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Preface
This paper is submitted in fulfillment of the requirement for my
Sc.M. degree in the department of Computer Science at Brown
University. The work is done in a joint research project between
Massachusetts Institute of Technology and Brown University. We
submitted a paper [17] for the 34th VLDB conference as a result
of the collaboration.

My contribution to the project is to improve the cost model, au-
tomatic designer and experimental implementation as a realistic
system. I started from surveying cardinality estimators described
in Section 9 and then introduced bucketing and composition de-
scribed in Section 5. Bucketing and composition makes Correla-
tion Index (CI) more practical but it expands the explored design
space much larger. I made an efficient CI designer with bucket-
ing and composition based on the cardinality estimator survey. I
also implemented an experimental system for testing CI designs
on PostgreSQL and improved the accuracy of the CI cost model
by the results described in Section 6.

The collaboration in the project was a success and gave me an
opportunity to develop my research skills thanks to everyone in
the project; George Huo, Alexander Rasin, Samuel Madden and
my advisor Stanley B. Zdonik.

ABSTRACT
In relational query processing, there are generally two choices for
access paths when performing a predicate lookup for which no
clustered index is available. One option is to use an unclustered
index. Another is to perform a complete sequential scan of the
table. Online analytical processing (OLAP) workloads often do
not benefit from the availability of unclustered indices; the cost of
random disk I/O becomes prohibitive for all but the most selec-
tive queries. Unfortunately, this means that data warehouses and
other OLAP systems will frequently perform sequential scans, un-
less they can satisfy nearly all of the queries posed to them by a
single clustered index [6], or unless specialized data structures –
like bitmap indices, materialized views, or cubes – can be used to
answer queries directly.

We present a new index data structure called a correlation in-
dex (CI) that enables OLAP databases to answer a wider range
of queries from a single clustered index or sorted file. The CI
exploits correlations between the key attribute of a clustered in-
dex and other unclustered attributes in the table. We show that
CIs can be implemented as an “add-on” to an existing database
via a simple query rewriting scheme. In order to predict when
CIs will exhibit wins over alternative access methods, we develop

an analytical cost model that is suitable for integration with exist-
ing query optimizers. We also develop algorithms that search for
strong candidate CIs and that recommend ways to “bucket” CIs to
reduce their space utilization. We compare CI performance against
sequential scans and unclustered B+Tree indices in PostgreSQL.
Our results on several different data sets validate the accuracy of
our cost model and establish numerous cases where CIs acceler-
ate lookup times dramatically over other access methods. We also
show that standard B+Trees can benefit from correlations just as
CIs do, and that CIs are typically much smaller than B+Trees (by
up to three orders of magnitude), making it possible to maintain
many of them in memory over a single table.

1. INTRODUCTION
Online analytics processing (OLAP) workloads often do not

benefit from the availability of unclustered indices. This is be-
cause queries in OLAP databases usually involve aggregation over
regions of very large tables, instead of highly selective individ-
ual value lookups.The overhead of disk seeks to fetch the data
pages pointed to by the leaf records in unclustered B+Trees will
be higher than the cost to scan the table if even a small fraction of
tuples in a table are accessed by a query. Clustered indices (and
sorted files in some warehouse systems) perform better – beating
sequential scans for many queries of even relatively low selectivity
– but most database systems limit users to a single clustered index
or sort order per table. Unfortunately, this means that data ware-
houses and other OLAP systems will frequently perform many se-
quential scans. Though one can play various tricks to optimize
sequential scans (for example, the Netezza warehouse appliance
relies on special disk controllers and massive shared-nothing par-
allelism), ultimately sequential scans become a performance bot-
tleneck.

The main idea that this paper explores is to use correlations
between the key attribute of a clustered index (the “clustered at-
tribute”) and other “unclustered attributes” in the table to allow
databases to answer a wider range of queries efficiently with a sin-
gle clustered index. 1 Suppose we wish to apply a predicate to
find all of the tuples with a particular unclustered attribute value;
normally, this would require using an unclustered index (or a se-
quential scan) to access a set of disk pages arbitrarily scattered
throughout the file. However, if there are correlations between
the unclustered attribute and the clustered attribute, all of the sat-
isfying tuples for the query may occur with just a few values of
the clustered attribute, requiring access to only a few sequential
ranges of pages (for example, given a clustered index on US State
1Although by default most databases cluster tables on the primary
key, there is no particular reason or requirement that a primary key
clustering be selected unless it leads to good performance.



over a table of customer records, a secondary index looking for
customers from Boston will mostly hit pages in Massachusetts.)
In this highly correlated case, the cost of using an unclustered in-
dex is much less than we would expect if pages were randomly
distributed.

Hence, the main purpose of this paper is to 1) Explore the fre-
quency with which such correlations occur, and 2) To develop a
cost model that can predict the benefit such correlations have when
accessing a relation through an unclustered index with a corre-
lated, clustered index on it. Cost models are important because
they allow the query optimizer to decide when a secondary index
will be superior to a sequential scan and allow the database admin-
istrator to determine which secondary indices are likely to provide
good performance on account of substantial correlations.

We also propose a secondary index representation, called a cor-
relation index (CI) that is more compact than a basic unclustered
index (which is important as we would like to support many such
indices per clustered index in the system.) Our simple representa-
tion is a mapping from each distinct value (not tuple, as in an un-
clustered index) u in the domain of an unclustered attribute Au to
pages in the clustered index that contain tuples co-occurring with
u in some tuple in the database. Then, queries over Au can be an-
swered by looking up the co-occurring values of u in the clustered
index to find potentially matching tuples. We develop algorithms
that recommend the best set of CIs to create for a particular query
workload and schema.

In this paper, we describe the design and implementation of a
correlation-indexing system, with the following key contributions:

1. We develop a model of secondary index performance (in
particular, our compact CI representation) that allows us
to predict how effective it will be compared to traditional
database access methods (sequential scans and unclustered
B+Trees). We show that this model is a good match for real
world performance.

2. We present a system design that is very low in complexity,
and that can be integrated with existing access methods and
query optimizers with little effort.

3. We present an algorithm, the CI Advisor that searches for the
best CIs, considering not just CIs over single attributes, but
also composite keys. The advisor also recommends ways
to bucket CI keys to reduce their storage overhead without
decreasing performance.

4. We evaluate the effectiveness of CIs on several data sets,
coming from TPC-H, eBay, and the Sloan Digital Sky Sur-
vey (SDSS). We show that CIs can outperform both unclus-
tered B+Trees (without an appropriate correlated index) and
sequential scans by an order of magnitude. We also show
that we can achieve the benefits of clustering using stan-
dard secondary B+Trees with appropriately matched clus-
tered indices. We compare the sizes of CIs to B+Trees,
showing that CIs are usually several orders of magnitude
smaller.

In the next section, we present our CI representation in more
detail. Then, in Section 3 and Section 4, we discuss our correla-
tion index cost model and algorithms for CI utility. We elaborate
on the idea of bucketing and describe building CIs over compos-
ite attributes in Section 5. Finally, in Section 6, we evaluate CI
performance on several real world data sets before summarizing
related work (Section 7) and concluding (Section 8).

2. SYSTEM OPERATION
In this section, we describe how correlation indices (CIs) are

structured, built, and used. CIs are a very simple mapping data
structure that work much as any database index does.

From a database client’s standpoint, CIs also work much like
standard indices; they support customary update and query oper-
ations. For the database administrator, we provide the CI Advisor
tool to identify pairs of attributes that are likely to be good candi-
dates for a CI. For such pairs, he can issue a simple DDL command
linking a given attribute – the CI key – to a clustered index. We de-
scribe the operation of the CI Advisor in more detail in Section 4.

2.1 Building and Maintaining CIs
Given that the user wants to build a CI over an attribute T.Au of

a table T (we call this is the CI Attribute), with a clustered index
on attribute T.Ac, the CI is simply a mapping of the form u → S c,
where

1. u is a value in the domain of T.Au, and
2. S c is a set of values in the domain of T.Ac such that there

exists a tuple t ∈ T of the form (t.Au = u, t.Ac = c, . . .) ∀c ∈
S c.

For example, if there is a clustered index on “product.state,” a CI
on “product.city” might contain the entry “Boston→ {NH,MA},”
indicating that there is a city called Boston in both Massachusetts
and New Hampshire.

The algorithm for building a CI is shown in Algorithm 1. The
basic algorithm works as follows: once the administrator issues a
DDL command to create a CI, the system scans the table to build
the index mapping (line 2). As the system scans the table, it looks
up the CI key value in the mapping and adds the clustered index
key to the set of key values (line 5). The system tracks the number
of times a particular pair of (uncorrelated, correlated) values oc-
curs using a “co-occurrence” count, which is initialized to 1 (line
5) and incremented as needed (line 9).

The count of the number of times a particular correlated value
occurs with each uncorrelated value in the table is needed to sup-
port deletions. When a tuple t is deleted, the CI looks up the
mapping mAu for the uncorrelated attribute value and decrements
the count c for the value t.Ac of the correlated attribute. When c
reaches 0, the value t.Ac is removed from mAu .

The insertion algorithm is very similar to the algorithm for build-
ing the index. The main loop (2 in Algorithm 1) is simply repeated
for each new tuple that is added. Updates can simply be treated as
a delete and an insert.

input : Table T with attribute T.Au and clustered index I over
attribute T.Ac

output: Correlation index C, a map from T.Au values to co-occurring
T.Ac values, along with co-occurrence count.

C ← new Map(Value→ Set)1
foreach tuple t ∈ T do2

m← C.get(t.Au)3
if (m.get(t.Ac) = null) then4
/* Add fact that t.Ac co-occurred with t.Au to
mapping for t.Au, initializing co-occurrence
count to 1 */

m.put(t.Ac, 1)5
end6
else7
/* Increment co-occurrence count for t.Ac in
mapping for t.Au */

cnt ← m.get(t.Ac)8
m.put(t.Ac, cnt + 1)9

end10
end11
return C12

Algorithm 1: CI Construction Algorithm

Since a CI is just a key-value mapping from each unclustered
attribute value to the corresponding clustered attribute values, it
can be physically stored using any map data structure. This is con-



venient because database systems provide B+Trees and Hash In-
dices that can be used for this purpose. In our implementation, we
physically represent a CI using a B+Tree keyed by the unclustered
attribute, with the set of clustered index keys and counts as the
value for each record in the B+Tree. Whenever a tuple is inserted,
deleted, or modified, the CI must be updated as discussed above.
Because the CI is relatively compact (containing one key for each
value in the domain of the CI attribute, which in our experiments
occupy 1–50 MB for databases of up to 5 GB), we expect that
it will generally reside in memory, although since it is a B+Tree
the database system is easily able to spill it to disk. We report
the sizes of CIs for several real-world attributes in our experimen-
tal evaluation in Section 6, showing that they are generally much
more compact than the equivalent unclustered B+Tree.

2.2 Using CIs
The API for performing lookups on the CI is straightforward;

the CI implements a single procedure, ci lookup({vu1 . . . vuN}).
It takes as input a set of N values over the CI attribute and returns
a list clustered attribute values.

Rather than modifying the internals of the database system or
optimizer to use CIs, we use a query rewrite method where queries
with predicates over the unclustered attribute of a CI are aug-
mented with predicates over the clustered attributes. The clustered
attribute values that predicates range over are determined by per-
forming a CI lookup.

Specifically, given a range predicate p over a CI attribute, the
query rewriter looks up all of the records in this range in the CI. It
takes the union of all of the resulting clustered attribute value sets
and generates a sorted list. It then adds predicates over these clus-
tered attribute values to the query, and submits the query to the op-
timizer for execution. It is necessary to retain predicates over the
CI attribute, since some values in the clustered index may not sat-
isfy the unclustered predicates – for example, a scan of the states
“MA” and “NH” to find records with city “Boston” will encounter
many records from non-satisfying cities (“Cambridge,” “Manch-
ester,” etc.)

The optimizer is free to choose the plan that it determines will
result in the best performance – for example, if the predicates
over the CI attribute are very selective, and there is an unclustered
B+Tree on the CI attribute, it may choose to perform a lookup
on this index rather than performing less selective lookups on the
correlated index. We find in our experiments, however, that when
there is substantial correlation between the CI attribute and the cor-
related attribute, these introduced predicates often allow the query
executor to perform significantly faster.

Figure 1 illustrates an example CI and how it might affect the
plan used by a query executor. Here, the user has a table with
three attributes: state, city, and salary, with a clustered B+Tree
on state (called BT in the figure). The administrator has created a
CI on city. The CI (shown on the top left of the figure) maintains
a correspondence between each city name and the set of states it
appears in. When a query with a restriction to the cities “Boston”
and “Springfield” arrives, the rewriter introduces predicates over
the states “MA”, “NH”, and “OH” into the query according be-
cause those states have cities named “Boston” or “Springfield” ac-
cording to the CI (bottom left of the figure.) The database system
generates a physical query plan (shown on the bottom right of the
figure) that performs an in-order lookup on the clustered B+Tree
to find the pages containing records from these states (1, i, and j
in the example). The tuples on these pages are fed to a selection
operator, which just returns tuples with city equal to “Boston” or
“Springfield.”

2.3 Discussion

SELECT * 
FROM table
WHERE city='Boston' 
OR city = 'Springfield' 

Boston : {MA, NH}
Cambridge : {MA}
Manchester : {NH}
Portland : {NH, OR}
Somerville : {MA}
Springfield : {MA, OH}

Correlation Index, CI

Original Query

Clustered B+Tree, BT

{MA,Boston,$25K}
{MA,Boston,$90K}

{MA,Cambridge,$40K}
{MA,Cambridge,$60K}

{MA,Somerville,$15K}
{MA, Springfield,$90K}

{NH,Boston,$26K}
{NH, Boston,$45K}

{OH,Cleveland,$70K}
{OH, Sandusky,$15K}

{OH, Springfield,$40K}
{OH, Springfield,$60K}

MA ... NH ...

...

Page 1 Page i Page j

OH ...

......

SELECT * 
FROM table
WHERE (city='Boston' 
OR city = 'Springfield')
AND (state = 'MA' 
OR state = 'NH' 
OR state = 'OH') 

Rewritten Query

σ(city='Boston' OR 
city='Springfield')

(Pages 1,  i,  i+1,  j,  ...)

Predicate
Pushdown

BT 
State in {MA,NH,OH}

Generated Query Plan

Figure 1: Diagram illustrating an example CI index and its use
in a query plan.

In this section, we briefly review a few important points about
the applicability and value of CIs.

2.3.1 Cases when CIs are a Benefit
CIs capture the correlation between the CI attribute and the clus-

tered attribute. If two attributes are highly correlated, each value
of the CI attribute will co-occur in a tuple with only a few values
in the clustered attribute, whereas if they are poorly correlated, the
CI attribute will co-occur with many clustered attribute values.

Correlation indices perform best when the number of tuples
across all clustered values that an unclustered value maps to is
small. For example, in a nationwide database, city name is a good
predictor of county, and there are many cities and counties. If
a clustered index on county exists, the index will also be useful
for answering queries over city name, since the number of tuples
for each county is small as compared to the size of the database.
Conversely, correlations with small-domain attributes may be less
valuable (e.g., a clustered index on gender – even if highly corre-
lated with some unclustered attribute – is unlikely to reduce access
costs for most scans.)

2.3.2 Frequency of Correlations
Correlations that can be exploited by CIs arise naturally in many

domains. In some cases, these are due to physical constraints (such
as the fact that the ship date of a product must be after the order
date, often within a day or two). In other cases, they arise be-
cause databases are storing hierarchical or near-hierarchical data.
The geographic examples we have used illustrate this nicely: states
contain cities, counties, zip codes and area codes and counties con-
tain cities. Area codes and zip codes may overlap several counties
or even states (for example, the 83110 zip code is in both Wyoming
and Idaho), but are strongly correlated with geography. Clustering
over multiple such geographic attributes and then building a CI
on the other attributes (which is likely to be quite feasible as the
CIs will be very compact) will offer good performance for many
queries.

Hierarchies occur naturally in many other domains as well – for
example, product catalogs in websites like eBay and Amazon of-
ten categorize items in a semi-hierarchical fashion. Items on eBay
are placed in a six-level hierarchy, but a given item may catego-
rized in several different places in the hierarchy. If a correlated
index is built on any level of this categorization, CIs on the other



levels can be used to quickly look up items in certain categories or
sub-categories. We show examples of queries over both product
hierarchies and geographic data in our results in Section 6.

2.3.3 Relationship to Unclustered Indices
It is not necessary to use a CI to exploit correlations in many

database systems as unclustered (dense, B+Tree) indices achieve
similar gains with an appropriately selected correlated attribute.
For example, in PostgreSQL, rather than using a CI and predicate
introduction, one can build a secondary index on the unclustered
attribute. When applying predicates over this attribute, rather than
performing many random I/Os by following pointers from the un-
clustered index to the data pages, PostgreSQL uses the index to
build a bitmap (with one bit per page) indicating the pages that
contain records that match predicates. It then scans the heap file
sequentially and reads only the pages whose bits are set in the
bitmap. If the table is clustered on an attribute that is highly cor-
related with the unclustered index key, then this scan will access
far fewer pages than if there was no such correlation. This results
in the same benefit that CIs exploit, so PostgreSQL will perform
about the same number of I/Os when using a CI or a unclustered
index. (Because unclustered indices are larger, they may incur
more I/Os performing lookups to generate the bitmap.) We show
that the two approaches are comparable in our experiments.

To illustrate the benefit obtained by both CIs and unclustered
indices, we visualized the distribution of page accesses when per-
forming lookups of the form Au = v (for different Au) via an
unclustered index over Au on the lineitem table from the TPC-H
benchmark. We performed two different experiments: in one case,
we had a clustered B+Tree on an attribute Ac (correlated with Au),
and in another case the data was clustered randomly. Figure 2
shows the distribution of page accesses throughout the lineitem ta-
ble. Each long, narrow box represents the pages in lineitem num-
bered from 0 to n; a black vertical bar for a particular page indi-
cates that it was read. The upper box of each pair shows pages read
when the clustered index was present; the lower box shows pages
read when the table was clustered randomly. For these attributes, a
clustered index accesses substantially fewer pages, particularly in
high-correlation cases (e.g., shipdate and receiptdate).

Besides the space savings offered by a CI, the major contribu-
tion of our work is to demonstrate a cost model and the design of
the index advisor that help in selecting the best attribute (or set
of attributes) on which a table should be clustered, which we fo-
cus on in Sections 3–5. First, we briefly describe how CIs can be
bucketed.

Page 0 . . . n
partkey (Ac) vs
suppkey (Au)

receiptdate (Ac)
vs shipdate (Au)

Figure 2: Visualization showing page access patterns when
performing lookup via an unclustered B+Tree on Au over the
lineitem table in TPC-H with and without a clustered index on
a correlated attribute Ac. Lookups were performed on three
Au values in each case and the accessed pages were recorded.

2.4 Bucketing CIs
The basic CI approach described in the previous section works

well for attributes where the number of distinct values in the CI
attribute or the clustered attribute are relatively small. However,
for large attribute domains (such as with continuous attributes),
the size of the CI can grow quite unwieldy (in the worst case hav-
ing one entry for each tuple in the table). Keeping a CI small is

important to keep the overhead of performing lookups low.
We can reduce the size of a CI by “bucketing” ranges of the un-

clustered attribute together into a single value. We can compress
ranges of the clustered attribute stored in the CI similarly. A basic
approach to bucketing is straightforward. For example, suppose
we build a CI on the attribute “temperature” and we have a clus-
tered index on the attribute “humidity” (these attributes are often
correlated, with lower temperatures bringing lower humidities).

Suppose the unbucketed CI looks as follows:

{12.3oC} → {17.5%, 18.3%}
{12.7o} → {18.9%, 20.1%}
{14.4oC} → {20.7%.22.0%}
{14.9oC} → {21.3%, 22.2%}
{17.8oC} → {25.6%, 25.9%}

We can bucket into 1oC or 1% intervals via truncation as follows:

{12 − 13oC} → {17 − 18%, 18 − 19%, 20 − 21%}
{14 − 15oC} → {20 − 21%, 21 − 22%, 22 − 23%}
{17 − 18oC} → {25 − 26%}

Note that we only need to store the lower bounds of the intervals
in the bucketed example above. We omit a detailed algorithm for
performing this truncation in the interest of brevity.

The effect of this truncation is to decrease the size of the CI
while decreasing its effectiveness, since now each CI attribute value
maps to a larger range of clustered index values (requiring us to
scan a larger range of the clustered index for each CI lookup).
We evaluate the effects of bucketing in more detail in Section 5,
and also discuss a sampling-based algorithm we have developed
to search for a good bucketing.

3. MODEL
So far in this paper, we have given some intuition for situations

where correlations give us benefits for unclustered index lookups;
however, we have not yet provided a formal analysis for when this
will be true. In this section, we describe an analytical cost model
that we use to compare the absolute costs of the different access
methods over an unclustered attribute. In particular, we examine
CIs, full table scans, and unclustered B+Trees in situations with or
without useful correlations.

3.1 Preliminaries
In the following discussion, we assume a table with clustered

attribute Ac and secondary attribute Au on which we query. Our
model assumes that the table is stored as a clustered B+Tree sorted
on Ac for fast sequential scans. Thus, to read all of the tuples
corresponding to a clustered attribute value, we perform a lookup
for the value in the clustered B+Tree index (which is independent
of a CI) and read the relevant tuples sequentially.

We do not charge the B+Tree or CI access methods for reading
index pages, because the caching of index pages is specific to the
cache implementation (we show in Section 6 that CIs are often far
smaller and more likely to fit in cache). We assume that the cache
initially holds none of the data pages.

In Table 1, we summarize the statistics that we calculate over
each relation. Additionally, in Table 2, we describe the hardware
parameters we use, along with typical values measured on our ex-
perimental platform. Most model parameters are straightforward,
and we describe in Section 4 how to measure them automatically.

We assume that all of the access methods are disk-bound. We
do not model the CPU costs associated with traversing a B+Tree
nor with filtering tuples in the CI, and the cost of the sequential



Table 1: Table statistics used by the cost model.
tups per page Number of tuples that fit on one page.

c tups Average number of tuples appearing with each Ac value.
u tups Average number of tuples appearing with each Au value.
c per u Average number of distinct Ac values for each Au value.

total tups Total number of tuples in the table.
btree height Average height of a clustered B+Tree path, root to leaf.
n lookups Number of Au values to look up in one query.

Table 2: Hardware parameters used by the cost model.
sequential page cost Time to read one disk page sequentially.

Typical value: .078 ms
disk seek cost Time to seek to a random disk page and read it.
Typical value: 5.5 ms

scan is independent of the number of values we look up. We have
observed these assumptions to be reasonable in our results in Sec-
tion 6.

3.2 Cost of Sequential Scan
The sequential scan operator is the simplest access method to

model. Given our model parameters, the number of pages in a
table is total tups/tups per page. The cost of scanning a table is
then

costscan = (sequential page cost)
(

total tups
tups per page

)
We note here that our model is oblivious to external factors such

as disk fragmentation. We found that this underestimated the true
cost of a scan in a popular commercial database implementation,
but the effects of fragmentation are unlikely to dominate the cost.

3.3 Cost of Correlation Index
Suppose that the CI has a set of Au values to look up. For each

Au value, the CI visits c per u different clustered attribute values.
We need to perform one clustered B+Tree lookup to reach each
of these clustered attribute values, followed by a scan of all of the
pages for that Ac value. We model the cost of the clustered B+Tree
lookup to be proportional to the height of the B+Tree. In terms of
the parameters we are given, the number of pages for a given Ac

value is c tups/tups per page. When the CI scans a large fraction
of the file, its access pattern becomes gradually more like a full
table scan – indeed, the CI pattern will never be more expensive
than a sequential scan. Combining these expressions, the overall
cost of a CI lookup is:

c pages =
c tups

tups per page
costci = min((c per u)((disk seek cost)(btree height) +

(sequential page cost)(c pages)), costscan)

One simplification in our model is that we ignore the overlap
between the sets of Ac keys associated with two particular Au val-
ues. In other words, if one Au value maps to n different Ac values
on average, then it is not true in general that two Au values map to
2n different Ac values. Our model may overestimate the number of
Ac values involved, and thus the cost of CI. This is a concern, for
example, when evaluating a range predicate over an unclustered
attribute that has linear correlation with the clustered attribute (or-
der receipt dates will overlap heavily for a range of ship dates).
Although we have chosen to omit this statistic in favor of simplic-
ity, we describe in Section 6.2 a procedure that examines a series
of bucketings to correct for the overestimation.

3.4 Cost of Unclustered B+Tree
So far, we have argued that correlations play a major role in

determining the cost of unclustered index lookups. As a result, it
makes sense to model the cost of unclustered B+Tree operations
when we expect no meaningful correlations separately from the
case when we are aware of correlations.

3.4.1 Uncorrelated Case
In the absence of meaningful correlations between the indexed

attribute and the clustered attribute, we call the unclustered B+Tree
a lonely index. We model every tuple that the lonely B+Tree reads
as a disk seek. The reason why we charge the costs of expensive
seeks here is that we have no expectation for any two tuples to fall
on the same page, unless the fraction of the table scanned is large
(when a sequential scan will do better). In a reasonable implemen-
tation of a B+Tree access method, such as PostgreSQL’s bitmap
scan, the relevant pages will be accessed in sorted order (see Sec-
tion 6.1 for more details). As a result, B+Tree performance should
level off to that of a sequential scan under low selectivity. We ex-
pect u tups tuples to be associated to each Au value, and the cost
of n lookups values is simply

costuncorrelated = min((disk seek cost)(u tups)(n lookups), costscan)

3.4.2 Correlated Case
In contrast to the expensive seeks per tuple that take place in

the uncorrelated case, the unclustered B+Tree behaves much like
a CI when we ensure useful correlations. The access pattern will
involve large seeks between islands of densely grouped pages (as
in Figure 2), and reads within each island will be largely sequential
due to short seeks and disk prefetching. We therefore apply the
same expression as we use for the CI to calculate the cost of a
lookup on an unclustered B+Tree with meaningful correlations.
Our results in Section 6.2 show that the costs of a CI and a B+Tree
in this case are quite similar in practice.

3.5 Discussion
Based on the above analysis, we provide some intuition for sit-

uations where a CI might be more or less expensive than a sequen-
tial scan or unclustered B+Tree.
Sequential scan: The CI access pattern can be thought of as a sub-
set of a sequential scan – that is, the CI always reads segments of a
file in the same order as a sequential scan would, but it jumps over
some stretches of the file. In general, the CI will beat a sequential
scan when the selectivity is high, and it is reasonable to expect the
performance of CI to degrade to that of the sequential scan when
the selectivity becomes low (indeed, the CI access pattern becomes
more and more like a sequential scan).
Unclustered B+Tree: The difference between the performance of
CIs and secondary B+Trees is less straightforward to grasp. In
the case when the database administrator is deciding whether to
re-cluster an existing table that employs unclustered B+Trees, the
model predicts that a CI with correlations will frequently perform
much better than a lonely B+Tree. When c tups is high, a lonely
B+Tree may still do better at high selectivity queries because the
CI will be forced to scan large ranges of irrelevant tuples. B+Tree
lookups are more expensive, however, when there are many tuples
for each Au value – with no useful correlations, the access pattern
involves many seeks per lookup.

If we look at a table that already exhibits strong correlations be-
tween the clustered attribute and unclustered attributes, the model
explains that a CI and B+Tree will perform similarly. The under-
lying access patterns read pages in nearly the same way, differing
only in that the CI will scan some ranges of irrelevant tuples where



the B+Tree seeks over them. In this case, the important consider-
ation is that the CI is often orders of magnitude smaller than the
corresponding B+Tree. Thus, we trade a small overhead in perfor-
mance to be able to index over many more attributes and to hold
the index structures in memory.

4. PREDICTION
There are several reasons why it is valuable to be able to deter-

mine whether a CI will be beneficial in query processing. First, a
database administrator may need to understand whether creating
CIs on a particular pair of attributes is likely to improve perfor-
mance; although CIs are compact, creating them on every pair of
attributes is not a good idea as the update and storage penalty will
be severe. Second, the query rewriter needs to be able to estimate
whether a given query should be rewritten or not; introducing ad-
ditional predicates on the clustered attribute slows down the query
compiler and introduces overhead into query execution and may
cause the query optimizer to generate a non-optimal plan.

For these reasons, we have developed the CI Advisor, a tool
that scans existing tables and calculates the statistics needed by
the cost model. Given these statistics and measurements of under-
lying hardware properties, the CI Advisor can predict how much
(or if) a given pair of attributes benefit from a CI; the database ad-
ministrator can use these measurements to choose to build CIs and
cluster tables on high-benefit attribute pairs that the application is
likely to query.

Since the CI Advisor computes sufficient statistics to evaluate
the cost model for any set of parameters, our implementation is ca-
pable of generating plots of the expected query performance over
each of the three access methods. In Section 6, we present the plots
predicted by the CI Advisor alongside our empirical results. Our
results suggest that the CI Advisor produces accurate estimates.

4.1 Parameter Collection
In order to form predictions based on the cost model, the CI

Advisor must refresh its statistics based on the current state of the
database. Our approach for doing this is quite simple, and we
use a sampling-based method to reduce the heavy costs of exact
parameter calculation.

The parameter total tups is simply a count of the number of tu-
ples in the table, which we expect the DBMS to maintain already
as a routine statistic. Similarly, the DBMS must be able to deter-
mine btree height, the height of a clustered B+Tree index. The
parameter c tups can also be computed as total tups divided by
the number of distinct values in Ac, which is also routinely main-
tained in the system catalog. Furthermore, the average number of
tups per page can be determined easily by dividing the size of a
database page by the average width of a tuple.

Our model further relies on the sequential page cost and
disk seek cost – parameters that are characteristics of the underly-
ing disk. Instead of depending on the user to supply these values,
our implementation measures them directly by creating large files
on the target filesystem and reading them via sequential and ran-
dom access patterns.

4.1.1 Estimating c per u
The remaining c per u statistic, the average number of distinct

clustered key values for each lookup key value, is the chief statis-
tic that captures degrees of correlation within our model. Unfor-
tunately, it is also by far the most expensive statistic to compute
exactly. The problem of estimating the c per u counts reduces to
the problem of predicting the number of distinct values in a col-
umn over some partition of that column.

We first observe that it is unnecessary to calculate the distinct

Ac value count for each Au group explicitly, since the model only
requires an average over all groups. Let us write the number of dis-
tinct values over a pair of attributes Ai and A j as D(Ai, A j) and the
number of distinct values over a single attribute as D(Ai). Then, it
is clear that we can also write c per u as D(Au, Ac)/D(Au). In other
words, instead of computing c per u values by averaging over an
expensive grouping aggregate operation, we can alternatively cal-
culate distinct counts for each single attribute and each attribute
pair. Then, we simply divide the distinct counts as necessary to
derive each c per u value.

Since computing precise distinct value counts can be expensive
for large tables, it is natural to ask if we can achieve reasonable
estimates via sampling. If we can reduce the cost of determining
the distinct counts of each field as well as the c per u counts, then
we can reduce the execution time of the CI Advisor and improve
the staleness of the cost model used for query optimization.

The basic problem of predicting the number of distinct values
in a column has seen extensive treatment in both the database and
statistics communities, where it is known as the problem of esti-
mating the number of species (e.g. [1]). We have evaluated the
Distinct Sampling (DS) algorithm by Gibbons [9], which achieves
estimates that are far more accurate than purely sampling-based
approaches at the cost of one full table scan.

To validate the effectiveness of DS in estimating c per u values,
we developed a DS implementation in C++. We created one DS
instance for each single attribute and attribute pair in a reduced
TPC-H lineitem table with 18 million tuples (see Section 6.1 for
more information about the lineitem table). We compared the DS
estimates to the exact values and present accuracy results over four
different DS space bounds: B ∈ {100, 1000, 10000, 100000} tu-
ples. These space bounds correspond to storing {.00056%, .0056%,
.056%, .56%} of the full table, respectively, for each of 28 DS in-
stances in a trial. As the space bound increases, we expect a more
costly runtime but more accurate results. We found that, within
PostgreSQL, computing c per u exactly using distinct count queries
required over 1.5 hours for our 2.5GB lineitem table – far too ex-
pensive to be practical. Using DS improves the computation time
to 6 minutes for B = 100 and 14 minutes for B = 100, 000 – over
an order of magnitude in improvement.

We also measured the accuracy of our sampling-based approach
and found it to be highly effective. By choosing DS instances with
a space bound that is merely .056% (B = 10, 000) of the entire
table, we are able to achieve an average of 10% error in a total
of roughly 14MB of memory; for space bound of .56% of the
table, error decreases to 3.5%, but memory usage grows to 110
MB. These results show that it is possible to calculate the model
parameters efficiently by using DS. Furthermore, DS has the key
property that the D(Ai) and D(Ai, A j) value estimates can be main-
tained efficiently online in the presence of insertions. It is possible,
therefore, for the DBMS to maintain up-to-date c per u estimates
for use by the planner during query optimization.

5. BUCKETING AND COMPOSITES
As discussed earlier, CIs work best when a strong correlation

exists between the indexed column and the clustered column. How-
ever, there are situations where a composition of two columns
might have a much stronger correlation than either of the columns
individually. For example, consider longitude and latitude. Each
can cross many different zipcodes, but combined, (longitude, lati-
tude) can determine a zip code uniquely. This is particularly useful
because it works even if longitude and latitude are bucketed us-
ing a reasonable bucket size such as 1 second. A traditional (sec-
ondary) composite B+Tree over a large table cannot handle this
well because, unless there are highly selective predicates on both



key columns, it will have to read a large fraction of the B+Tree
pages. Since secondary indices are inherently dense (i.e., they
store one entry for each row) scanning such an index requires sig-
nificant I/O. Because bucketed CIs are so much smaller, their I/O
requirements can be significantly less.

In this section, we describe how the CI Advisor finds such com-
posite correlations from a vast number of possible column com-
binations and proposes promising column bucketings that keep
the size of CI small without significantly degrading query perfor-
mance. Our experimental results show that a well designed com-
posite CI can be both faster than a composite B+Tree Index and
up to three orders of magnitude smaller.

Before going into the details of the composite CI selection al-
gorithm, we first describe how the CI advisor chooses possible
bucketings for a single column that contains many values. We de-
scribe how to do this for both for the clustered attribute and the
unclustered attribute (for which we build the CI). For unclustered
attributes, the CI Advisor produces a set of candidate bucketings
for every column, which are used by the composite CI selection
algorithm.

5.1 Bucketing Many-valued Columns
As described in Section 2.4, bucketing can dramatically reduce

the size of a CI; in particular, bucketing allows the CI Advisor
to consider many-valued (even unique) columns when making CI
recommendations. However, we must be careful when choosing
bucketing granularity. Very large buckets may result in poor per-
formance because of unnecessary reads of large blocks of the cor-
related attribute, while small buckets produce large data structures,
increasing CI access cost (and preventing it from fitting in mem-
ory). In this section we describe how our CI Advisor algorithm
finds the “ideal” bucketing granularity that strikes a balance be-
tween size and performance.

5.1.1 Clustered Column Bucketing
If the clustered column or columns are many-valued, the CI can

become very large even in the presence of a strong correlation
between the clustered column and the unclustered column, since
each unclustered attribute value will map to many clustered values.
This causes two problems: first, CI access becomes more expen-
sive due to its size. Second, the rewritten query has an extremely
long IN clause, containing one entry per selected row in the worst
case. We found that this can cause a significant overhead in the
PostgreSQL query optimizer and execution engine.

To bucket the clustered column, we add a new column to the
table that represents the “bucket ID.” All of the tuples with the
same clustered attribute value will have the same bucket ID, and
some consecutive clustered attribute values will also have the same
bucket ID. The CI then records mappings from unclustered values
to bucket IDs, rather than to values of the clustered attribute. To
actually perform the bucketing, during its sequential scan of the
table (to compute c per u statistics), the CI Advisor begins by as-
signing tuples to bucket i = 1. Once it has read b tuples, it reads the
value v of the clustered attribute of the bth tuple. It continues as-
signing tuples to bucket i until the value of the clustered attribute
is no longer v, at which point it starts assigning tuples to bucket
i + 1 and increments i (this ensures that a particular clustered at-
tribute value is not spread across multiple buckets). This process
continues until all tuples have been assigned a bucket.

Observe that the primary effect of bucketing is to cause queries
rewritten to use a CI to read a larger sequential range of the clus-
tered attribute, increasing sequential I/O but not adding disk seeks.
We have observed that the additional effects of this sequential I/O
are not dramatic. To illustrate this, we “bucketized” the Sloan Dig-

ital Sky Survey (SDSS) dataset, containing 3GB of data about ce-
lestial imagery (see Section 6). We then measured the time to run
the query SX6, which does a lookup on two values of the field fiel-
dId, which is well correlated with the clustered attribute (ObjID in
this case). We varied the bucketing of the clustered attribute. The
results are shown in Table 3. We found that performance is rela-
tively insensitive to the bucket size; a value of b such that about 10
pages of tuples map to each bucket appears to work well, taking
only about 1 ms longer to read than no bucketing (bucket size =
1). The reason for this is that random I/O dominates the cost of
sequential I/O.

Table 3: Clustered column bucketing granularity and I/O cost
Bucket Size [pages/bucket] Physical Scans [pages] IO Cost [ms]

1 96 15.34
5 105 15.925
10 110 16.25
15 135 17.875
20 140 18.2
40 160 19.5

5.1.2 Bucketing Unclustered Columns
Bucketing in unclustered columns has a larger effect on perfor-

mance than bucketing in clustered columns because merging two
consecutive values in the unclustered domain will potentially in-
crease the amount of random I/O the system must perform (since
it will have to look up additional, possibly non-consecutive val-
ues in the clustered attribute). The previous section showed that
bucketing the clustered attribute only causes additional sequential
I/O.

The CI Advisor performs bucketing by constructing equi-width
histograms over unclustered attribute values based on random sam-
ples of attributes it is considering to build a bucketed CI over.
These samples are randomly collected during the sequential pass
of the table, yielding an optimum random sample as described
in [20].

After collecting a random sample that fits in memory, the CI ad-
visor builds histograms of several different bucket widths from the
sample. Each of these histograms represents one possible buck-
eting scheme for the attribute under consideration. For a single-
attribute CI, the c per u value for each bucketing can be com-
puted directly from each histogram, by calculating the average
number of clustered attribute values that appear in each bin of
the histogram, as described in Section 4. Histograms with fewer,
wider bins will have more clustered values per bin and a higher
c per u, whereas histograms with more, narrower bins, will have
lower c per u values. Of course, wider bins also result in a smaller
c per u. In practice, we find that there is often a “natural” buck-
eting to the data that results in little increase in c per u while sub-
stantially reducing the index; we show this effect in our experi-
ments in Section 6.

One question that remains is how we determine how many dif-
ferent bucketings to consider for each attribute. Our algorithm
works by considering all bucketings that result in a number of val-
ues per bucket between a range minv and maxv, with bucket sizes
scaling exponentially (in our experiments, we use powers of 2).
For example, if a column has 1000 values, with minv = 10 and
maxv = 100, the algorithm considers bucket widths of 16, 32, and
64 (since a bucket width of 8 yields less than 10 values per bucket,
and a bucket width of 128 yields more than 100 values per bucket).
This (admittedly heuristic) approach captures the intuition that a
low-cardinality column should not be bucketed, and that we do not
want to consider too many bucketings for many-valued columns in
order to keep search costs down.



As another example, Table 4 below shows the output from buck-
eting on the SDSS data set. Here, the CI advisor outputs columns
such as mode and type, which are few-valued, without bucketing.
For the many-valued columns fieldID and psfMag g, it recom-
mends a range of bucketings that keep the number of values per
bucket in the range between 10 and 20000.

In the case of building a composite CI, we do not directly com-
pute c per u for each of the single-attribute histograms, but rather
pass the possible binnings and the random sample we collected to
the composite CI selection algorithm which tries to select a good
multi-attribute CI. We describe this process next.

Table 4: Unclustered column bucketings considered for SX6
query in the SDSS benchmark.

Column Cardinality Bucket Widths
mode 3 none
type 5 none

psfMag g 196352 24 ∼ 214

fieldID 251 none ∼ 24

5.2 Composite CI Selection
The number of possible composite CI designs for a given table

is very large because there are
CN∏

c=C1

(Bucketing(c) + 1) − 1 unique

combinations of N columns and bucketings. Consider Table 4
again. Here, there are two options for mode: whether to include
it or not. For fieldID, there are four options: to include it unbuck-
eted, to include it with bucket width 41 or 42, or not to include it.
Similar choices apply for the other attributes. Hence, in total, Ta-
ble 4 implies (2∗2∗7∗4)−1 = 111 different candidate designs for
CIs from just 4 columns. Unlike the single column CI prediction,
running Distinct Sampling for all candidate designs is impractical.
Hence, we combined a set of known techniques from the database
literature to achieve practical performance and reasonable accu-
racy to solve this problem.

5.2.1 Training Queries
A composite CI can help the query execution only when some

(or, ideally, all) of its columns are used as predicates in the query.
In other words, an interesting CI design for a query should contain
some subset of the predicated columns. As each single query usu-
ally has a fairly small number of predicates, this limits the size of
a CI design for that query to a much smaller space than all table
columns.

For example, in our SDSS dataset, the DBA might provide the
following set of sample queries (alternatively, such a training set
can also be collected by monitoring popular queries at runtime):
Training Set

Query 1: SELECT . . . FROM . . . WHERE ra BETWEEN 170
AND 190 AND dec < 0 AND mode = 1
=⇒ { ra, dec, mode }
Query 2: SELECT . . . FROM . . . WHERE fieldID IN ( . . . )

AND mode = 1 AND type = 6 AND psfMag g < 20
=⇒ { fieldID, mode, type, psfMag g }

Query 3: . . .

The goal of the Composite CI Designer is to output one or more
recommended CI designs for each query with the expected speed-
up factors and CI size estimates. The DBA can then choose which
CIs to create. As long as CIs are small, it is reasonable to expect
that there will be several CIs on any given table.

5.2.2 Fast Cardinality Estimation

Our CI Advisor exhaustively tries possible CI designs for a given
training set query. Because there are only a few predicated columns
per query, and because we have selected a small number of pos-
sible bucketings per column, in practice the total number of de-
signs that must be considered is not infeasible, but can still be
quite large. To evaluate a design, the CI advisor must compute the
c per u for the composite CI columns of each candidate composite
CI.

We previously used Distinct Sampling (DS) in Section 4.1.1 for
cardinality estimation, but DS cannot output accurate cardinality
estimates unless it is able to scan the entirety of a relation. As
we cannot keep the whole table in memory, computing a distinct
sample requires substantial I/O. Thus, it would be very slow to
perform many passes of DS to estimate the cardinalities of a large
number of candidate composite CIs. One way to avoid this re-
peated I/O cost would be to scan the table only once and compute
cardinality estimates for many candidate composite CIs simulta-
neously. However, as we verified in Section 4.1.1, in order to keep
the error ratio small, DS requires substantial amounts of memory
for each cardinality estimate, limiting the number of simultaneous
cardinality estimates we can perform.

Hence, to recompute these estimates we use the Adaptive Es-
timator (AE) algorithm [5]. This allows us to quickly estimate
the cardinality of each combination of columns and its respective
bucketings. AE is a cardinality estimation algorithm based on ran-
dom samples which does not require a full table scan. In our evalu-
ation of different cardinality estimation algorithms that use random
samples, AE gave the most stable results and provided reasonable
accuracy on datasets with varying skew. It also runs very quickly
when data samples are already in memory. See Section 9 for more
detail.

We use AE as follows: as discussed earlier, the CI Advisor pre-
serves random samples collected during the initial table scan and
histogram collection. For each CI design under consideration, we
can bucketize this random sample according to the current design.
We can then compute c per u over this sample as in Section 4,
using AE instead of distinct sampling.

In our experiments, the CI Advisor uses a sample size of 30,000
tuples, which we found to be sufficient for the datasets we exper-
imented on. Using this sample, AE can compute cardinality and
bucketing estimates in approximately 5 milliseconds per candidate
design with reasonable accuracy. In our experiments, the CI Ad-
visor can return candidate CI designs in under 20 seconds for a
query with 4 or 5 predicated columns. Given that the CI Advisor
is an offline algorithm, we believe this is pragmatic.

5.2.3 Ranking designs by size and c per u
As we described in Section 3, the c per u associated to a CI

is a good indicator of the expected query runtime improvement.
However, a large CI tends to be less useful, even if it has a very low
c per u, because it requires too much disk space and thus provides
no advantage over conventional B+Tree indices. Therefore simply
recommending the CI with the lowest c per u is a poor idea. For
this reason, we output CI designs grouped by size category – e.g.
CIs less than 100KB, CIs less than 1MB, and so on.

Table 5 shows CIs designs grouped by size for our SDSS dataset,
sorted by c per u rating within each group. This format allows the
DBA to evaluate the trade-off between disk space and query im-
provement based on their requirements.

5.3 Discussion
There are two ways to implement a composite CI recommended

by CI Advisor. One way is to construct a CI as described in Sec-



Table 5: Recommended composite CI designs grouped by size
and sorted by c per u

CI smaller than 100KB
CI Design c per u Size

type, fieldID 12.4 62KB
mode, fieldID 18.4 61KB

fieldID 20.8 23KB
. . . . . . . . .

CI smaller than 500KB
CI Design c per u Size

psfMag g(47), mode, fieldID 6.4 315KB
psfMag g(47), type, fieldID 9.2 304KB

type, mode, fieldID 10.1 125KB
type, fieldID 12.4 62KB
. . . . . . . . .

tion 2 with composite values, which is what we did in our experi-
ments. Another way is to intersect single column CIs. Intersecting
several CIs can often return a bitmap result that is very similar to
the composite CI result, but can sometimes cause a clustered at-
tribute value to be read when when a page has at least one tuple
that satisfies every predicate but has no tuples that satisfy all pred-
icates. A purely composite CI would not make this mistake. The
advantage of using CI intersection is that we can use the same CI
in multiple composite predicate lookups, assuming similar buck-
eting granularity works across these multiple predicates. Thus we
might be able to build one CI per column that is used in any of
the queries, rather than building one CI (or even several) CIs per
query.

As currently implemented, the CI Advisor has to be re-run from
scratch to evaluate the expected benefit of a new clustered index.
For this reason, finding a multi-column clustered index may be
prohibitively expensive. Most of our experiments only use the
best single column clustered attribute (although, in a few cases,
we did manually identify well-performing composite clustered at-
tributes). Some of our results suggest that a good clustered index
design might be to cluster on some composition of columns where
each column has strong correlation with a different group of pred-
icated columns, since intuitively, we want a clustered index that is
correlated with all (or most) predicated columns to make the most
of CIs or any other secondary index structures. Exploring more
efficient algorithms to search for the best combination of clustered
attribute columns remains an area for future work.

6. EXPERIMENTAL EVALUATION
In this section, we present an experimental validation of our re-

sults. The primary goals of our experiments are to validate the ac-
curacy of our analytical model, to establish that useful correlations
are reasonably common in large data sets, and to explore optimal
CI design using ideal bucketing based on underlying correlations.

6.1 Setup
We ran our tests on a single processor machine with 1G of RAM

and a 320G 7200rpm SATA II disk. All experiments were run
on PostgreSQL 8.3. We flushed memory caches between runs by
using the Linux /proc/sys/vm/drop caches mechanism and
by restarting PostgreSQL for each trial. Note that whenever we
compare our results to a B+Tree, we are using the standard Post-
greSQL secondary index.

In order to perform multiple index probes for a single query,
PostgreSQL implements the bitmap scan approach. When look-
ing up a set of values v1, . . . , vn in a column with a B+Tree index,
PostgreSQL first creates an in-memory bitmap whose bits repre-

sent each possible tuple offset in the heap file. For each resulting
file offset identified by the B+Tree for each query value vi, it sets
the corresponding bit. After all index probes have been performed,
PostgreSQL scans the bitmap in-order and reads the correspond-
ing file locations. This approach effectively sorts the set of pages
visited, minimizing the cost of disk seeks.

Hierarchical Data: The dataset that we use for the majority of our
experiments is derived from eBay category descriptions that are
freely available on the web [8]. The eBay data contain 24,000 cat-
egories arranged in a hierarchy of sub-categories with a maximum
of 6 levels (e.g. antiques→ architectural & garden→ hardware→
locks & keys).

We have populated this hierarchy with unique ItemIDs. We
chose 500 to 3000 ItemIDs uniformly per category, resulting in
a table with 43M rows (occupying 3.5GB on disk). Each category
is assigned a unique key value as its Category ID (CATID), and
the sub-categories for each CATID are represented using 6 string-
valued fields – CAT1 through CAT6. The median value for the
price of each category was chosen uniformly between $0 and $1M.
Individual prices within a category were generated using a Gaus-
sian around that median with a standard deviation of $100. Thus,
there exists a strong (but not exact) correlation between Price and
CATID. The schema for this dataset is as follows:

ITEMS (CATID, CAT1, CAT2, CAT3, CAT4, CAT5,
CAT6, ItemID, Price)

TPC-H Data: For our second data source, we chose the lineitem
table from the TPC-H benchmark, which represents a business-
oriented log of orders, parts, and suppliers. There are 16 attributes
in total in which we looked for correlations. The table consists of
approximately 18M rows of 136 bytes each, for a total table size
of 2.5GB. The partial schema for this database follows:

LINEITEM (orderkey, partkey, suppkey, . . . ,
shipdate, commitdate, receiptdate, . . . )

SDSS Data: Our third source is an extended version of the desktop
SDSS skyserver [11] dataset which originally contains 200,000 tu-
ples. We extend it by copying the right ascension (ra) and decli-
nation (dec) windows 10 times in each dimension to produce a
100-fold increase in the dataset size (20M rows, 3GB). The partial
schema for this database follows:

PhotoTag (objID, ra, dec, g, rho, . . . )

6.2 Results
We now present the results of a variety of experiments. The goal

of the experiments is to understand the relative trends in running
times for correlated and uncorrelated B+Trees, sequential scans,
and CIs as we vary the number of values that we look up and the
degree of correlation present.

Experiment 1: Our goal in this experiment is to compare two
different clustering schemes using queries over TPC-H data. In the
first, the clustered key for the lineitem table is receiptdate which is
correlated with shipdate. In the second, we cluster on the primary
key of lineitem – (orderkey, linenumber) – which is not correlated
with shipdate. The query used in this experiment is:

SELECT AVG(extendedprice * discount) FROM LINEITEM
WHERE shipdate IN<list of 1 to 100 random shipdates>

The list of shipdates in this query is chosen randomly from 2500
possible values. Thus, each point on the x-axis corresponds to a
different query.



As the graph in Figure 3 shows, the correct choice for the clus-
tered attribute can significantly improve the performance of the
secondary B+Tree index. For the uncorrelated case the perfor-
mance degrades rapidly, reaching the cost of a sequential scan for
queries over 4 shipdates. This happens because the query on the
uncorrelated attribute selects receiptdate values that are scattered
(approximately 7000 per shipdate), so the B+Tree access pattern
touches a large fraction of the lineitem table. PostgreSQL uses
a bitmap index scan to process this query. We have observed
the same behavior in other commercial database products as well.
This graph also shows that our cost model (Section 3) can accu-
rately predict the performance of unclustered B+Trees in the pres-
ence of correlations; we revisit the cost model accuracy in Exper-
iment 3.
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Figure 3: Performance of B+Tree index with a correlated clus-
tered index (shipdate) and an uncorrelated clustered index (or-
derkey, linenumber)

Experiment 2: In our next experiment, we explore the perfor-
mance implications of using a CI instead of a secondary B+Tree
on the eBay hierarchical dataset clustered by CATID. We pick a
bucket size of 4096 tuples per bucket for the Price attribute (and
we explain this choice in Experiment 4). We use the following
query with varying price ranges as indicated below.

SELECT COUNT(DISTINCT CAT2) FROM ITEMS
WHERE Price BETWEEN 1000 AND 1000+PriceRange

In Figure 4, we omit the points for the full table scan, which
takes more than 100 seconds – both the CI and the secondary in-
dex outperform it. However, the CI performs somewhat worse than
the secondary index. This is explained primarily by the increasing
number of extraneous heap pages that the CI needs to read (which
are avoided by the bitmap scan since they do not contain the de-
sired unclustered attribute value), as well as the overhead associ-
ated to query rewriting. The observation is that even with a simple
implementation scheme like query rewriting, the CI is competitive.
At the same time, it is three orders of magnitude smaller (the CI is
0.9MB on disk, the secondary B+Tree is 860MB).

Experiment 3: In this experiment, we demonstrate that our cost
model based on c per u captures actual query costs accurately.
The dataset and clustered key used in this experiment are the same
as in Experiment 2, but we use a different query that has a predicate
on CAT5; in other words, we select over a particular subcategory
in the fifth level of the eBay product hierarchy. We build a CI on
CAT5, which is strongly correlated with CATID.

SELECT AVG(Price) FROM ITEMS WHERE CAT5=X
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Here, we tested different values chosen from the CAT5 category
that exhibited different c per u counts (ranging from 4 to 145).
Our cost model predicts that the CI’s performance is primarily de-
termined by how many clustered attribute values the predicated un-
clustered value corresponds to. As Figure 5 shows, this cost model
effectively captures the performance of a CI and PostgreSQL sec-
ondary B+Tree with various c per u. Also, we observe again that
the CI mirrors the performance of the B+Tree quite well at 1/4000
of the size.
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To highlight the effect of the correlation, we tested the same
query after replacing CATID with an uncorrelated clustered at-
tribute. As Table 6 shows, the performance of both the B+Tree
and CI deteriorates and approaches a table scan, confirming the
result of Experiment 1. The c per u follows this spike, grow-
ing 1,000 times larger. This result shows that our cost estimation
based on c per u is accurate, and that lower c per u values due
to choosing correlated clustered attributes dramatically speeds up
both secondary B+Trees and CIs.

Table 6: Performance degradation and c per u after replacing
a correlated clustered attr. → uncorrelated clustered attr.

CAT5 value c per u B+Tree Runtime[s] CI Runtime[s]
Forks 4→ 5653 0.2→ 35 0.3→ 62
IBM 15→ 15270 0.3→ 62 0.5→ 67
Pink 24→ 18398 0.5→ 65 0.8→ 67

Photos, Prints 62→ 21004 1.5→ 65 2.0→ 68

Experiment 4: Next, we explore how to optimize over bucketing
schemes by balancing the performance of the target query and the
size of CI. Since this query may be one of many running on the



system, choosing small CIs that fit in memory and are still effec-
tive allows us to create CIs tailored for many different queries and
improve overall performance. We again use CATID as the clus-
tered attribute, but instead of relying on one fixed bucket layout
for the unclustered attribute, we vary the bucket size using the ap-
proach presented in Section 5. We run the following query:

SELECT COUNT(DISTINCT CAT3) FROM ITEMS
WHERE Price BETWEEN 1000 AND 1100

The selectivity of this predicate is 6617 rows out of 43M, or
0.000154. In order to understand how bucketing affects perfor-
mance and the size of the CI, we vary the bucket size by powers
of two. Therefore, a bucket level of 3 indicates that each bucket
holds 23 unclustered attribute values.

Looking at Figure 6, we see that the CI’s performance is nearly
the same as that of the B+Tree up to a bucket level of about 13.
With no bucketing, the size of the CI is 350MB, which is already
smaller than the PostgreSQL secondary B+Tree (850MB). Ob-
serve that as we increase the bucket size, the CI size continues
to decrease. It is notable that even a CI on a many-valued column
like Price can become very compact after bucketing.

Figure 6 demonstrates a tradeoff between runtime and size. The
lookup runtime grows rapidly after the CI hits a particular bucket
size. The intuition behind this critical bucket size is the following:
if there are two adjacent buckets in the CI that point to the same set
of buckets in the clustered index, doubling the CI bucket size has
no effect on c per u. The key bucket size in this example occurs
at 213 = 8192, which is the number of Price values closest to the
6617 selected by the range predicate. Hence, we can see that there
is an “ideal” choice for the bucket size that occurs at the knee of
the curve.

In order to plot the CI cost model in Figure 6, we applied one
refinement to the costci expression presented in Section 3.3. In that
section, we made the simplifying assumption to disregard the over-
lap in sets of clustered (CATID) values associated to two unclus-
tered (Price) values, which causes overestimates in some cases.
The overestimate becomes particularly important in this example
when evaluating bucket sizes less than 212. To see why, consider
splitting a bucket of size 212 into two buckets of size 211 – the tu-
ples in the smaller buckets will in fact point to no more CATID
values than before. However, since each of the smaller buckets
still points to the same values of CATID, the cost model double-
counts the number of clustered pages to visit and overestimates the
runtime by a factor of 2. To avoid overestimating, we observe that
splitting a bucket in half can never increase the number of clus-
tered pages visited. Thus, we predict that the actual runtime of a
lookup at bucket level i is the minimum of the costci value calcu-
lated by the cost model and the runtime predicted at bucket level
i + 1 (in other words, the cost is a non-decreasing function of the
bucket level). The values on Figure 6 indicate that the refinement
gives us an accurate representation of the actual lookup runtimes.

Experiment 5: For the final experiment, we use the SDSS dataset
to demonstrate a situation where composite CIs have an advan-
tage over single-attribute CIs and even B+Tree indices with a real-
world dataset and query. The clustered attribute in this dataset is
objID. The objID is correlated strongly with the pair (ra, dec), but
the correlation is weaker with each individual attribute. We use
the following query, a variant of Q2 from the SDSS benchmark
that identifies objects having blue and bright surfaces within some
region. 2

2In this query, g is a logarithmic measure of blueness and rho is a
logarithmic measure of brightness.
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Figure 6: Tradeoff between query runtime and CI size as a
function of bucket level. The query selects a range of Price
values.

SELECT COUNT(*) FROM PhotoTag
WHERE ra BETWEEN 193.117 AND 194.517
AND dec BETWEEN 1.411 AND 1.555
AND g + rho BETWEEN 23 AND 25

We choose the columns and bucket sizes for the CI recommended
by the CI Advisor. As we can see in Table 7, the composite CI per-
forms much better than a single attribute CI when neither attribute
predicts the clustered value but the composition of the attributes
does. Both the CI on right ascension and the CI on declination
perform worse than the B+Tree index on the pair. However, the
CI on the pair of attributes actually performs even better than the
B+Tree.

The reason for the composite CI win is that the B+Tree index
performs poorly given multiple range predicates. The secondary
index will only be used for the range on right ascension, which is
the prefix of the compound key. The CI does not suffer from this
problem since it is only 693KB and it can be scanned in its entirety
in memory, inexpensively. The size of the secondary index on (ra,
dec), on the other hand, is 542MB.

Table 7: Single and composite CIs for an SDSS range query
Index Bucketing Runtime[s] Size[MB]
CI(ra) 212 4.0 0.67

CI(dec) 214 1.7 0.936
CI(ra, dec) 214(ra) 216(dec) 0.21 0.693

B+Tree(ra, dec) - 1.12 542

6.3 Summary
We compared the performance of secondary B+Tree lookups,

CIs, and sequential scans in PostgreSQL on a variety of different
data sets, showing that CIs and B+Trees can both exploit corre-
lated clustered attributes, that our cost model is a good predictor



of performance, and that our CI Advisor can automatically select
high performance multi-attribute CIs.

In Experiment 1, we showed that the same secondary B+Tree
index structure exhibits dramatically different performance char-
acteristics depending on the level of correlation with the clustered
attribute. Using a TPC-H query that predicates on shipdates, we
observed a speedup factor of up to 38 when comparing correlated
and uncorrelated clustered attributes.

Having established that correlations can have a large impact on
the performance of a secondary B+Tree, we compared a B+Tree
to a bucketed CI in Experiment 2 on a hierarchical eBay dataset.
By decreasing the selectivity of a range predicate over the unclus-
tered attribute, we observed that the CI performs nearly as well
as the B+Tree (within a factor of 1.4) while being three orders of
magnitude smaller (merely 0.9MB). Thus, it becomes practical to
create many of these CIs and to cache them in memory.

Next, we provided a case study for bucketing a many-valued
attribute (Price) to improve the size of a CI from 350MB to just
0.9MB, while decreasing the performance of lookups by only a
factor of 1.2. We illustrate this optimization problem along di-
mensions of size and runtime, and suggest a refinement to the cost
model that predicts the actual runtimes accurately.

Finally, we demonstrated a case where multi-attribute CIs can
be used to exploit correlations that are stronger than those available
with pairs of any single attributes. As a result, we show in our
experiment that a multi-attribute CI performs better than both a
secondary B+Tree as well as single-attribute CIs, while remaining
three orders of magnitude smaller than the B+Tree.

We also confirmed that our cost model does a reasonable job of
predicting the actual performance. We also confirm that the cost
model remains accurate for a range of degrees of correlation (as
the c per u parameter varies).

7. RELATED WORK
One can view our work as an extension of certain optimization

approaches from the field of semantic query optimization (SQO);
there has been a long history of work in this area [14, 18, 22, 4].
The basic idea is to exploit various types of integrity constraints
(often expressed as rules [23, 3, 15, 21, 2, 19, 16]) – either speci-
fied by the user or derived from the database – to eliminate redun-
dant expressions in the query or to find more selective access paths
during query optimization.

Past work in this area has studied several problems that bear
some resemblance to correlation indices. Cheng et al. [7] describe
as one of their optimizations predicate introduction (which was
originally proposed by Chakravarthy et al [4] and is the same tech-
nique we use in rewriting queries), in which the SQO injects new
predicates in the WHERE clause of a query based on constraints that
it can infer about relevant table attributes; in this case they use
the logical constraints (as in Gryz etl al. [12], described below) to
identify candidate predicates to insert.

Gryz et al. [12] propose a technique for deriving what are called
“check constraints,” which are basically linear correlations be-
tween attributes with error bounds (e.g., “salary = age * 1008 +/-
20000”) and show that these relationships exist in data like TPC-
H. They also look at a “partitioning” technique for string-valued
attributes that finds cases where when an attribute X takes on a
particular value v, some other attribute Y has a bounded range
[a . . . b]. They show that these correlations can subsequently be
exploited using predicate introduction over the detected constraint
rules. Our approach generalizes Gryz et al.’s results in the con-
text of indexing, because it can capture these relationships as well
as non-linear relationships. (such as the fact that city names are
correlated with states, even though one city may occur in many

states).
Godfrey et al. [10] have looked extensively at discovering and

utilizing “soft constraints” for semantic query optimization. How-
ever, the fact that their soft constraints capture only logical rela-
tionships between table attributes means that they must keep track
of when the constraint no longer holds to invalidate the constraint
or add violations to a special table that has to be unioned into the
result of the query. They must account during every table up-
date for the fact that the next change may invalidate a particular
soft constraint. CIs need not worry about this issue, because they
do not explicitly represent logical constraints; rather, representing
sets of co-occurring values makes CI maintenance simple in the
face of updates.

8. CONCLUSIONS
In this paper, we showed that is is possible to exploit corre-

lations between attributes in database tables to provide substan-
tially better performance from unclustered database indices than
would otherwise be possible. Our techniques exploit correlations
by transforming lookups on a CI or standard unclustered B+Tree
on the unclustered attribute to lookups in the associated clustered
index. In order to predict when CIs will exhibit wins over alter-
native access methods, we developed an analytical cost model that
is suitable for integration with existing query optimizers. Addi-
tionally, we described the CI Advisor tool that we built to identify
correlated attributes and recommend CIs and bucketings that will
provide good performance.

Our experimental results over several different data sets vali-
date the accuracy of our cost model and establish numerous cases
where CIs dramatically accelerate lookup times over either unclus-
tered B+Trees (without an appropriate clustered column) or se-
quential scans. We also showed that CIs are much smaller than
conventional unclustered B+Trees, making it possible to main-
tain a large number of indices to speed up many queries. Based
on these results, we conclude that CIs, coupled with our analyti-
cal model, have the potential to offer substantial performance im-
provements to a broad class of index-based queries.

9. APPENDIX:CARDINALITY ESTIMATOR
To choose optimal Cardinality Estimator, we conducted a sur-

vey into the literature, prototyped the algorithms and compared
their accuracy and performance.

Cardinality Estimation based on Random Sampling is a well
studied research area. The area is derived from two larger research
areas; Random Sampling and Distinct Values Estimation. Olken’s
thesis [20], the long thesis more than 150 pages, includes a good
overview of Random Sampling. As for Distinct Values Estimation,
Bunge’s technical report [1] gives a good overview, citing more
than 100 papers.

9.1 Random Sampling
Sampling Method affects the accuracy of almost all cardinal-

ity estimator algorithms. Following is a list of random sampling
methods [20].

1. Sampling with Replacement (WR)
Sample n tuples, uniformly and independently from R. The
sample is a bag (multiset) of tuples from R, as specific tuples
could be sampled multiple times.

2. Sampling without Replacement (WoR)
Sample n distinct tuples from R, where each successive sam-
ple is chosen uniformly from the set of tuples not already
sampled. The sample is a set of n distinct tuples from R.

3. Independent Coin Flips (CF)
For each tuple in R, choose it for the sample with probability



Table 8: Frequency statistics of distinct values
fi The number of attribute values that appear exactlyitimes in the sample.
n The number of rows in the sample.
N The total number of rows in the table.
d The number of distinct values that appear in the sample.
n j The number of tuples in the sample with attribute value j.
D The number of distinct values in the table; the answer.
D The estimated number of distinct values in the table.

P, independent of other tuples. The sample is a set of X dis-
tinct tuples from R, where X is a random variable with the
binomial distribution B(n, P) and has expectation n, which
is the desired number of sample rows.

4. Unweighted Sampling and Weighted Sampling
A weighted sample has a non-uniform probability distribu-
tion to choose a tuple from R. If each tuple t has a speci-
fied weight w(t), any tuple t is chosen with probability pro-
portional to w(t). Weighted Sampling is critical to some of
queries that involve joins.

We used WoR with Unweighted Sampling because we assume
only one large fact table.

9.2 Frequency Statistics
All the algorithms collect and use following information to es-

timate the number of distinct values. Above all, the frequency
statistics f is a compact and useful tool used by many algorithms.
An example algorithm based on the statistics is

DChao = d +
f 2
1

2 f2

It’s easy to calculate this value if we have f . However, this diverges
to infinity when f2 = 0, which occurs frequently in various kinds
of data.

9.3 HYBSKEW
HYBSKEW [13] is a hybrid estimator that determines algorithm

based on two values u and x.
1. If u > x, the data has high skew. Shlosser’s Estimator is

employed.
2. If u ≤ x, the data has low skew. Smoothed-Jackknife Esti-

mator is employed.
Shlosser’s Estimator

DS hloss = d +
f1

∑n
i=1(1 − q)i fi∑n

i=1 i(1 − q)i fi
(q ≡

n
N

)

Smoothed Jackknife Estimator

Ds jack =
d+Nhn(N)gn−1(N)γ2(D0)

1−
(N−N−n+1) f1

nN

D0 =
d−

f1
n

1−
(N−n+1) f1

nN

N = N
D0

hn(N) = Γ(N−N+1)Γ(N−n+1)
Γ(N−N−n+1)Γ(N+1)

gn(N) =
∑n

i=1
1

N−N−n+i

γ2(D0) = (N−1)D0
Nn(n−1)

∑n
i=1 i(i − 1) fi +

D0
N − 1

hn(N) is expanded as following to avoid overflow:

hn(N) = Γ(N−N+1)Γ(N−n+1)
Γ(N−N−n+1)Γ(N+1)

=
(N−N)(N−N−1)···(N−N−n+1)

N(N−1)···(N−n+1)

= N−N
N

N−N−1
N−1

···

···

N−N−n+1
N−n+1

Note that Smoothed Jackknife Estimator still can blow up if d =
1, that means there is only one distinct value in the sample. In

this case, consequently f1 = 0 because the only one distinct values
appears a large number of times, not only once. Then,

D0 =
d−

f1
n

1−
(N−n+1) f1

nN

=
1− 0

n

1− (N−n+1)0
nN

= 1

N = N
D0
= N

Consequently, gn−1(N) =
∑n

i=1
1

N−N−(n−1)+i =
∑n

i=1
1

i−n+1 = ∞(∵
(n − 1) − n + 1 = 0) We used 1 as the answer in this case.
Degree of Skew: u

u =
∑
{ j:n j>0}

(n j − n)2

n
(n ≡

n
d

)

As shown above, u is a variance of the number of tuples with
each attribute value. If this value is large, it means there are highly
frequent values and very rare values. If this value is small, on the
other hand, it means many distinct values appear in almost same
frequency.

Calculating this value over all j is costing and requires storing
all distinct values and their frequency. As we already have a good
statistics of distinct values, f , the value is calculated as follows:

u =
∑
{ j:n j>0}

(n j − n)2

n
=

∑
{ j:n j>0}(n j − n)2

n

=

∑
i
∑ f i

j=1(i − n)2

n
=

∑
i fi(i − n)2

n
Chi Square Test for uniformity: x

For k > 1 and 0 < α < 1, let xk−1,α be the unique real number
such that if χ2

k−1 < xk−1,α is a random variable having k− 1 degrees
of freedom then P{χ2

k−1 < xk−1,α} = α. The original paper and
papers citing it used 0.975 as α. We used it, too. In short, xn,α is
the inverse-chi-square distribution with freedom n and probability
α , or F−1(x, α).

9.4 Guaranteed Error Estimator (GEE)
GEE [5] is a cardinality estimator with analytic error guarantee.

D =

√
N
n

f1 +

n∑
i=2

fi

This algorithm is fast and never blows up.
However, this sometimes underestimates the number of distinct

values, especially when all values are distinct. For example, Let
n = 30, 000 , r = 10, 000 and f1 = 10, 000. That means GEE takes
33% samples and all rows are distinct; so fn>=2 = 0.

D =

√
N
n

f1 =

√
30, 000
10, 000

10, 000 = 17, 320

But, the answer is most likely 30,000; all different values. This
error can happen when the data has low skew.

9.5 Hybrid Guaranteed Error Estimator (HY-
BGEE)

Like HYBSKEW, HYBGEE [5] is a hybrid estimator that de-
termines algorithm based on two values u and x.

1. If u > x, the data has high skew. GEE is employed.
2. If u ≤ x, the data has low skew. Smoothed-Jackknife Esti-

mator is employed.
The difference is that HYBGEE uses GEE instead of Shlosser’s
Estimator because GEE performs better than Shlosser’s Estimator
when the data has high skew.



9.6 Adaptive Estimator (AE)
AE [5] is a cardinality estimator designed to improve GEE in

low-skew data and also to keep GEE’s accuracy in high-skew data.

D = d + m − f1 − f2

m − f1 − f2 = f1

∑r
i=3 e−i fi + me−

f1+2 f2
m∑r

i=3 ie−i fi + ( f1 + 2 f2)e−
f1+2 f2

m

d ≤ D ≤ n(S anityBoundary)

Static AE
If f1 = 0, the right side is 0, then m = f2. So, D = d Because

the idea behind AE is that low frequency values contribute most,
AE determines that no new distinct values will appear.
Simple AE

If fi = 0 for all i > 2,

m − f1 − f2 =
m f1

f1+2 f2
∴ m = ( f1+ f2)( f1+2 f2)

2 f2
∴ D = d + ( f1+ f2)( f1+2 f2)

2 f2
− f1 − f2

When f2 = 0, following the sanity boundary, D = n.
Static AE and Simple AE are much faster than calculating Full

AE equation below.
Full AE

Because the equation has both linear part and exponential part,
there is no analytic solution. We calculated m by a numerical ap-
proach, the classic Newton-Raphson method which repeatedly ap-
plies xn+1 = xn −

f (xn)
f ′(xn) .

Let mn be the value of m after n iterations and let F(m) be the
function to be calculated.

A = f1 + f2, B =
r∑

i=3

e−i fi,C =
r∑

i=3

ie−i fi,D = f1 + 2 f2

m− A = f1
B + me−

D
m

C + De−
D
m
⇔ (m− A)(C +De−

D
m )− B f1 − f1me−

D
m = 0

Let the left side be F(m).

F(m) = (m − A)(C + De−
D
m ) − B f1 − f1me−

D
m

F′(m) = C + De−
D
m + (m − A)(D D

m2 e−
D
m ) − f1(e−

D
m + m D

m2 e−
D
m )

= C + De−
D
m + (m − A)( D2

m2 e−
D
m ) − (1 + D

m ) f1e−
D
m

= C + e−
D
m (D + (m − A) D2

m2 − (1 + D
m ) f1)

= C + e−
D
m (D − f1 +

D(D− f1)
m − AD2

m2 )

Because the equation has continuous nature, we used Simple AE
to get the initial value m0. We used 50 as maximum iteration times
and observed that it’s enough to converge to precision under 1.
However, AE sometimes blows up when the derivation gets to 0.
In that case, the sanity check gives n as the answer and in most
cases it’s correct; such situations occur especially when almost all
values are distinct.

9.7 Accuracy Comparison
We conducted a series of experiments with synthesized data

to observe each estimator’s behavior in various skews. We used
the generalized zipfian distribution for generating 1 million tuples
with skew parameter from 0 to 4. The actual number of distinct
values is configured to be around 10000, but fewer with higher
skew value because 1 million tuples are not enough to generate
10000 distinct values with high skew.

Figure 7 to Figure 10 shows the part of the result with skew
value 0 to 2. The x-axis is the ratio of tuples sampled from the
table. The y-axis is the error ratio defined by:

ErrorRatio ≡

∣∣∣D − D
∣∣∣

D
Usually, the error ratio decreases as more tuples are sampled.

As we can see, the most precise algorithm varies on skew val-
ues. There is no single algorithm that has the best accuracy for all
skew values. However, AE is the most stable and generally pre-
cise estimator that might be occasionally outperformed by other
estimators but never produces a big error at least for generalized
zipfian distribution with skews between 0 and 1.5 which covers
most cases. This is why we decided to use AE in this paper.
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9.8 Overhead Comparison
We also conducted experiments to test overhead of each algo-

rithm. Table 9 shows the total computation time of each algorithm
in millisecond for SSBM lineorder table Scale 1 (600MB) and
Scale 10 (6GB), which has 17 columns and 136 pairs of columns.
We did 3 experiments for each cell and took average of them.

Because all algorithms do random access on data file, the size of
data file doesn’t affect. Instead, computation time is exactly pro-
portional to the size of sample data. We concluded that though AE
has to solve additional equations by newton method, the overhead
is negligible.
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