicate operations necessary to build Y is
equivalent to finding the minimum duplication distanceDX(∅, Yi) for each substring Yi in Y \IY (σZ),
where σZ is the subsequence in Y comprised of indices to which characters of Z are mapped and ∅
denotes the empty string. Note that the sum of the sizes of the substrings in Y \IY (σZ) is bounded
by the size of Y .

Let Z = z1 . . . zm and Y = y1 . . . yn and m ≤ n. And let d(Ys,t) = DX(∅, Ys,t) as before. We shall
also define f(i, j) as the value of the duplication distance DX(Zi,m, Yj,n) of the suffix zizi+1 . . . zm
of Z and the suffix yjyj+1 . . . yn, given that the character zi is mapped to the index j in Y . Finally,
we shall define the mapping L from indices of Z to indices of Y . We shall represent it as a list. Let
L(i, j) be the optimal mapping of the suffix zizi+1 . . . zm to indices j . . . n of Y given that character
zi is mapped to index j in Y .

Lemma 3.11. The values of f(i, j) and L(i, j) satisfy the following recurrence.

f(i, j) =

{
d(Yj+1,n) if i = m,

mink∈IYj+1,n
(zi+1) (f(i+ 1, k) + d(Yj+1,k−1)) otherwise.

L(i, j) =

{
(j) if i = m,

prepend (k∗, L(i+ 1, k∗)) otherwise.

where

k∗ = argmink∈IYj+1,n
(zi+1) (f(i+ 1, k) + d(Yj+1,k−1))

and

prepend (x, L) prepends x to the list L.

Proof. Recall that f(i, j) is the value of DX(Zi,m, Yj,n), given that zi is mapped to index j in Y .
We define a base case when i = m, i.e. |Zi,m| = 1. In this case, since zm is mapped to index j, the
remaining characters of Y need to be inserted and thus DX(∅, Yj+1,n) = d(Yj+1,n).

Now, suppose that 1 ≤ i < m and 1 ≤ j < n. Let us assume, by induction, that, for all values of
k satisfying j < k ≤ n, the value f(i+ 1, k) is equal to the value of DX(Zi+1,m, Yk,n). Suppose we
want to evaluate f(i, j) when the character zi+1 is mapped to index k > j in Y . The characters
yj and yk do not contribute to the duplication distance DX(Zi,m, Yj,n), however the characters in
Yj+1,k−1 remain to be inserted via duplicate operations. Therefore, the value of DX(Zi,m, Yj,n)
given that character zi is mapped to index j in Y and zi+1 is mapped to index k in Y is given by
f(i+ 1, k) + d(Yj+1,k−1). In computing f(i, j), we must consider all possible mappings of zi+1, and
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therefore, the value of f(i, j) is computed by taking the minimum of f(i+ 1, k) + d(Yj+1,k−1) over
all possible indices k to which zi+1 could be mapped in Y .

The value of DX(Z, Y ) given the best overall mapping of characters of Z to indices in Y is given
by minj∈IY (z1) (d(Y1,j−1) + f(1, j)). The corresponding optimal mapping is given by L(1, j∗) where
j∗ = argminj∈IY (z1) (d(Y1,j−1) + f(1, j)).

Given the value of DX(∅, Ys,t) for all values 1 ≤ s ≤ t ≤ |Y |, the total time for computing the
recurrence in Equation 3.11 is O(n3). The values of f(i, j) and L(i, j) must be computed for each
of the O(n2) possible combinations of 1 ≤ i ≤ m and 1 ≤ j ≤ n where m ∈ O(n) because Z is a
subsequence of Y . We assume, inductively, that for particular values of i and j, we have already
computed f(i + 1, k) for all j < k ≤ n. Therefore, computing f(i, j) and L(i, j) for fixed i and j
takes time O(n) because the size of IYj+1,n is linear in n.

Therefore, as a corollary to Lemma 3.11, we have the following.

Corollary 3.12. Given the value d(Ys,t) = DX(∅, Ys,t) for all values 1 ≤ s ≤ t ≤ |Y |, DX(Z, Y )
can be computed in O(n3) time where n = |Y |.

We conclude the discussion of the algorithm for computing duplication distance with the following
summary of our algorithm.

Algorithm 1: Algorithm to Compute Duplication Distance
Input: Strings X, Y ,Z where X is non-ambiguous, Z is a subsequence of Y , and

{Y } \ {Z} ⊆ {X}
Output: Value of duplication distance, DX(Z, Y ), and corresponding sequence of duplicate

operations, ∆
Compute d(Ys,t) = DX(∅, Ys,t) for all 1 ≤ s ≤ t ≤ |Y |.1

Compute DX(Z, Y ) and optimal mapping from characters of Z to indices in Y and output2

S∗, min-cardinality feasible set.
Compute sequence of duplicate operations, ∆ .3

If n = |Y |, the first step takes O(n4) time by Theorem 3.9, the second step takes O(n3) time by
Corollary 3.12, and the third step takes O(n2) time by Claim 3.6. Therefore, the overall running
time is O(n4). This completes our proof of Theorem 3.1.

3.4 A Note on Duplicate Reversal Operations

In the genome rearrangement literature, the notion of string orientation plays an important role.
Many rearrangement operations act on signed strings in which each gene has an orientation, de-
noted: + or -. Distinguishing between orientations of genes is important when operations allowing
substring reversals are considered. Most famously, it has been shown that computing the distance
between a pair of unsigned permutations when only substring reversals are allowed is NP-Hard [3],
but the reversal distance between signed permutations can be computed in linear time [6], [1].

In the previous sections, we described the duplication distance problem for unsigned strings. How-
ever, our algorithm also works in the presence of duplicate reversals on signed strings, i.e. duplicate
operations in which the copied substring of X is inverted before being inserted into Z. Now we
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shall suppose that our input strings X,Y, and Z are signed strings. We still require that X be
non-ambiguous, that Z be a subsequence of Y , and that {Y }\{Z} ⊆ {X} where now {X} denotes
the the set of all signed characters in X and their complements.

We shall extend the definition of substring to include the notion of orientation: a string S =
s1s2 . . . sm is a substring of a string T = t1t2 . . . tn if there exists an integer j such that either (i)
S = tjtj+1 . . . tj+m−1 and S has a forward orientation or (ii) S = (−tj)(−tj−1) . . . (−tj−m+1) and
S has a backward orientation. Note that with this new definition of substring, the definitions of
a candidate set and a feasible set are extended implicitly; given a string Y and a non-ambiguous
string X, a candidate or feasible set of Y is comprised of subsequences of Y that are also substrings
of X with either orientation.

We shall also distinguish between duplicate operations in which a reversal occurs and those in which
no reversal occurs, denoted by δ−s,t,p(X) and δ+s,t,p(X), respectively. For example, if X = x1 . . . xm
and Z = z1 . . . zn, then Z ◦ δ−s,t,p(X) = z1 . . . zp−1(−xt) . . . (−xs)zp . . . zn. δ+s,t,p(X) is defined as in
Definition 2.2.

Given these new definitions, it is not hard to verify that Lemma 3.4 and Claim 3.6 still hold;
changing the definition of a substring does not affect the way subsequences of Y overlap. More-
over, the recurrences given in Theorem 3.7 and Lemma 3.8 are still satisfied because the notions of
subsequence placement and internal strings do not change. Therefore, our algorithm for comput-
ing duplication distance will also correctly compute duplication distance on signed strings in the
presence of duplicate reversals.

4 Duplication Distance and the Reversal/Duplication Transposi-
tion Distance Problem

The duplicate operation is closely related to another string operation, the duplication transposition
[10]. A duplication transposition augments a string G of length n by copying part of G and
“pasting” it into another location in the same string G, resulting in a string of length greater than
n. A duplication transposition is denoted ρs,t,p, where s and t are the beginning and ending indices
of the substring of G to be copied and p is the index into which the beginning of the duplicated
substring is to be inserted, satisfying 1 ≤ s < t < p ≤ n + 1 or 1 ≤ p < s < t ≤ n (see [10], for
example). For example, given a string G = abcdef , the duplication transposition operation ρ1,3,5

on G yields G ◦ ρ1,3,5 = abcdabcef .

Definition 4.1 (Duplication Transposition Distance). Given two strings G,T where G is a subse-
quence of T , the duplication transposition distance DT (G,T ) is equal to the minimum number of
duplication transpositions needed to transform G into T .

Note that G ◦ ρs,t,p = G ◦ δs,t,p(G) where δs,t,p is the duplicate operation (Definition 2.2). However,
a duplication transposition requires that s, t, and p satisfy s < t < p or p < s < t, whereas a
duplicate operation does not have this restriction; a duplicate operation might copy a substring of
G ranging between indices s and t and paste it into the middle of that range (Figure 3).

In the next section we describe a problem, formulated by El-Mabrouk in [4], of computing the
reversal/duplication transposition distance between two strings. We show that the algorithm pre-
sented in [4] does not correctly compute the minimum distance. Moreover, we show that duplication
distance can be used in place of duplication transposition distance in the computation.

12



Figure 2: (a) A duplication transposition operation in which a segment of G is copied and pasted
into itself. (b) A duplicate operation in which a segment of G is copied and pasted into another,
identical string. Both operations result in the same final string.

Figure 3: A duplicate operation in which the string from which the substring is copied and the
string into which the copied substring is pasted are identical. In this example, s < p < t.
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4.1 A Discussion of El-Mabrouk’s Algorithm

The problem of computing the minimum number of duplication transposition and reversal oper-
ations (where a substring of G is inverted) has been studied by El-Mabrouk in [4]. To simplify
the problem, El-Mabrouk [4] devises a model of evolution in which she recasts the general problem
of computing minimum reversal/duplication transposition distance as an exponential number of
polynomially solvable subproblems.

The subproblem considered in [4] is that of computing the minimum reversal/duplication transpo-
sition distance between a present-day semi-ambiguous genome G and an ancestral, non-ambiguous
genome H. A semi-ambiguous genome is an ambiguous string in which no character appears more
than twice. It is shown that the minimum reversal/duplication transposition distance of G can
be computed by assuming that it evolved from H in two phases. First, by a series of duplication
transpositions transformed G into an intermediate ancestor I having the same set of gene blocks
(or characters) as G, but not necessarily in the same order. Then, the intermediate ancestor I
evolved through a series of reversal operations, resulting in the present-day genome G.

The problem of finding the reversal/duplication transposition distance of a semi-ambiguous genome
G then is merely the problem of reconstructing a semi-ambiguous intermediate ancestor I that
minimizes the sum of the duplication transposition distance between I and any non-ambiguous
ancestor H and the reversal distance between I and G. Moreover, Hannenhalli and Pevzner give
a polynomial algorithm for computing the reversal distance between two signed permutations in
[6]. Therefore, the remaining work is to compute the duplication transposition distance of the
semi-ambiguous intermediate ancestor genome I and the non-ambiguous ancestor genome H.

In [4], the problem of computing the reversal/duplication transposition distance of a semi-ambiguous
genome RD(G) is formalized as

RD(G) = min
I

[R(G, I) +D(I)] (5)

where R(G, I) is the reversal distance between G and I, D(I) is defined as the number of maximal,
repeated substrings of I, and the minimum is taken over all possible permutations I of the set of
characters comprising G.

The algorithm given in [4], therefore, implies that the minimum duplication transposition distance
between H and I is equal to the number of maximal repeated substrings of I. However, this
simplification is incorrect.

Claim 4.2. Let H be a non-ambiguous string and let I be a semi-ambiguous string that evolved from
H through a series of duplication transpositions. D(I), the number of maximal, repeated substrings
of I, is not necessarily equal to the minimum number of duplication transposition operations needed
to transform H into I.

Proof. We provide the following counterexample. Consider the strings:

H = abcdefg

I = abdecdbcefg

In this example, the maximal repeated substrings of I are {d, e, b, c}, so D(I) = 4. However, a
sequence of three duplication transposition operations would suffice to create I: first, duplicate bc
in one operation, then duplicate d and e in two separate operations.

14



Note that in the example above, the duplication distance, DH(H, I) is two. The only cases consid-
ered in [4] are cases in which the ancestor genome H is non-ambiguous and the intermediate ancestor
I is semi-ambiguous. In these cases, the duplication distance is no greater than the duplication
transposition distance.

Claim 4.3. If Y is semi-ambiguous and X is non-ambiguous, X is a subsequence of Y , and
{Y } \ {X} = ∅ then DX(X,Y ) ≤ DT (X,Y ).

Proof. Because Y is semi-ambiguous, no character of X is copied more than once in any sequence
of duplication transposition or duplicate operations building Y from X. Therefore, all the strings
that are copied in a minimum sequence of either duplication transposition or duplicate operations
are substrings of the original input string X.

Consider a minimum-length sequence of duplication transpositions that transforms X into Y . Be-
cause all the duplication transpositions in such a sequence copy substrings of the original string X,
there are corresponding duplicate operations, copying the same sequence of substrings of X, giving
rise to Y . However, as we noted above, the optimal sequence of duplicate operations transform-
ing X into Y may have strictly smaller length than that of the optimal sequence of duplication
tranpsosition operations yielding the same Y . Thus, DX(X,Y ) ≤ DT (X,Y ).

It follows that duplication distance may provide a simpler explanation than duplication transpo-
sition distance in this subproblem of computing the minimum reversal/duplication transposition
distance between a non-ambiguous string and a semi-ambiguous string. Moreover, the computation
implied in [4] for retrieving the ancestor genome H from the intermediate, semi-ambiguous genome,
I, is to delete exactly one copy of every maximal repeated substring of I. However, this may not
yield an ancestor genome H such that DT (H, I) is minimal. Consider, the example given in the
proof of Claim 4.2. If we had deleted the unbold copies of each of the repeated characters, we
would construct the ancestor genome H ′ = adebcfg. In this example, the duplication transposi-
tion distance DT (H ′, I) is equal to four, the number of repeats. However, H ′ is not the ancestor
genome that minimizes the duplication transposition distance. Therefore, the algorithm in [4] not
only incorrectly computes the optimal value of the duplication transposition distance between I
and some non-ambiguous H, it might also output an ancestor genome that is non-optimal.

Now we return to the reversal/duplication transposition distance problem posed in [4]. Under the
assumption that a semi-ambiguous genome G evolved from a non-ambiguous genome H by a series
of duplication transpositions followed by a series of reversals, the formulation of Equation 5 can be
corrected if we change the definition of D(I) so that it no longer equals the number of repeats in
I. Instead, let

D(I) = min
H∈A

DT (H, I) (6)

where A is defined as the set of all non-ambiguous subsequences of I that are obtained by deleting
exactly one copy of every duplicated gene. Thus, if I has d duplicated genes, A will contain 2d

elements.

Unfortunately, there is no known algorithm for computing duplication transposition distance. The
problem’s difficulty results from the fact that the set of substrings that can be duplicated after
the kth duplication transposition operation depends on the first k operations. On the other hand,
Claim 4.3 states that the duplication distance DH(H, I) for any H ∈ A is a lower bound for the
duplication transposition distance.
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5 The Amplisome Distance Problem

As mentioned in the introduction, we studied the duplication distance problem primarily as a
precursor to computing the amplisome distance between a pair of genomes. We now describe the
amplisome distance problem in more detail.

In computing the amplisome distance between a healthy genome G and a tumor genome T , we
assume the following model of mutation. The mutation occurs in two phases. In the first phase,
called the copy phase, an extrachromosomal element, i.e. amplisome, is constructed from a series
of duplicate operations in which substrings are copied from G, and the target string is initialized
as the empty string. Let the A denote an amplisome. The total number of duplicate operations
required to build A from G in the copy phase is DG(∅, A). At the end of the copy phase, A becomes
fixed. In the second phase, the insertion phase, G is transformed into T by a sequence of duplicate
operations where substrings are copied from A and the target string is initialized as G. The total
number of duplicate operations required to build T from G in the insertion phase is DA(G,T ).

The amplisome distance between G and T is defined as:

AD(G,T ) = min
A

(DG(∅, A) +DA(G,T )) (7)

where the minimum is taken over all possible amplisome strings A.

It is clear that in order to design an efficient algorithm for the amplisome distance problem, we
must first limit the types of strings that can be considered as candidates for the amplisome string A.
Moreover, it would be useful to compute some upper and lower bounds on the amplisome distance
between two strings and to compute whether, for a particular pair of strings, the amplisome distance
will be less than the duplication transposition distance. While this work has not yet been completed,
we note here an example of a pair of strings for which amplisome distance is less than duplication
transposition distance and, therefore, provides a more compelling model of mutation.

Example 5.1.
G = . . . ab . . . cd . . . ef . . . gh . . . uv . . . wx . . . yz . . .
T = . . . auwb . . . cwyd . . . ezxf . . . gxvh . . .

The amplisome distance betweenG and T in Example 5.1 is seven: first, the amplisome A = uwyzxv
can be constructed in three duplicate operations in the copy phase by first copying uv, then inserting
wx in between u and v, and then inserting yz in between w and x. The amplisome, A, can be used
to construct T from G in four duplicate operations in the insertion phase. However, the duplication
distance between G and T is eight.
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