
Abstract of “Realizing Concurrent Functional Programming Languages” by Eric Larsen McCorkle, Sc.M,

Brown University, May, 2008.

This thesis is concerned with a methodology for deriving parallelism from programs where there is little or

no coarse–grained concurrency. It presents the case that that concurrent functional programming- a paradigm

formed from the assimilation of concurrent programming constructs into higher–order functional languages

is the most promising direction for achieving that end. It argues that higher–order functional languages are

highly versatile, citing as example the construction of higher–order concurrent and transactional language

constructs from very basic primitives using the expressive power of functional languages. It further argues

that functional programming, whether purely–functional or merely mostly–functional exhibits a natural con-

currency which is scarce at best in other paradigms. The thesis further argues that the effectiveness of con-

current functional programming is limited at the present by two factors: the lack of effective runtime support

and the false dependence introduced by existing synchronization structures. On the issue of runtime support,

the thesis argues that the traditional runtime structure of programs is ill–suited for functional- and particularly

concurrent functional programs. It addresses this by designing a runtime environment specifically intended

to support concurrent functional programming from first principles. The description of the runtime system

in this thesis is primarily concerned with establishing a foundation for a sound runtime system. As such,

the thesis develops formal models of the components of the system and proves correctness conditions about

the core algorithms. On the issue of false dependence, the thesis describes a number of techniques and data

structures which mitigate the issue of false dependence. These techniques give rise to data structures which

may be produced and consumed concurrently in a manner similar to a pipelined processor. They also provide

both a method for exposing concurrency in modify–in–place stateful computations, and for eliminating false

dependence on the results of these computations. Lastly, the thesis discusses the conclusions, the effort to

produce a real implementation of the runtime system I describe, a retrospective on the process of developing

these ideas, and directions for possible future work.

Realizing Concurrent Functional Programming Languages

by

Eric Larsen McCorkle

B. S., Georgia Institute of Technology, 2004

Thesis

Submitted in partial fulfillment of the requirements for the Degree of

Master of Science in the Department of Computer Science at Brown University

Providence, Rhode Island

May, 2008

c© Copyright 2008 by Eric Larsen McCorkle

AUTHORIZATION TO LEND AND REPRODUCE THE THESIS

As the sole author of this thesis, I authorize Brown University to lend it to
other institutions or individuals for the purpose of scholarly research.

Date

Eric Larsen McCorkle

Author

I further authorize Brown University to reproduce this thesis by
photocopying or other means, in total or in part, at the request of
other institutions or individuals for the purpose of scholarly research.

Date

Eric Larsen McCorkle

Author

This thesis by Eric Larsen McCorkle is accepted in its present form by

the Department of Computer Science as satisfying the thesis requirement

for the degree of Master of Science.

Date
Maurice Herlihy, Advisor

Date
Thomas Doeppener, Reader

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

In memory of my grandmother

Joan K. Adkins

Dec 12, 1923 - Feb. 14, 1999

Vita

Eric Larsen McCorkle was born on May 18, 1982 in Spartanburg, SC, as the oldest son of Kent McCorkle

and Rhonda (Larsen) McCorkle, moving to the vicinity of Asheville, NC shortly thereafter, where he lived

for duration of his childhood. Eric graduated from Milton High School in Atlanta, GA in June of 2000, and

enrolled in Georgia Institute of Technology, majoring in Computer Science, with a minor in Psychology.

Eric’s undergraduate studies in Computer Science focused on operating systems. He graduated in December

of 2004 with a Bachelor of Science in Computer Science. Eric lived and worked in the Atlanta area for the

following two years. He then moved to Providence, RI to begin his studies at Brown University in September

of 2006.

v

Acknowledgements

First and foremost, I am grateful to my advisor, Maurice Herlihy for his continual insight and advice with

regard to my research efforts, and for his aid to my academic career.

I thank my parents, Kent and Rhonda McCorkle for their support and contributions over the course of my

endless education. I also acknowledge that my father was, in the end right about a certain statement I made

at age seven, concerning the duration of my education.

I am grateful to my younger brother Ryan McCorkle for too many things to possibly list.

I have been quite fortunate to have encountered excellent teachers throughout my education. I recog-

nize the following professors, teachers, and mentors: Ben Raphael, John Savage, Thomas Doeppener, Kim

Harrington, Olin Shivers, Michael Reid, Tremayne Brown, Phil Hutto, Milos Prvulovic, Dana Randall, Ross

Friedman, Jane Serkedakis, Judy Hammack, Ray Johnson, Joann Stephens, John Hurd, Michael Wallace,

Jewel Albright, and Deborah Briggs.

Finally, I thank the following friends, in no particular order, some whom I have known much longer, but

all of whom have played some part in my efforts leading up to and during my studies at Brown: Jabulani

Barber, Lauren Hutter, Harrison Caudill, Shakti Saran, Frank Rietta, Lisa Dixon, Rosemary Simpson, Anna

Waymack, Jennie Rogers and Matthew Duggan.

vi

Contents

List of Figures ix

I Introduction 1

1 Introduction 2

2 Background 4
2.1 Parallelism in Hardware . 4

2.2 Parallelism in Systems . 5

2.3 Theory of Concurrency and Parallelism . 6

2.4 Synchronization . 7

2.5 Concurrency in Programming Languages . 9

3 Concurrent Functional Programming Languages 12
3.1 A Case for Concurrent Functional Languages . 12

3.2 Limitations on Concurrent Functional Programming . 14

3.3 Proposed Solutions . 15

II Runtime Support for Concurrent Functional Programming Languages 16

4 Overview 17

5 Design of the Runtime System 19
5.1 Required Features . 19

5.2 Design Decisions and Rationale . 21

6 Process Structure 25
6.1 Overall Structure . 25

6.2 Memory Management . 26

6.3 Executors and Threads . 28

6.4 Execution . 29

vii

7 Theading 31
7.1 A Formal Model of M:N Scheduling . 32

7.2 Scheduling Algorithm . 39

7.3 Lock-Free Worksharing Without Dynamic Allocation . 44

7.4 Correctness . 44

7.5 Derived Forms . 51

8 Garbage Collection 55
8.1 Background and Overview . 55

8.2 Garbage Collection Algorithms . 57

8.3 Correctness . 64

III Reducing False Dependence in Concurrent Functional Programming 70

9 Overview 71

10 Direct Structures 73
10.1 Straightforward Futures . 74

10.2 List Futures . 75

11 Indirect Structures 76
11.1 Futures for Sets and Maps . 77

11.2 Pipelining Map and Set Futures . 81

12 Stateful Computations 86
12.1 Path-Keyed Maps . 86

12.2 Lazy Concurrent Evaluation . 88

12.3 Relationship to Computer Architecture . 90

IV Conclusions, Retrospect, and Future Work 91

13 Conclusions 92

14 Retrospect 95

15 Future Work 98

Bibliography 100

viii

List of Figures

6.1 Structures in the Garbage-Collected Memory Allocator . 26

6.2 Structures in the Threading System . 29

7.1 Grammar for Processes, Executors, and Threads . 32

7.2 Execution Semantics . 33

7.3 Correctness Conditions for Processes and Executions . 35

7.4 Properties of Interactive-Scheduler Systems . 36

7.5 Local Scheduler and Queue Functions . 39

7.6 The signal, safepoint and raise Statements, and the Idle Thread. 40

7.7 The spawn, wake, and sleep Statements . 41

7.8 Scheduler Support Functions . 42

7.9 The Main Scheduler Functions . 43

7.10 A Basic Mutex Implementation . 52

7.11 Modifications for Thread Termination and Destruction . 53

8.1 The Garbage Collection and Thread-Local Allocator Interface 58

8.2 Claiming Objects . 59

8.3 The copy and check Functions . 60

8.4 The process Function . 61

8.5 Executing Write Logs . 63

8.6 Garbage Collection Top-Level Functions . 64

10.1 A Type–Translation Function for Futures for Basic Types 74

11.1 Partial Signatures for Sets and Maps . 77

11.2 An Implementation of a Basic Map–Future . 78

11.3 A Pathological Case for Futures on Purely-Functional Maps 79

11.4 A Map Future with Functional Features . 80

11.5 A Map–Future Implementation for Pipelining . 82

11.6 Modifications to Support Map-style Functions . 84

12.1 A Simple Example of a Tree–Like Data Structure . 87

12.2 Calculation of Attributes using Lazy Concurrent Evaluation 89

ix

Part I

Introduction

1

Chapter 1

Introduction

The essence of computer science lies in the description, analysis, and implementation of various models of

computation. Basic models such as the λ-calculus or the Turing Machine are concerned with the limits on

what is computable at all and on the efficiency of algorithms to solve various problems. Other models, such as

programming language semantics or compiler intermediate representations concern themselves with analysis

and translation, while models such as computer architectures and operating systems are concerned with what

can be feasibly constructed and efficiently executed. Most classical models of computation feature a single

flow of control, or thread. The evaluation or execution of these models is done by performing a series of

translations according to the rules of the model.

Parallel or concurrent1 models of computation, on the other hand, concern the case in which there are

multiple independent flows of control. These models are equivalent in terms of computability to any single–

threaded model of computation; there does not exist any concurrent algorithm capable of deciding a problem

which is undecidable by single–threaded computation. Likewise the bounds on total resource usage by a

given algorithm remains the same for both concurrent and single–threaded programs. However, parallel

execution of a concurrent algorithm can drastically reduce its execution time. This is put to use in hardware

particularly, but also in all levels of computing, as I will discuss in section 2.

There are also problems which fall strictly into the realm of concurrency, as they involve the communica-

tion between or coordination of several independent agents. As with classical single–threaded computation,

there exist problems within concurrency theory which are unsolvable by any protocol. Likewise, there exist

constraints of feasibility and efficiency governing the actual construction and operation of concurrent models

of computation. Ensuring the correctness of concurrent programs is significantly harder than for single–

threaded computation in most cases. Lastly, some programs and algorithms do not lend themselves naturally

to concurrency.

Concurrency has been and remains a difficult area within computer science for these reasons. The idea

of improving performance by doing things in parallel is present in all aspects of computing, from the imple-

mentation of computing hardware to the evaluation of higher–order languages. However, these gains do not

come easily. As previously mentioned, parallel programming is a difficult thing to do correctly. Even obvious

1There is a subtle difference in the meaning of concurrency and parallelism. This being stated, I will use the term “concurrency” to
effectively refer to both from here on.

2

3

parallelism is not necessarily easy to exploit. More importantly, opportunities for parallelism are not always

obvious, nor easily utilized.

This thesis is concerned with a style of programming which is able to take advantage of concurrency in

programs which do not readily expose it: namely concurrent functional programming. I begin with further

introduction of concurrent computation, its benefits, its limitations, and the two main factors which limit

the degree to which a program can benefit from parallelism. Chapter 2 discusses the existing body of work

concerning concurrency and parallelism, starting with hardware and operating systems, then discussing the-

ories of concurrency, synchronization, and finally, concurrent programming languages. Chapter 3 presents

the main focus of the thesis: concurrent functional languages. It presents the core concept of concurrent

functional programming, followed arguments in favor of it which focus on its versatility, natural concurrency,

and correctness. The chapter then presents the two main problems which impede the viability of concurrent

functional programming, and the solutions this thesis proposes.

The second part of the thesis focuses on the design and implementation of a new execution model, or run-

time system which is built from the start to support the assumptions made by concurrent functional languages.

Chapter 5 analyzes the requirements, then provides an overall description of the runtime system I designed

and implemented based on these requirements, as well as arguments supporting the design decisions I made.

Chapters 6, 7, and 8 describe the various components of the runtime system in greater detail.

The third part of the thesis describes several new constructs for improving concurrent functional pro-

gramming by eliminating false data–dependence. Chapter 10 describes the effective use of futures: a concept

central to concurrent functional programming. Chapter 11 describes how to implement futures for more com-

plicated data structures, such as sets and maps. Chapter 12 describes how to extend this to represent futures

on the results of a stateful computation.

The final part concludes the thesis. Chapter 13 briefly covers the essence of each part. Chapter 14 is a

personal retrospective on the thought processes that gave rise to this work, as well as a brief discussion of

several ideas which I developed early on, but did not include. Finally, chapter 15 describes several ideas for

continuing the work described in this thesis.

Chapter 2

Background

Concurrency and parallelism are present in almost all levels of computation, ranging from hardware up to the

highest levels of programming language abstractions. This chapter discusses the history and existing work

regarding concurrency and parallelism in various aspects of computing. It begins by briefly discussing par-

allelism in hardware, following this with a more detailed overview of parallelism from an operating systems

standpoint. It then covers the history of the theory of concurrent computation, various models of concurrency,

and notions of synchronization. Finally, the chapter covers concurrency in programming languages, with an

emphasis on concurrent functional languages.

2.1 Parallelism in Hardware

Hardware is quite arguably the first real instance of parallel computing. Parallelism is naturally present in

hardware; electrical circuits are capable of computing any number of logic functions at once1. Most hardware

is comprised of pure logical functions, which can be evaluated very efficiently because of this parallelism.

By contrast, evaluating the same functions in a non–parallel fashion would be quite expensive.

Most of the progress in computer architecture[57] has exploited this parallelism in some way. Pipelining

overcomes the problems which arise from sequential, multi–stage logic by permitting the varying “stages”

of operations to overlap. Speculative execution simultaneously computes all possibilities arising from some

decision, and keeps the one that actually occurs. Superscalar architectures execute multiple instructions in

parallel. Other tactics similarly exploit parallelism to avoid waiting, to shorten critical paths, or to overlap

multi–stage operations.

Dataflow architectures[15, 112] are an alternative to von Neumann–style processors, which were designed

for the execution of functional programs with very high levels of parallelism. Dataflow architectures are very

efficient at exploiting fine–grained parallelism. However, the lack of emphasis on parallelism at the time,

coupled with the reluctance to adopt both functional programming and a new architecture prevented their

widespread adoption.

The advent of VLSI and modern CPU’s brought about a phenomenon in processor performance known

1In reality, there are constraints, such as maximum fan–out or power consumption, but the available parallelism, even under these
constraints is considerable.

4

5

as Moore’s Law. Fabrication technology has been able to (and at the time of writing, is still able to) continue

to shrink the feature size at a steady rate. In semiconductor technology, shrinking the size of a transistor

corresponds to a growth in the speed at which the transistor is able to change states. The result of this was an

exponential growth in the sequential speed of processors from the 1970’s continuing through the year 2004.

At this point, the feature size was so small that the physical laws limiting increases in sequential speed were

fundamentally different from the ones which originally enabled this exponential growth.

During the period in which sequential processing power doubled every 18 months, there was little demand

for parallel execution, except as a means for pushing the limits of available processing power as far as they

would go. However, as it became evident that sequential power would not continue its rapid growth, hardware

design began to see new innovations aimed to exploit the natural parallelism of circuits.

VLIW, or very long instruction word architectures cluster instructions into “packets” which are executed

in parallel. Most VLIW architectures also include speculative instructions to allow explicit speculation. The

central idea of VLIW is to allow as many of the decisions regarding speculation and scheduling to be made

statically, rather than decided during execution. Symmetric Multi–Threading is an approach which attempts

to better use execution units in a processor. Most processors contain many instances of various kinds of

execution units, such as integer or floating point units. Processors anticipate the greatest possible use of any

kind of unit, and as a result, have more total units than they can actually use. Symmetric Multi–Threading

simulates multiple processors by maintaining multiple execution states (threads), and allocating execution

units to each thread on demand.

The most recent trends in hardware parallelism take advantage of the continued growth in transistor

counts. Multi–core architectures place several whole processing units on a single die (usually with a single,

shared cache). At the time of writing, multi–core architectures are the most promising direction for continued

growth of processor power for general–purpose processors. Lastly, the success of graphics processing units

and stream processing has given rise to the notion of array processors, heterogeneous architectures, and other

approaches. To give some examples: stock graphics processors have outperformed high-performance CPU’s

on several occasions, the recent Cell architecture incorporates eight stream–processors in addition to its main

execution units, and modern supercomputers are making increasing use of both array- and stream–processing

concepts.

Unless some unforeseen boon restores the explosive growth of sequential processing power for longer

than a decade, parallelism is and will remain the primary mechanism for improving hardware performance

this side of nanotechnology or quantum computing.

2.2 Parallelism in Systems

One of the first instances of parallelism in the realm of systems came with the advent of the Multics operating

system and its successor, the UNIX time sharing system. Though timesharing systems did not imply true

parallelism, they created an environment in which processes appear to execute in parallel2 This gave rise to a

number of notable errors, including concurrent access to files, and the race conditions which plagued signal

handling semantics in the early days of UNIX. These early problems foretold the difficulties which arise from

2There are subtle errors which can arise in a truly–parallel system, but are impossible under this sort of simulated parallelism.

6

the combination of parallelism and stateful programming.

UNIX System V introduced the notion of interprocess communication with a variety of structures and

system calls that mimicked the synchronization constructs prevalent at the time. This opened the door to par-

allel programming by degrees, though creating processes as an execution resource was a significant overhead.

The concept of “lightweight processes”, or “threads” arose from the desire for explicit parallelism at a lower

cost. The first threads packages[38, 30] worked completely within the scope of a single process. User–level

threads implement lightweight explicit parallelism, but they only make use of a single execution resource (the

process which creates them). Later threading implementations based on this design introduced the concept

of system–level threads, which can make use of multiple execution resources. The term 1:N threading came

to refer to user–level threading, while 1:1 (or sometimes N:N) threading referred to system–level threading.

The SunOS operating system (which became Solaris) adopted a different, hybrid approach. The direct

correlation between user and kernel threads makes for a significant thread–creation overhead (although not

nearly as high as the overhead for process–creation). Furthermore, assigning a kernel thread to each user

thread requires that applications tune themselves to the number of available processors in the system. The

M:N threading model works by creating a near–constant number of kernel threads (called “lightweight pro-

cesses” in Solaris parlance), onto which user threads are mapped by a user–level scheduler. Early attempts at

this were fraught with difficulties arising from the lack of effective communication between user–space and

the kernel.

The microkernel era, ushered in by Mach[128] placed much more emphasis on interprocess (or more

accurately, interthread) communication and lightweight threading. Later efforts, such as L4[85, 86] refined

these approaches. The microkernel era also saw efforts to fix the problems with M:N threading through better

communication between kernel- and user–space[88], or new models for execution resources[8].

In the modern era, virtually all major operating systems have implemented multithreaded kernels, the

only significant exception of which I am aware being the security–conscious OpenBSD3. Both FreeBSD[42]

and Linux[21] have implemented mechanisms for M:N threading based on a combination of activations

and asynchronous communication between kernel- and user–space. Solaris, meanwhile, has abandoned its

approach to M:N threading[100], preferring 1:1 threading instead.

Given recent developments in hardware, it seems likely that systems will see a period of reorganization

with the goal of better supporting parallelism. There is already an existing body of work in this direction,

including a lock–free kernel implementation[89] and a simple wait–free scheduling algorithm[34]. There

have also been more recent efforts in this direction in the context of industrial research.

2.3 Theory of Concurrency and Parallelism

The theory of parallel and concurrent computation has been host to a more fragmented approach than has

been seen in conventional computational theory. Indeed, even defining the exact meaning of concurrency and

parallelism has proven more difficult than one might expect. To add to this, seemingly subtle variations in

semantics can produce a drastically different model.

The Actors model[70] has had the greatest influence on concurrency theory. Originally proposed as a

3This should not be interpreted as criticism or admonition, but rather as praise for OpenBSD’s single–minded focus on security

7

formalism for artificial intelligence, the actors model was developed into a model of concurrent computa-

tion by further work[28, 50, 3]. This model would later influence work on process calculi, asynchronous

computability theory, and wait–free synchronization.

The PRAM model[44] was developed within the classical theory community at the same time as the

Actors model, and served as the basis for research into parallel algorithms[79]. The PRAM model assumes a

global clock and synchronization property which is considerably stronger than what exists within the Actors

model4. The model was criticized by researchers in the concurrency theory community[47], modified to

support asynchronous computation[29, 114] and ultimately abandoned in favor of an axiomatic approach.

Various process calculi have been developed alongside ongoing work in concurrency theory. The Calculus

of Communicating Systems[101] and Communicating Sequential Processes[73] both served as a basis for

early work in concurrency theory. More recently, the π–calculus[133, 102] provides a simple, yet Turing–

complete model of concurrent processes. π–calculus models features found in a number of programming

languages, such as Concurrent ML[130, 132], Bluespec, and others. This model has also seen use outside

concurrency as well, having applications in security, business process modeling, and biology, among other

areas.

The most successful theory of concurrency has taken an approach beginning from an axiomatic foundation

based on the realities of asynchronous computation[104, 68, 117] and deriving increasingly powerful models,

whose behavior can be understood using theories of sequential execution. Lamport’s safe, regular, and atomic

register models[83, 84] and later work[6, 23, 5] study the construction of reliable shared memory from a very

unreliable base component. Herlihy and Wing’s concept of linearizability[67] is arguably the single most

important concept in concurrency theory. Linearizability provides a method for proving the atomicity of a

given protocol, demonstrating that there is a discrete atomic operation at which it can be considered to “take

effect”. This form of composable atomicity is used to prove the correctness of numerous concurrent proto-

cols. This approach has also led to significant results in asynchronous computability. Herlihy’s proofs of the

universality and impossibility of consensus[58] established the consensus heirarchy. Later, Herlihy applied

algebraic topology[64] to asynchronous computation, eventually demonstrating the impossibility of the Re-

naming Problem along with Shavit[65]. Recent work includes progress towards formal logic for verification

of concurrent programs[144], and toward type systems for verifying concurrent programs[110]

2.4 Synchronization

Synchronization refers to the act of controlling execution of a concurrent program. This is typically done to

ensure that certain guarantees can be made, thus enabling reasoning about the correctness of the program.

Synchronization is often the most easily recognizable feature of a concurrent programming language. As

with the theory of concurrency, there have been several approaches.

Synchronization is a non–issue in the PRAM model, as there is a strong guarantee of ordering in the

execution steps of processes. In the terms of more practical models of parallel computation, PRAM executes

a barrier synchronization between every execution step. The implication of this is that PRAM assumes the

4Indeed, the PRAM model assumes a barrier synchronization between every execution step, which permits it to solve consensus in a
single execution step.

8

ability to solve a consensus among any number of threads in a single execution step. Since consensus can be

used to implement an arbitrarily complex structure[58], there is no need for synchronization.

Early synchronization concepts focused on the problem of mutual exclusion[81, 82] and the concept of

critical sections. Dijkstra’s semaphores, as well as similar approaches by Lamport and others[66] established

the concept of locks. Hoare’s monitors[72] further developed these ideas to allow conditional synchroniza-

tion.

Synchronous channels are an alternate approach which grew out of process calculi[11, 101, 133]. Syn-

chronous channels are a message–passing mechanism, by which one thread may “send” a value to another.

Synchronous channels guarantee that both the send and receive action take place simultaneously, blocking

both senders and receivers until both are present. An asynchronous channel, by contrast, blocks only the

receiver until a message is present.

A similar concept, the incomplete–structure was developed by Arvind[16] as part of data–flow comput-

ing. These structures are also known as futures5. Incomplete–structures are used extensively in concurrent

functional programming to represent the results of functions which are being computed by another thread.

Both channels and i–structures (as well as a mutex–like construct: the m–structure[20]) view synchro-

nization as a means of communication, rather than a protection mechanism. Under this view, blocking is a

necessary condition for continued execution, as the blocking operation produces some value which is used

in future computations. This view of synchronization became popular in concurrent functional languages.

Reppy further developed the concept, giving rise to the notion of higher–order concurrency[132] by treating

synchronous operations as first–class entities[131], which could be composed using a number of operators.

Locking synchronization, however, has a number of deficiencies. First and foremost, it does not scale

well. The performance gains of programs with coarse–grained locks typically fall off considerably when the

number of processors grows beyond even eight. Secondly, the association between locks and the data they

protect is entirely ephemeral; there is generally no guarantee of protection. It is possible to write a program

which protects all data with locks, but still has race conditions. Lastly, locks introduce new, difficult errors

such as deadlocks.

The alternative to locking synchronization is to develop protocols which are tolerant of concurrent access-

a technique known as lock–free programming. One of the first instances of this style of programming was

Lamport’s and others’ constructions of atomic registers from weaker primitives[83, 84, 6, 23, 5]. Atomic

snapshots[2] are another example of this style of programming. Herlihy’s contributions to this area are

considerable, including the first impossible problem[58], as well as others[65], formal definitions of wait–

free synchronization[59] and further theoretical work[64, 144], and a method for implementing arbitrary

concurrent structures using consensus[60]. Following the understanding of the consensus heirarchy, a number

of efficient lock–free data structures have been designed. These include, among others, lock–free queues[99,

108], stacks[56], lists [145], hash–tables[135], and other algorithms such as a memory allocator[98].

Desiging efficient lock–free structures using only a single–consensus, however, is difficult, and there is

a limit to what is possible without stronger primitives[90]6. Transactional memory was first proposed by

5The exact definition of the term “future” varies. In some terminologies, futures do not denote a synchronization mechanism, but
merely a delayed execution, as found in lazy evaluation.

6At the time of writing, I have very recently proven a number of theorems which demonstrate the limits on what can be done
efficiently with the ability to solve a given number of consensus problems simultaneously.

9

Herlihy and Moss[63], followed by a pure–software implementation by Shavit and Touitou[137]. Transac-

tional memory permits the clustering of an arbitrary number of accesses and writes to memory into a single

atomic action. Transactional memory has seen a great deal of activity lately in both industry and academic

research. Notable approaches include hardware–based approaches[150], library–based approaches[87, 53],

compiler–based approaches[1], and hybrid approaches[134, 31, 93, 127].

Given the lack of scalability of locking synchronization, it seems likely that non–blocking approaches

such as transactional memory or lock–free data structures will become the dominant paradigm for synchro-

nization as it relates to safety. In the case of synchronization–as–communication, blocking is inevitable, so

the focus becomes the elimination of false data dependence. This is one of the issues addressed by this thesis.

2.5 Concurrency in Programming Languages

The history of concurrent languages has taken several paths, each following a particular paradigm in pro-

gramming language design. As this thesis is concerned primarily with concurrent functional programming, I

will give a considerably more exhaustive treatment to the functional paradigm than to others.

In general, side–effects and concurrency are anathema to one another. Purely–functional languages ex-

hibit a property known as the Church–Rosser property, which implies that any order of evaluation of a given

set of expressions yields the same results. This property enables the aggressive optimizations and lazy evalu-

ation strategies found in purely–functional languages such as Haskell. As a corollary, any time the Church–

Rosser property holds for some set of expressions, those expressions can also be evaluated in parallel[149]7.

In imperative languages, each statement implicitly takes an additional argument: specifically the state of

the world at–large. Likewise, it also yields an additional result, namely the new state of the world8. The result

of this is that the order of execution of statements in an imperative language does matter. Where functional

(or rather mostly–functional) languages are “innocent until proven guilty”, imperative languages are just the

opposite.

Concurrency in an imperative language must be explicitly stated. Attempts to automatically derive paral-

lelism from an imperative language have been studied, but failed to produce satisfactory results. Furthermore,

any shared state must be protected through some synchronization mechanism. Early concurrent languages

were based on explicitly–parallel control structures, such as a parallel do statement[36], or parallel loop

structures, with synchronization done via lock/unlock9. Most languages of this kind were C–like imperative

languages into which concurrency was forcefit, rather than languages designed explicity to be concurrent.

This fact, combined with the fact that threading was dramatically different on various operating systems, due

to the lack of a standard API gave rise to several external threading libraries. Ultimately, these converged into

the modern pthread library[75]. The library approach to threading has recently come under criticism[22], the

case being that compilers cannot properly account for concurrency in their program transformations without

knowledge of threads and synchronization.

Imperative languages have made little progress beyond the pthread–style concurrency. While various

7This is the natural state of affairs in hardware, which accounts for the high degree of inherent parallelism there.
8This model of stateful computations is called a “monad”, which I relegate to a footnote so as to minimize the frightening effects that

word has on some readers.
9Or, in the archaic terminology of Dijkstra, P and V

10

language constructs exist for better managing concurrency and synchronization, such as Java’s synchronize

constructs or Eiffel’s object–based synchronization, the model remains more or less the same.

Concurrent functional languages have a history of better integration with the concept of concurrency, but

a lack of suitable implementation. While functional languages are more amenable to concurrency, there are

relatively few actually parallel implementations of concurrent functional languages for various reasons (which

happen to be one of the primary topics of this thesis). Literature describes many “abstract machines”[52],

and there are a several implementations of concurrent functional languages with very lightweight, elegant 1:N

threading models[130, 120]. However, research efforts in this area for the most part seem content to imagine

but not to realize; real, parallel implementations of concurrent functional languages are lacking.

One of the first major functional languages with a parallel implementation was the Multilisp language.

This Lisp dialect included two main explicitly–parallel constructs. Most notable of these were futures, which

were similar to the I–Structures of dataflow languages[16].

The mostly–functional language ML (particularly Standard ML) saw several constructs for concurrency

emerge, ultimately leading up to the development of the concept of higher–order concurrency, which is the

cornerstone of the Concurrent ML[130] language. Concurrent ML lacks a truly parallel implementation,

unfortuantely10. Other parallel ML implementations include Facile and ParaML[18], both of which focus on

coarse–grained, cluster–style distributed parallelism. Similar systems include the π–RED+ engine and the

S/NET system[24].

The parallel evaluation of lazy languages has received considerable attention in literature; however, the

majority of work in this area has focused on the design of various abstract machines[52] rather than real

implementations. Lazy languages, when evaluated precisely according to lazy semantics tend to produce

numerous short–lived threads, which perform poorly in traditional parallel runtimes. While this is a problem

with concurrent functional languages in general, it is even more pronounced in lazy languages. The lazy

functional language Haskell has seen a considerable effort to incorporate concurrent and parallel program-

ming constructs, including CML–style constructs[120], and transactional memory[53]. Additionally, efforts

have been made to realize a parallel Haskell implementation[54].

There are a number of languages based more or less on the functional paradigm, which are designed for a

concurrent or distributed execution model. The Erlang language[13] was produced explicitly for concurrent

and distributed programming, and is based on the message–passing paradigm. The Haskell–based pH[113]

language is an attempt to produce an implicitly–parallel language, using the natural concurrency of functional

languages.

Data–parallel languages model parallelism by applying the same operation to all elements in collection

types such as arrays, sets, and others. This is tantamount to the applicative style of programming seen in

higher–order functional languages. This style of programming also appears in specific applications such as

GPU shader languages.

Dataflow languages, such as Id[111], also bear a significant similarity to concurrent functional languages.

Dataflow languages make use of on–demand evaluation via I–structures[16] to exploit fine–grained paral-

lelism. These languages were originally designed in conjunction with dataflow architectures[15]. The effec-

tive use of fine–grained parallelism, however, is not supported by traditional pthread–style runtime systems11,

10The implementation of the runtime in this thesis aims to address this deficiency.
11The concepts from dataflow languages are one of the primary influences of this thesis, and enabling the effective use of fine–grained

11

so these languages have fallen into disuse in general programming. Dataflow languages have found use in

other areas, such as stream- and event–processing and database systems.

Lastly the process–calculi CCS, and more notably π–calculus have also served as the foundation for

several languages. Most interesting is the Turing–complete π–calculus, which has served as the foundation

of the language PICT[121]. The hardware–centric Bluespec language also shows a striking similarity to the

polyadic π–calculus, although it was not consciously designed that way[14].

Concurrent languages have evolved significantly from their first incarnations. Recently, concurrent lan-

guages have seen considerable interest following the end of Moore’s law. As effective use of parallelism

becomes more important, new languages with ever more powerful expressions of concurrency are likely to

emerge.

parallelism is the focus of part II.

Chapter 3

Concurrent Functional Programming
Languages

Functional programming exhibits a natural concurrency which can expose parallelism where other methods

fail to do so. Concurrent functional languages- in theory -create parallel implementations of programs which

are quite difficult to parallelize effectively using conventional methods. Despite its expressive power, con-

current functional programming is faced with a number of problems which prevent it from realizing its full

potential in terms of fine–grained parallelism and performance.

This thesis is concerned with addressing the limitations on the viability of concurrent functional program-

ming. The first major limitation is the lack of runtime support. Concurrent functional programming deals

primarily in fine–grained concurrency: a coin not readily accepted by existing runtime systems.

The second factor addressed in this thesis is that of false dependence. Data dependence is the traditional

foil of any sort of parallelism. No program may be made to execute in a shorter time than it takes to execute

its critical path using any technique of parallelism. While data dependence is insurmountable, naı̈ve program-

ming or language constructs can give rise to a large amount of false data–dependence, which unnecessarily

reduces the parallelism of the program.

This chapter serves as a statement of the problem addressed in this thesis. It first presents a case for

concurrent functional programming, arguing that it represents the most promising style of programming for

developing robust, highly–concurrent programs. It then describes the two factors which limit the viability of

concurrent functional programming. Lastly, it gives an overview of the solutions proposed by the thesis.

3.1 A Case for Concurrent Functional Languages

Concurrent functional programming has emerged from the integration of concurrent programming constructs

into purely- and mostly–functional languages such as Haskell or ML, and from the resulting acculturation of

those constructs to the paradigms of higher–order functional programming. This style of programming lends

itself very naturally to concurrency, and does not lend itself to the kind of errors which emerge in concurrent

programming with shared–state. Concurrent functional programming has considerable expressive power as

a result of its derivation from functional programming. It is able to express both fine- and coarse–grained

12

13

concurrency in a succinct and simple fashion. Due to the versatility of functional programming, it can be

adapted to various tasks, and is able to take advantage of the innovations of various concepts which have

emerged from dataflow, data–parallel, and other research directions.

Concurrent functional languages tend to produce much more robust and error–free programs as a result

of their reduced emphasis on stateful computation, as well as their type–systems. Shared state and parallel

execution are known to be a problematic pairing, as evidenced by nearly half a century’s worth of research

on the topic, and by innumerable software problems. However, in concurrent functional programming, syn-

chronization functions more as a mechanism of communication than one of protection. Indeed, in languages

which lack side–effects such as Haskell, or which lack shared state like Erlang, synchronization is strictly a

communication mechanism. Similarly, in the π–calculus (or its predecessor, CCS), there is no concern for

concurrent access to shared state.

Furthermore, in languages which possess some degree of side–effects such as Standard ML, or which

model stateful computation as does Haskell via monads, type systems can be employed to guarantee varying

degrees of soundness. Transactional Haskell, for instance ensures that no shared variable is accessed outside

of a transaction[53], and can enforce arbitrary invariants at runtime. Recent work on Hoare Type Theory[110]

extends the concept of dependent types[122] to concurrent programs which use transactions to mutate shared

state. There has also been other work on type–systems to guarantee various properties of concurrent pro-

grams. While the use of type–systems is not strictly limited to functional programs, it is a known fact that

pure functions are far more amenable to reasoning than are imperative programs. For this reason, concurrent

functional programming lends itself to greater verification though both automated and manual reasoning.

Functional programming languages have proven their ability to host very powerful abstractions for con-

current programming given only a bare–minimum set of primitives. Higher–order concurrency[132] im-

plements the ability to treat synchronous operations as first–class values, to compose events into arbitrarily

complex configurations using various combinators, and to create generalized protocol implementations using

these events. Monadic transactional memory[53] (which might also be titled “higher–order transactions”) im-

plements a similar abstraction for transactional computing, treating transactions as first–class objects, which

can be composed in the same way as events. Both of these abstractions can be built from a very stark set of

primitives entirely within the context of the programming language for which they are being implemented1.

Indeed, this concept of derived forms is quite common in functional languages. Many functional languages

are formally defined in terms of a very small “core”, on top of which the actual language is built.

This versatility enables concurrent functional programming to take advantage of the techniques devised

by other parallel language research fields, such as dataflow, stream or array processing, data–parallelism,

and others. The concept of “little languages” dates back to the early days of Lisp. The concept has proven

popular in the Haskell world, whose considerably powerful monad combinators have been instrumental in

the implementation of several such sub–languages.

Lastly, the techniques employed in concurrent functional programming can be applied to both coarse- and

fine–grained concurrency. Numerous projects have produced data–parallel variants of a traditional functional

language. Indeed, the applicative style of programming common in higher–order functional languages lends

itself naturally to data–parallelism and coarse–grained concurrency.

1More efficient implementations would likely care to do a great deal more in the compiler.

14

Likewise, the Church–Rosser property, which holds completely in purely–functional languages, and for

vast majority of a program in mostly–functional languages exposes the separable control flows in the pro-

gram. Purely–functional languages can be parallelized automatically, simply by identifying the separation of

control flows. Other languages, like ML, have stateful primitives but discourage their use unless it is actually

beneficial. In any case, large portions of programs written in these languages are entirely pure, which serves

to expose both coarse- and fine–grained concurrency in them.

For these reasons, concurrent functional languages represent the most promising foundation for con-

current programming available in the modern world. However, concurrent functional languages are, at the

present, restrained by several limitations. The remainder of this chapter discusses these problems, as well as

an overview of the solutions presented in this thesis.

3.2 Limitations on Concurrent Functional Programming

Despite its advantages, concurrent functional programming faces two limitations which impede its viability

severely. The first of these limitations is the lack of runtime support; the second is the false data–dependence

introduced by the naı̈ve use of futures. The lack of runtime support is the more severe of the two, and is likely

responsible for the lack of a solution to the second.

Functional languages are naturally amenable to parallelism, as I have argued in section 3.1, and as is

evidenced by a considerable amount of research on the topic. However, in reality, concurrent functional

languages have failed to produce the amount of parallelism which they seem capable, in theory, of producing.

Indeed, truly parallel implementations of concurrent functional languages are rare enough.

The root of the problem lies in the fact that functional programming thrives on fine–grained concurrency,

while virtually all runtime systems provide only coarse–grained parallelism. The traditional notion of a pro-

gram’s structure at runtime largely comes from the implementation of languages such as C and concurrency

in the fashion of the pthread API. This should come as little surprise, given that sequential programming and

coarse–grained parallelism have been viable, and arguably the most effective methods for achieving perfor-

mance from the advent of VLSI forward until fairly recently.

Functional languages, however, are ill–suited for execution on such a runtime. The basic assumptions

in the design of a program runtime for a C–like language are fundamentally different from those made for a

language like Haskell. Nonetheless, functional languages are sometimes forcefit into such an environment,

with varying degrees of success. Other functional language implementations venture by degrees from the

traditional structure. However, in the area of concurrency, this disconnection of the language and runtime

is particularly deleterious. Rapidly creating large numbers of threads with short lifespans is particularly

detrimental to the performance of a pthread–style program, yet this is exactly what concurrent functional

programs do- and must do to exploit fine–grained concurrency.

The second limitation is the introduction of false data–dependence. Concurrent functional programs make

use of synchronization constructs such as futures and synchronous channels for communication. However,

without care, these constructs can needlessly introduce false dependence. For instance, if a thread blocks on

a future of a simple integer, this is wholly necessary, as the integer’s value is needed to continue and cannot

be subdivided in any way. If the thread blocks on a future of a complex data structure, the thread falsely

15

depends upon the entire structure, when it may only need a small portion. Concurrent functional programs

which make naı̈ve use of futures will suffer from this false dependence. Programs structured in the form

of the π–calculus (and by association, languages which derive from it) may suffer from similar maladies if

channels are used to send complex data structures. The problem of false dependence is relatively unexplored,

as a result of the lack of a truly parallel implementation of a concurrent functional language. However, given

one it, is likely that this would become a much more obvious problem.

3.3 Proposed Solutions

This thesis addresses both of the limitations stated in section 3.2, proposing a completely new runtime system

to address the first, and new algorithms and data structures which address the second. The remainder of this

chapter gives a brief overview of both approaches.

Part II describes the solution to the problem of runtime support for concurrent functional programming.

I propose a new structure for processes executing concurrent functional programs, and a new runtime system

to provide the necessary primitives. This runtime system makes use of a number of concepts which are

considered in the conventional wisdom of systems to be suboptimal or expensive. However, when these

concepts are implemented in concert, they act to accentuate eachother’s advantages and mitigate eachother’s

costs.

Part II first presents a case and rationale for these design decisions. As the implementation of this runtime

which I have created makes heavy use of lock–free algorithms and data structures (and indeed, some of

the rationale depends on lock–freedom), the following chapters then present formal descriptions and proofs

of the correctness of the core algorithms. While the treatment of the new runtime system by this thesis is

largely theoretical, I do describe a system which can be implemented on common hardware, using common

operating system abstractions, and is based on such an implementation. The theoretical treatment is meant to

establish a foundational system by providing the most difficult proofs (namely proofs of proper function and

linearizability).

Part III addresses the issue of false dependence. It begins by describing methods for implementing data

structures such as trees, sequences, and arrays in a manner such that they do not introduce false dependence.

The subsequent chapters address more difficult and more original concepts. While structures whose meaning

corresponds to their representation are easy to implement in this way, structures such as maps and sets are

more difficult, as their meaning is independent of their representation. Finally, part III describes methods for

eliminating false dependence in a situation where a structure is modified in–place, prior to another thread

processing it. These methods have a close similarity to the techniques of lazy–evaluation, and give rise to a

style of programming which computes a minimal set of values in a maximally–parallel fashion.

Finally, part IV concludes the thesis by discussing conclusions and implications. It also discusses the

thought process by which this thesis came about, and finally, directions for future work.

Part II

Runtime Support for Concurrent
Functional Programming Languages

16

Chapter 4

Overview

The effective use of fine–grained concurrency requires both the programming and language constructs to

express it as well as a runtime system capable of providing what these constructs assume to be true. Concur-

rent functional assumes the ability to create many threads with short lifespans: an assumption which is not

upheld by traditional program runtime systems. This portion of the thesis describes a runtime system built

specifically to support programming in a concurrent functional style.

The motivation behind this work is to provide an execution environment which upholds the basic assump-

tions of the concurrent functional style of programming. Two key observations lead to the development of

this runtime architecture. The first is that while paradigms like functional programming and higher–order

concurrency are excellent at expressing concurrency, the actual implementation and execution falls short of

expectations. In more direct language, while functional style might encourage us to create many threads very

rapidly, “practical knowledge” discourages it. The second observation is that certain lightweight implemen-

tations of concurrent languages, Concurrent ML among them are able to achieve full-featured threading at a

negligible overhead.

Proponents of functional programming have often touted the fact that functional programs are inherently

parallelizable, while imperative programs are inherently sequential. Critics, however, point to the fact that

this difficult to realize in a the “real world”. Conventional wisdom in thread programming holds that it is a bad

idea to create a large number of threads, to create threads rapidly, and to create short-lived threads, as the setup

time for threads exceeds the benefit. However, the creation of lightweight user–threading implementations

suggests that the concurrent functional way of doing things is not inherently unrealistic, but that current

notion of the “real world” is simply unfriendly to it. Several attempts to build a lighter weight threading

system on top of a traditional runtime[48, 107] lend further support to this argument. By designing a new

runtime architecture whose explicit purpose is to support concurrent functional programming, it should be

possible to realize the implicit parallelism expressed by functional and mostly–functional programs.

The first chapter, chapter 5 describes the conceptual process of designing such a runtime architecture and

describes the actual architecture itself in detail. Interestingly, the architecture combines a number of design

decisions any one of which in an isolated consideration is expensive, but when taken together serve to negate

eachother’s detriments, resulting in a runtime system with all the desired properties. Because of the properties

of the components of the runtime architecture, the initial presentation takes of the form of reasoning from

17

18

first–principles in the hopes that this will better illuminate the manner in which the components support

eachother.

Chapter 6 describes in detail the process structure of the runtime system. This chapter is divided into both

a conceptual description and a formal specification. Chapters 7 and 8 address in detail various components

of the runtime system: namely its threading and memory management systems.

Program and algorithm examples in this part are presented in a pseudolanguage which approximates the

C language, but in a more compact form, with certain type system features, and with certain liberties taken

with regards to its semantics. It is meant to express the ideas more concisely and clearly, not to be a concrete

language syntax. Its meaning should be clear enough to anyone familiar with C or similar languages.

Chapter 5

Design of the Runtime System

This chapter discusses the conceptual design of the runtime architecture. The creation of this architecture

is motivated by the belief that concurrent functional programs actually can realize the implicit parallelism

inherent in their structure if given the proper execution environment, and that the current model does not

suit this task well. Therefore, I present the conceptual design process of the runtime architecture as though

I were crafting it wholly from first principles with the explicit purpose of supporting concurrent functional

programming.

Additionally, the runtime system includes several features which have a synergistic interaction wherein

they each serve to eliminate negative properties of eachother. This is more evident when the runtime archi-

tecture is presented in a constructionistic manner, as this approach (hopefully) avoids calling up preconceived

notions which would need to be refuted all at once otherwise.

The runtime architecture itself is a novel runtime architecture designed to support concurrent functional

programming languages. It must support two main feature sets: those that pertain to functional languages,

and those that pertain to concurrency. As it is, there does exist some overlap between the two feature sets.

The following section states and justifies each feature requirement, and the remainder of the chapter describes

the design process which gives rise to the architecture.

5.1 Required Features

As previously stated, the runtime system’s required feature set stems from the two things it must support:

functional programs and concurrency. The fact that this runtime system is built from the ground up for

concurrency also mandates a number of implementation concerns: specifically the highest possible parallel

performance.

At the minimum, functional languages must have some means of allocating memory. As they support

both recursive data structures and functions, it is necessary to allocate arbitrarily–sized blocks of memory for

this task. In a traditional runtime, this is done with two structures: a heap and a stack. The stack is “allocated”

from by advancing a pointer. Stacks are generally used to allocate function contexts, or frames. The heap is a

more complicated structure, and methods for heap allocation vary. The primary difference between stack and

heap objects is that stack objects are deallocated in reverse of the order in which they are allocated, where

19

20

heap objects are deallocated in an indefinite order.

The C language’s standard library function malloc is perhaps the best-known example of an explicitly–

managed dynamic allocator. Indeed, the name malloc is commonly used to refer to explicitly–managed

dynamic allocation in general. Memory is allocated using the function malloc. It is valid until the same

block is explicitly released using the free function. As previously mentioned, there is no requirement on

the order in which blocks are freed. Implementations of this style of allocation rely on data structures to

manage the available space, locate appropriately–sized blocks, and mark blocks as available when they are

freed again.

Most functional languages support the notion of garbage collection[78]. Garbage-collected allocation

also supports allocation of arbitrarily-sized blocks of memory. However, there is no notion of freeing mem-

ory. Instead, the runtime system is expected to automatically release unused memory. This eliminates the

need for explicitly releasing memory and simplifies allocation at the cost of periodically detecting and releas-

ing unused memory. In a garbage–collected environment, memory is typically allocated from a per-thread

memory pool by simply advancing a pointer. The complex mechanisms used by a malloc-style allocator are

not necessary, as memory is reclaimed automatically by the collector. It is worth noting that stack allocation

is equivalently simple, except that the guarantee of LIFO ordering of allocation allows for simpler explicit

deallocation.

Functional languages often support continuations[142], or the ability to snapshot an execution point and

resume later. Continuations are also a commonly–used device within compiler internals[10], and are a com-

mon means for implementing exceptions[51]. Lastly, continuations have found uses within the context of

operating system, both in the implementation of threading, and in more complicated manners[41, 33].

First–class continuations also give rise to threads, as they are equivalent to context switching[147]. I

duly note, however, that there are differences between continuations and concurrency[138]. The execution of

an unbounded number of threads on a finite number of execution resources is a well–studied problem. It is

accomplished by periodically changing the thread being executed by a given resource by saving and resuming

threads using continuations. Threading is only considered here in order to determine what runtime structures

are required to implement it. The implementation of threading using lock–free scheduling and continuations

is further discussed in chapter 7. The existence of threads has several implications for the runtime.

Both continuations and threads change the nature of frame allocation. In a single–threaded application

without continuations, frames are guaranteed to be freed in reverse of the order in which they are allocated.

In the presence of either threads or first class continuations[32], this assumption is no longer valid, as threads

may share some part of their creator’s context1, and continuations permit return to a given context after

execution has left it and entered another context.

With regard to heap allocation, the existence of threads, particularly the existence of many threads

makes a strong argument in favor of garbage collection. Parallel garbage collection algorithms can dras-

tically reduce the observable overhead of garbage collection. Though it is not apparent yet, the properties

of this runtime architecture will all but eliminate any observable pause in execution. Furthermore, free-

ing explicitly–managed memory is problematic in highly–parallel programs, and has given rise to several

1This is only true in languages which support inner functions, as most functional languages do.

21

approaches[97, 96, 61, 35, 74, 95], all of which involve some overhead[55]. The existence of garbage collec-

tion vastly simplifies lock–free algorithms and transactional memory by eliminating the problems inherent

with explicitly freeing a memory block. Practical experience- indeed the experience of building this runtime

system further demonstrates the difficulty that can arise from using explicitly-managed memory in a lock–free

algorithm.

The following list gives a summary of the required features of the runtime system:

• Save and restore an execution state (Continuations)

• Execute an unbounded number of threads on a fixed number of execution resources (Scheduling)

• Low cost to create and maintain threads (Lightweight Threads)

• Allocate memory for function contexts (Frame allocation)

• Allocate memory for objects (Heap allocation)

• Automatically release unused memory (Garbage collection)

The following section describes the features of, and the case for the design decisions of the runtime system

built around these criteria.

5.2 Design Decisions and Rationale

As it happens, the existence of a garbage collector significantly changes the constraints of the problem. Most

importantly, it allows frame allocation and heap allocation to be consolidated into a single requirement, which

in turn permits efficient implementation of both threading and language features such as continuations. The

methods for implementing these structures are presented in this order, so as to elaborate how one follows

logically from the the others.

The most effective garbage collectors operate by traversing the program’s data structures and identifying

all reachable locations. This is done using type signatures generated by the compiler. Garbage collectors have

been designed which are able to perform collection in parallel with execution[27, 25, 62, 39, 116, 26, 17],

with little to no pause required to activate or deactivate collection. The Cheng–Blelloch[27, 26, 25] collector

is the most advanced of these, and is fully scalable to many CPU’s, often moreso than the application it hosts.

As it is, this runtime system further improves on existing approaches by implementing a mostly lock–free

garbage collector.

In the presence of such a garbage collector, dynamic memory allocation is done via pools. Each thread

occasionally allocates a large block of memory, and allocates from it by simply incrementing a pointer. The

implication of this is that dynamic memory allocation becomes essentially a no–cost operation, and freeing is

a null operation. In fact, these costs are transferred to the collection threads. However, there is evidence that

even in sequential programs, garbage collection can be faster than dynamic allocation[9, 69]. Considering

the substantial benefit of garbage collection in the context of lock–free algorithms and transactional memory,

the case is sufficiently made for garbage collection within the scope of this thesis.

The change in allocation and deallocation costs in turn affects the choice of how to implement frame and

heap allocators. Stack–based allocators are used in lieu of general dynamic allocation for frames, as frames

22

(for the most part) have the property that memory is freed in reverse of the order in which it is allocated. As

such, a stack allocator for a given thread can be implemented by a simple pointer, which is incremented to

allocate, and decremented to free. However, the design of this runtime is informed by additional concerns.

First, allocating from the heap is now equivalent to allocating from a stack, and deallocation is no longer a

concern. Furthermore, the ordering assumptions concerning frame allocation are no longer valid, as men-

tioned in section 5.1. Even the best strategies for implementing first–class continuations must copy part of

the stack when stack–allocation is used[71]. In summary, allocating frames from a stack no longer confers

any advantage, and in fact becomes something of a liability. Therefore, the runtime allocates both frames and

heap objects using a single garbage–collected memory allocator.

This decision is no innovation, nor is it untried. The Continuation–Passing Style of Appel[11, 10] is

a common means of implementing first–class continuations and full closures when compiling functional

languages. This style, also called linked closures is used in existing functional language implementations[140,

12], as well as more general systems[141]. Intelligent compiler optimizations can reduce overhead of this

scheme considerably[136].

As with previous systems, decision to allocate frames using the heap allocator rather than a stack has

significant benefits for both the implementation of threads and continuations. With frames allocated in this

manner, continuations can be implemented simply as a pair of pointers: one to the start point of execution

and one to a frame. Simply saving this pointer is enough to preserve the entire state of execution; the garbage

collector will preserve all objects reachable from this frame, including the other frames which comprise the

continuation’s state. With the traditional stack–based runtime, this can only be accomplished by copying the

stack in full2. This benefit carries over to threads as well. Creation of a thread only requires the creation of a

continuation, plus whatever overhead is involved in adding the thread to the scheduling system.

The space overhead of threads and continuations is also drastically reduced by using heap–allocation for

frames. As the stack is not copied when a thread or a continuation is created, threads and continuations are

able to share some or all of their state, depending on the exact semantics concerning mutable objects. With

regard to threads, under CML–style or POSIX–style threading semantics, threads exit upon completion of

their entry function, so the only overhead of the thread at its creation is the scope in which the entry function

is declared. As such, the space overhead of threads and continuations when using the heap–allocator is

reduced to nothing more than a pair of pointers at best, and copies of some portion of the creator’s frames at

worst. Some existing functional languages, most notably CML employ similar strategies for implementing

threading, and are able to implement an almost negligible–overhead 1:N threading system.

The final goal of the runtime system is to implement a lightweight threading system. This threading

system should achieve a low overhead of thread creation and maintenance and rapid context switches. With

the benefits of allocating frames with the heap–allocator, threads can be rapidly created in user–space with

little effort. However, the issue of thread–creation overhead from the operating system itself remains. For this

reason and for others I shall discuss in the following paragraph, I opt for an M:N threading implementation.

There are several factors informing the choice of M:N threading. The CML runtime demonstrates that

highly efficient 1:N threading can be implemented using the strategies I have chosen so far. Scheduler

2More work must be done to properly implement references to objects within a frame.

23

activations[8], when combined with asynchronous mailbox–style communication between kernel- and user–

space[88] provide a groundwork upon which this sort of M:N threading system can be implemented. The

FreeBSD Kernel Scheduling Entity (KSE)[42] system implements exactly this sort of interface. The KSE sys-

tem was introduced in the FreeBSD 5 series[94]. A similar system, the Virtual Processor Interface (VPI)[21]

has also been introduced to Linux. Lastly, this sort of an interface is markedly similar to the state of affairs

on a bare–CPU environment, which makes the runtime easier to port to bare metal3.

I would be remiss if I failed to mention the criticisms of M:N threading and activations and present coun-

terarguments. This sort of activation system can be synthesized, though imperfectly using the traditional

POSIX threads API[75] by creating a fixed number of threads. This approach typically has trouble with

worker threads stalling. However, this runtime system is different from other implementations for several

reasons. Most importantly, I do not make use of locks in the implementation of the scheduler. The only way

for a thread to suspend is to be descheduled, or to make a blocking system call itself. However, the concurrent

functional style, with its preference for futures, favors asynchronous system calls to the blocking variants. I

am aware of the fact that many operating systems do not properly implement asynchronous I/O[118]. How-

ever, reported instances of dishonest API implementations hardly makes for a strong case for an otherwise

detrimental design decision in a project such as this one! Furthermore, if blocking should become a problem,

a solution involving I/O threads can be implemented to deal with it.

Assuming that worker threads will be kept as busy as there exists a demand for them to be, two issues

remain to be resolved. The first is the scheduling of threads. As mentioned in the previous paragraph,

implementing a lock–free scheduler effectively avoids blocking worker threads as a result of holding locks.

The exact implementation of a lock–free scheduler will be discussed in chapter 7. The final issue is the

handling of asynchronous signals, which is also related to preemptive scheduling. It should be noted that

preemptive scheduling, or rather involuntary context–switching increases the overhead of context switches

and thread creation/storage, as the entire processor–state must be stored as part of the thread’s state.

The remaining issues arise from the need to interrupt a running thread, either to be replaced with another,

or to execute a handler for some signal. This arguably should not be as difficult as it is, but for the fact

that signal semantics have a history of poor specification and implementation. However, implementing a

true interrupt mechanism in the presence of lock–free scheduling is quite challenging. Garbage–collection

(particularly parallel garbage collection) is similarly inhospitable to asynchronous interrupts.

Safe–points are a mechanism for resolving the conflict between asynchrony and garbage collection[37].

Safe–points are periodic checks for statuses such as a pending signal, a timer, or another sort of asynchronous

event. They are inserted at regular intervals in the program when it is compiled, ensuring a maximum ex-

ecution time between any two safe–points. Asynchronous interrupts are not processed at the exact moment

at which they occur, rather they cause a flag to be set, which will be detected the next time a safe–point is

executed, at which time the interrupt will be processed. This has the effect of the program being a known

state when it is interrupted. This is useful for garbage–collection, as it allows the garbage collector a consis-

tent view of a thread–state. With regard to scheduling, it permits a very simple, elegant implementation of

non–interruptible execution. Without safe–points, non–interruptible execution requires the setting and clear-

ing of signal masks, as well as other bookkeeping. With safe–points, however, non–interruptible execution

3This fact is further discussed in the future work.

24

can be implemented simply by having the compiler omit all safe–points within a given block, without any

management at runtime. Lastly, safe–points make all interrupts and context–switches voluntary. Because

of this, there is no need to save and restore the entire CPU–state, and no need to store it in a thread. This

approach effectively solves the issues arising from asynchrony.

In summary, the runtime system employs four central mechanisms: garbage–collection, heap–allocation

of frames, M:N scheduling, and safe–points. These mechanisms have synergistic properties which serve to

eliminate eachother’s weaknesses. For instance, garbage collection eliminates the cost of heap–allocating

frames, heap–allocation of frames in turn makes M:N scheduling more feasible, and safe–points help deal

with issues that arise from asynchrony and scheduling. The result is a runtime system which can support

the creation of a very large number of short–lived threads. By implementing the runtime system itself using

lock–free algorithms, the parallel performance can be made to scale to a large number of physical processors.

The remaining chapters of this part describe the implementation of the runtime system in greater detail.

Chapter 6

Process Structure

The overall structure of a process in this runtime system differs enough from tradition to warrant an in–depth

description. This chapter shows diagrams of the process structure, and presents a textual description of the

major components of a process’ memory image. Since one of the major challenges of implementing this

runtime system is the almost exclusive use of lock–free data structures and algorithms, it is necessary to

describe the format of data in considerable detail. Lock–free algorithms are dependent on the single–word

compare–and–set operation for their functioning, which often relies on the trick of cleverly packing multiple

elements of information into a single word. As such, it is necessary to describe shared structures down to the

level of bits and bytes. This chapter describes the basic structures present in a process in the runtime system

and covers the expected behavior of a process during execution.

6.1 Overall Structure

Similar to traditional runtimes, a process consists of several regions of memory space which are initialized

when the process is created, as well as a regions which are allocated dynamically according to demand for

memory. A program’s initial state is implemented using the traditional mechanisms for the given operating

system and architecture. For most systems, initial state is contained in a file which is memory–mapped

into the new process’ address space to create the initial memory–state. Dynamically allocated memory is

organized into blocks, which are called slices. Slices are generally a fixed size, which is dependent upon the

operating system and architecture; however, their exact size can vary.

Slices can be allocated for four kinds of data: static data, malloc–style allocation, garbage–collection, and

custom use. Static data is used to initialize the entire runtime system, as many aspects of the system require

knowledge of the exact number of executors, which is not known until startup. Slices for explicit–allocation

and garbage–collection are allocated as needed, with a possible cap on the total size of memory committed to

these functions. Lastly, slices for custom use are intended for implementing extensions to the runtime system.

To manage execution resources, the process creates a static number of system–level executable entities

called executors1. Executors are usually implemented as either scheduler activations or as system–level

1This is a term which I created to more clearly describe what is usually called a “kernel thread”. The anticipation of a bare–metal
port of the runtime also motivated a change in terminology, as there is no kernel in such an environment.

25

26

type gc_thread = {

queue : queue(gc_header),

allocator : allocator,

thread : thread*

log : log_ent[LOG_SIZE]

}

type gc_header = <

fwd_ptr : (gc_header*) word(1),

list_ptr : (gc_header*) word(1),

typeptr : (typedesc*) word(1),

extra : (unsigned int) word(1)

> cacheline(1)

type objclass = NORMAL | ARRAY

type typedesc = {

const : bool,

class : objclass,

nonptr : unsigned int,

normptrs : unsigned int,

weakptrs : unsigned int

}

type log_ent = {

obj : void*,

offset : unsigned int

}

gc_threads : gc_thread[execs];

Figure 6.1: Structures in the Garbage-Collected Memory Allocator

threads. The executor model also adapts well to CPUs for a bare–metal implementation of the runtime. The

kernel–thread implementation of the runtime also creates a kernel thread for signal handling. The signal

thread receives all signals, and delivers them to appropriate executors using mailbox structures. User–level

threads are managed by a lock–free scheduler M:N scheduler system which multiplexes the executors to ex-

ecute an unbounded, changing number of threads. The exact algorithm for lock–free scheduling is discussed

further in chapter 7.

The remaining sections of this chapter discuss the exact structures present in the memory–management

and threading systems.

6.2 Memory Management

Memory management in the runtime system is divided into two varieties: explicitly–managed and garbage–

collected. Explicitly–managed memory allocation, or dynamically–allocated memory which must be ex-

plicitly released when it is no longer used is necessary for implementing the scheduling system, as well as

for supporting calls to external functions which use this style of memory–management. Garbage–collected

memory cannot be used for this purpose, as the collector itself depends on the scheduler to function.

The explicitly–managed allocator itself is an implementation of the lock–free allocator described by

Michael[98]. Given a lock–free slice allocator2, this allocator is also completely lock–free, and therefore

reentrant. Further details on the structures and the algorithm can be found in Michael’s journal article[98].

This runtime system makes no modifications to the algorithm. As such, the explicitly–managed allocation

system is not discussed any further.

The garbage–collected memory allocator is a mostly lock–free algorithm. Its design is based on that

of the Cheng–Blelloch[27] allocator, but without the use of spin–locks and room synchronization for work-

sharing. The overall algorithm makes changes to the exact way in which objects are allocated and copied

to the destination space in order to dispense with the need for spin–locks on objects. It also replaces the

2The slice–allocator is indeed lock–free, though its implementation is too simple to warrant a section to describe it.

27

room–synchronized stacks used for worksharing with a lock–free FIFO queue. Lastly, the algorithm uses

atomically–modified bitmaps to allow arrays to be processed by multiple threads at a time. Figure 6.1 shows

the structures present in the garbage collector.

The garbage collector creates a number of garbage collection threads equal to the number of execu-

tors. Each has its own gc_thread structure, which contains a local work queue (queue) and an alloca-

tor (allocator). The queue field is purely local and accessed entirely in a synchronous context, as is

allocator. The allocator allocates space in the destination for objects to be copied. It is described

abstractly to allow a more complicated system, such as a generational collector to be implemented. An

allocator obtains a large block of free space and allocates from it simply by advancing a pointer. The same

technique is used to allocate objects in normal execution. Each executor acquires a large block of memory in

the current heap, then allocates from it by advancing a pointer. Because of this similarity, any leftover space

at the end of a garbage collection cycle becomes the allocation pool for normal execution.

Each object is preceded by a gc_header structure. This structure acts as a description of the object’s

format, which allows the collector threads to interpret it. It also contains two fields which are used in the

course of a collection cycle by the collector threads themselves. The gc_header is designed to occupy a

cache line3. The fwd_ptr field is an atomically modified pointer to the copy of the object in the destination

heap. The list_ptr field is used by the local queues. The typeptr field holds a pointer to the type

descriptor for the object. Lastly, the extra field’s exact meaning is dependent on the class of the object.

Arrays are processed differently than normal objects. Arrays which contain a sufficient number of ele-

ments and are of sufficient size are preceded by a bitmap. This bitmap is used to “claim” clusters of array

elements, allowing an array to be simultaneously processed by multiple collector threads. Arrays are kept in

a lock–free simple stack which is shared among all collector threads. Arrays which are not of sufficient size,

or do not have enough elements to benefit from parallel processing are treated like normal objects.

Interpreting objects requires the ability to distinguish pointers and non–pointers. The runtime system

implements this by requiring the compiler to generate a set of type–signature structures, which describe

the format of a given object. The typedesc structure is a description of an object’s type. The const

field denotes whether or not the object is constant. The nonptr field contains the size in bytes of non–

pointer information4. The normptrs and weakptrs fields contain the number of normal and weak pointers

respectively. Weak pointers differ from normal pointers in that the collector may ignore them if memory–

pressure is high. Normal objects consist of a header, immediately followed by non–pointer data, then normal,

and finally weak pointers. For arrays, the typedesc structure describes the format of a single array element.

The length of an array is held in the extra field of its object header.

As in the Cheng–Blelloch collector, program threads keep a write–log during a collection cycle, periodi-

cally entering the collector to process the log (usually when the log becomes full). The runtime keeps one log

per executor, rather than per program–thread. The log_entry structure describes the structure of a single

entry. Unlike in the Cheng–Blelloch collector, there is no need to keep the previous value of the field. The

obj field contains a pointer to the modified object (actually a pointer to its gc_header), and the offset

field contains the offset from the start of object data at which modification occurred. All modifications are

3This is beneficial, as it serves to prevent negative cache–effects resulting from the use of compare–and–set operations on the for-
warding pointer field.

4This may contain pointers to non–garbage–collected data.

28

assumed to be word–sized5.

The root–set for garbage collection is generated by traversing all global pointer–values and all active

threads. The frames for all threads are accessible through their resume continuations. Traversing all global

pointers, however, requires a description of the global data, just as traversing objects requires a description

of their types. The globals variable is an array of pointers to all global pointers which is generated by the

compiler, and allows the collectors to calculate the root–set.

As with the Cheng–Blelloch collector, the transition from collection–mode to normal execution must

occur with a finite (and small) number of operations. As frames are now allocated as normal objects rather

than a stack, they do not present a problem. However, the global pointers cannot be changed to point to objects

in the destination space until the end of collection. In a generational collector, this problem is extended to all

pointers. There are other issues with this transition, which are discussed in chapter 8. The solution to this

problem is similar to the one used by the Cheng–Blelloch collector. Global (or all, in a generational collector)

pointers are implemented as pairs of pointer values. During a collection cycle, collectors store pointers to the

unused slot. When a collection cycle ends, the program threads switch the used and unused slots. This allows

all pointers to be changed to their new values at once.

The garbage–collection algorithm is further discussed in chapter 8.

6.3 Executors and Threads

The overall design of the threading system for the runtime is an M:N threading system which uses a lock–

free scheduler to multiplex execution resources called executors to execute user–level threads. Executors are

patterned after scheduler activations. Inter–executor communication takes place via mailboxes: atomically–

modified fields which are checked at periodic intervals by safe–points. Even in the scheduler, executors may

only communicate with one another by setting flags in eachother’s mailboxes, or via lock–free structures (to

do otherwise would violate lock–freedom).

A static number of executor structures exist throughout the execution of the program. Each of these

structures is created in reference to an actual execution resource. The executor structure consists of a signal

mailbox, stack space6, and a scheduler structure. The exact format of the scheduler structures varies depend-

ing upon the exact scheduling algorithm used. In all cases, however, the schedulers are strictly local to the

executor, and are used to decide which of the threads currently assigned to the executor is executed in a given

timeslice. In addition to the schedulers, a global lock–free queue exists for work–sharing purposes.

Threads are composed of an atomically–modified status and reference field, a mailbox structure, and

scheduler information. The status/reference field combines the thread’s scheduling status and a flag indicating

that the thread is present in the scheduler’s internal structures. Scheduling statuses have both an request and

acknowledged state. For instance, the suspended state has both a “suspend” state, indicating that the thread

will be suspended, and a “suspended” state, which indicates that it has been suspended. The reference flag

indicates that the thread is present in scheduler data structures (either executing, in a local scheduler, or in the

5This ensures the consistency of pointer updates. Non–pointer data updates which span multiple words create multiple write–log
entries.

6This stack space is used only for execution of scheduler code, garbage–collector code, and other runtime functions.

29

type executor = {

id : unsigned int,

os_exec : os_executor,

sched : scheduler,

current : thread*,

c_stack : void*,

mbox : exec_mbox,

suspend_next : executor*

}

type thread = {

stat_ref : status,

mbox : thread_mbox,

sched_info : sched_info,

rlist_next : thread*,

queue_next : thread*

}

type status = <

ref : bool bits(1),

state : state bits(3),

>

type state = RUNNING | RUNNABLE |

SUSPENDED | SUSPEND |

NONE

type exec_mbox = <

run_scheduler : bool bits(1),

run_gcthread : bool bits(1),

os_signal : bool bits(1),

os_signals : os_sigmask

>

type thread_mbox = <

retaddr : void* word(1),

frame : void* word(1),

exec : (unsigned int) word(1),

exec_mbox : (exec_mbox*) word(1)

>

type os_executor

type os_sigmask

type scheduler

type sched_info

executors : executor[execs]

workshare : thread* lf_queue

Figure 6.2: Structures in the Threading System

workshare queue). This is used to prevent a given thread from being inserted into scheduler structures more

than once7.

The thread mailbox structure is used for communication between user threads and the scheduler system.

The mailbox contains a continuation–like structure, which is used to store the current frame and return address

of the current thread when entering the runtime. When executing the user–thread, this structure contains the

stack pointer to use when entering the runtime. Additionally, the mailbox contains two fields for use when

executing the user–thread: the ID of the executor executing the thread, and a pointer to the executor’s signal

mailbox.

Details of the scheduling system and its algorithms are discussed in chapter 7.

6.4 Execution

Program execution begins with a single thread, which begins execution at the entry point of the program.

Additional threads can be created or destroyed with a call to the runtime system. The process is also destroyed

by a call to the runtime which terminates all threads and releases all memory.

When a thread is created, a pointer to its mailbox is stored to a pointer which is given to the thread creation

function. Normally, this pointer will refer to a location in the thread’s initial frame. Threads must keep this

pointer in scope, as it provides the mechanism by which to make calls into the runtime. While in thread space,

7As it is, preventing this was the most difficult challenge I faced in the creation of the lock–free scheduler

30

the thread’s mailbox contains the id of the executor currently running the thread in exec, and the address of

the executor’s stack in frame. Threads must save their own resume continuation into ret_addr and frame,

then use the runtime’s stack to call a runtime function as per the system’s calling conventions8.

All program executable code is expected to periodically execute safe–points. A safe–point must use the

pointer to the executor mailbox to check for any raised signals, and must deal with them accordingly. The

safe–point code must use an atomic compare–and–set to clear the executor mailbox. The run_scheduler

flag indicates that the executor must call a scheduling function. The run_gcthread flag indicates that the

executor must call a function which switches to its gc_thread.

Each executor maintains a per–executor memory pool for dynamic allocation. Threads allocate from this

by advancing a pointer. When the memory pool is exhausted, threads replenish it by calling a gc_alloc

function which allocates from shared storage. Frames for functions are also allocated in this fashion. Since

the memory–pool information is accessible through an executor structure, it is necessary to pass a pointer to

the thread mailbox into each function9.

Each executor also maintains one garbage-collection thread. This structure also contains the write log

for the executor. When garbage–collection is active, a thread must record all updates to any visible, mutable

structure to this log. When the log is filled to capacity, the executor must switch to its garbage collection

thread. If a structure is not visible to anyone except the current thread (such as a frame), it is permissible

to avoid writing it to the log. Whenever the thread enters the scheduler or switches to the garbage collector,

the current frame will be saved into the thread’s resume continuation, which will make it visible. This has

two implications. First, the thread must always reserve one slot in the write log for the write to the resume

continuation. Second, and more subtly, if a frame (or any structure to which it points) does not escape the

current closure, writes need only be logged when the thread enters the scheduler or garbage collector. If

neither of these is the case, there is no reason to log any of the writes. Furthermore, only updates need be

logged. Since frames tend to be updated frequently, they will likely generate the most entries (hence the

strategy to reduce the write–log traffic they generate). However, when an object is allocated and initialized,

there is no need to log writes, as it will not have been allocated in the destination space yet. If the object is

reachable, it will be captured in an update either to some other structure which is visible either from a global

pointer or in saving the thread’s resume continuation. These two strategies serve to reduce the number of

write–log entries which are generated.

Asynchronous signals from outside are handled using a mechanism similar to the one designed by Reppy

for Standard ML[129], except that signal handlers do not interrupt any running thread; rather, they cause

a new thread to be created for the signal handler10. Additionally, it is possible to design an asynchronous

inter–thread signaling mechanism. This mechanism is discussed further in chapter 7.

This chapter has introduced the structure and execution of processes in the runtime system. It has also

described the structures used by the various components of the runtime system in greater detail. Chapter 7 will

discuss the actual implementation of threading, and chapter 8 will discuss the garbage collection algorithms.

8Most real implementations of the runtime functions require the ID of the executor to be passed in as an argument, which is why it is
supplied in the thread mailbox. This is because many runtime functions rely on hazard pointers or a similar mechanism, and must
know which executor is calling them.

9Optimizing compilers are, of course at liberty to optimize this as much as possible.
10This is analogous to the concept of “interrupt threads” in classical OS literature, and is significantly easier to achieve in this runtime

architecture.

Chapter 7

Theading

This chapter describes the implementation of threading for the runtime system. As discussed in chapters 5 and

6, threading is implemented using an M:N approach based on a lock–free scheduling system. This chapter

begins by discussing a formal model and requirements for the scheduler system, in preparation for discussing

the implementation. This is followed by the lock–free scheduling algorithm and a proof of its correctness.

Lastly, the chapter describes functionality which can be derived from the underlying formal model, including

mutex- and CML–style synchronization, asynchronous thread termination, and asynchronous signaling.

Much of this chapter is dedicated to the development of the formal model, and the proofs of various the-

orems concerning this model. To the best of my knowledge, there has been no well–known precise semantic

definition of a scheduling model prior to this thesis. Models of concurrency tend to take the form of an ab-

stract semantics [133, 130, 120], wherein any number of threads may be created. The formal model I present

in this chapter is meant to be relatively easy to implement in a real environment. The model describes a fixed

set of execution resources, which are shared by a dynamic set of threads, the conditions under which threads

execute, and the operations by which they may affect the system.

There are three main motivations in formally specifying the scheduling model. First, most “low–level”

threading models are described in natural language. Natural language descriptions, no matter how long or

in–depth [76, 49, 75] tend to give rise to ambiguities or problems. By contrast, definitions using formal

notiation [124, 123] tend to be more brief, far more precise, and leave no ambiguity. To cite a specific

case, the definition of the C language definition is far longer and less well–understood[76] than the definition

of Standard ML[103], a much more complicated language. Additionally, attempts to formalize informally

specified systems or languages such as C[119], or Java[151] have often turned up problems[126, 125].

Second, and more importantly, to prove the correctness of a lock–free scheduling algorithm requires a

firmer foundation than informal semantics can provide. Given a formal semantic definition, the proofs of

correctness follow fairly directly. The third issue is related to this. The models of concurrency I seek to

support [130, 133, 120] are formally specified. Providing a formal specification of the runtime system on

which they are implemented paves the way for both smoother implementations and verified systems.

The model provided here is meant to serve as a basis upon which other models of concurrency may be

implemented. As such, its primitives are somewhat limited in scope, with little if any potential for interthread

communication or synchronization. The implementation of traditional threading interfaces using the model

31

32

P F 〈Ea, Es,Ta,Ts〉 (process − state)
E F e (executors)
e F 〈t,m〉 (executor − state)
m F > (message − on)
| ⊥ (message − off)

T F t (threads)
t F 〈S ,m〉 (thread − state)
S F s.S (statements)
| term (termination)

s F ρ (primitive)
| safepoint (safe − point)
| spawn t (thread − create)
| raise e (raise − executor)
| signal (signal − executor)
| sleep t (suspend − thread)
| wake t (wake − thread)

Figure 7.1: Grammar for Processes, Executors, and Threads

is discussed at the end of the chapter.

7.1 A Formal Model of M:N Scheduling

Figure 7.1 shows the basic definitions of processes, executors, and threads. A process–state P is defined as

two sets of executors: the active executors Ea and the suspended executors Es, and two sets of threads: the

active threads Ta and the suspended threads Ts.

An executor e is defined as a thread t and a message–state m. Message–states are either on > or off ⊥. An

executor’s message–state is used to denote whether or not it should execute the scheduler at a safepoint.

A thread t is modeled as a sequence of statements S and a message–state m, which indicates whether

the thread should be suspended at the next safepoint. For simplicity’s sake, I treat threads as a generator

for statements; the set of possible statements is not meant to describe a full computational model. A thread

might be thought of as a sort of “ticker–tape” of the observable actions taken by the thread. This stream–type

execution can be replaced with a monadic λ–calculus style evaluation to build systems atop this model.

Statements themselves represent atomic operations on the process–state. An important implication of

this is that the implementations of spawn, raise, sleep, safepoint, wake and signal operations must

be linearizable[67]. As previously mentioned, the ρ operation is an abstraction for some underlying model

of computation. The term operation comes at the end of every thread’s execution, and denotes thread ter-

mination and abandonment of the current state. Threads are created using the spawn operation. The raise

operation sets the given executor’s message state to >. The signal operation wakes one sleeping executor.

The perhaps deceptively–named sleep operation really only sets a flag on the current thread, requesting that

it suspend at the next safepoint. The wake operation is similar to signal, except that it wakes a specific

thread, whereas signal wakes some sleeping executor.

Figure 7.2 describes the evaluation rules for execution of the M:N threading model. The idle thread

ω exists solely to suspend, then restart an executor. It is modeled as a suspend operation, followed by a

sequence of some number of ρ operations, followed by term. The use of term here indicates that the state

of the idle thread can be thrown away when a new thread is scheduled (meaning no resume continuation

need be saved). Note that the since the idle thread is repeatedly used, the term statement does not imply

the destruction of the thread structure itself, but rather the end of the current execution of it1. The program
1This tactic of abandoning the state of threads is used in several places to preclude the need for more than one traditional stack per

executor.

33

Idle-Thread:

ω = 〈 suspend.S ω,>〉
S ω = ρ.S ω
S ω = term

Program-Execution:

∃e ∈ Ea (Ea − e, Es,Ts,Ta, e 7→S P′)

〈Ea, Es,Ta,Ts〉 7→P P′

Statement-Execution:

Ea, Es,Ta,Ts, 〈〈term, . . .〉, . . .〉 7→S sched(Ea, Es,Ta,Ts)
Ea, Es,Ta,Ts, 〈〈ρ.S ,mt〉,me〉 7→S 〈Ea ∪ {〈〈S ,mt〉,me〉}, Es,Ta,Ts〉

Ea, Es,Ta,Ts, 〈〈safepoint.S ,mt〉,⊥〉 7→S 〈Ea ∪ {〈〈S ,mt〉,⊥〉}, Es,Ta,Ts〉

Ea, Es,Ta,Ts, 〈t = 〈safepoint.S ,>〉,>〉 7→S sched(Ea, Es,Ta ∪ {〈S ,>〉},Ts)
Ea, Es,Ta,Ts, 〈t = 〈safepoint.S ,⊥〉,>〉 7→S sched(Ea, Es,Ta,Ts ∪ {〈S ,⊥〉})

Ea, Es,Ta,Ts, 〈spawn (t = 〈. . . ,>〉).S ,mt〉,me〉 7→S 〈Ea ∪ {〈〈S ,mt〉,me〉}, Es,Ta ∪ {t},Ts〉

Ea, Es,Ta,Ts, 〈spawn (t = 〈. . . ,⊥〉).S ,mt〉,me〉 7→S 〈Ea ∪ {〈〈S ,mt〉,me〉}, Es,Ta,Ts ∪ {t}〉
Ea, Es,Ta,Ts, 〈raise e.S ,mt〉, . . .〉 7→S 〈Ea ∪ {〈〈S ,mt〉,>〉, }, Es,Ta,Ts〉

Ea, Es,Ta,Ts,
e = 〈raise (e′ = 〈t, . . .〉 , e ∈ Ea).S ,mt〉, . . .〉 7→S 〈(Ea − e′) ∪ {〈〈S ,mt〉,>〉, 〈t,>〉}, Es,Ta,Ts〉

Ea, Es,Ta,Ts, 〈raise (e′ ∈ Es).S ,mt〉, . . .〉 7→S 〈Ea ∪ {〈〈S ,mt〉,>〉}, Es,Ta,Ts〉

Ea, Es,Ta,Ts, 〈signal .S ,me〉 7→S

∃e′ = 〈t′, . . .〉 ∈ Es 〈Ea ∪ {〈〈S ,mt〉,me〉, 〈t′,>〉}, Es − e′,Ta,Ts〉

Ea,Ø,Ta,Ts, 〈〈signal.S ,mt〉,me〉 7→S 〈Ea ∪ {〈〈S ,mt〉,me〉},Ø,Ta,Ts〉

Ea, Es,Ø,Ts, 〈〈signal.S ,mt〉,me〉 7→S 〈Ea ∪ {〈〈S ,mt〉,me〉}, Es,Ø,Ts〉

Ea, Es,Ta,Ts,
〈〈sleep (t = 〈S ′, . . .〉 ∈ Ta).S ,mt〉,me〉 7→S 〈{Ea ∪ 〈〈S ,mt〉,me〉}, Es, (Ta − t) ∪ {〈S ′,⊥〉},Ts〉

Ea, Es,Ta,Ts, 〈t = 〈sleep (t′ = t).S , . . .〉,me〉 7→S 〈Ea ∪ {〈〈S ,⊥〉,me〉}, Es,Ta,Ts〉

Ea, Es,Ta,Ts, e = 〈〈sleep (t = 〈S ′, . . .〉 |
∃e′ , e = 〈t,m′e〉 ∈ Ea).S ,mt〉,me〉 7→S

〈{(Ea − e′) ∪ 〈〈S ,mt〉,me〉, 〈〈S ′,⊥〉,m′e〉}, Es,Ta,Ts〉

Ea, Es,Ta,Ts, 〈〈sleep (t ∈ Ts).S , . . .〉,me〉 7→S 〈Ea ∪ {〈〈S ,⊥〉,me〉}, Es,Ta,Ts〉

Ea, Es,Ta,Ts,
〈〈wake (t = 〈S ′, . . .〉 ∈ Ts).S ,mt〉,me〉 7→S 〈Ea ∪ {〈〈S ,mt〉,me〉}, Es,Ta ∪ {〈S ′,>〉},Ts − t〉

Ea, Es,Ta,Ts, 〈〈wake (t < Ts).S ,mt〉,me〉 7→S 〈Ea ∪ {〈〈S ,mt〉,me〉}, Es,Ta,Ts〉

Scheduler Function:

sched(Ea, Es,Ta,Ts) = ∃t ∈ Ta〈Ea ∪ {〈t,⊥〉}, Es,Ta − t,Ts〉

sched(Ea, Es,Ø,Ts) = 〈Ea, Es ∪ {〈ω,⊥〉},Ø,Ts〉

Figure 7.2: Execution Semantics

34

execution function [P] specifies that execution steps from any active executor can be interleaved in any order.

The statement execution rules specify the meanings of each statement. It is important to note than in the

statement execution rules, threads which are currently assigned to an executor are not present in either Ta

or Ts. Also, in each rule, the executor e refers to the executor for which an execution step is being taken.

The only rule for the term statement calls the sched scheduler function, discarding the current thread for e.

The evaluation rule for ρ ignores the operation, assuming it to be processed by the underlying computational

model. The ρ rule demonstrates the updating of the process–state, particularly Ea to reflect the changes to e.

There are three rules for the safepoint statement. In the first, the e’s message–state is ⊥, so no action is

taken. The second and third reflect the current thread’s status being > (executable), and ⊥ (non–executable)

respectively. The former calls sched with the previously–running thread inserted back into the set of active

threads Ta. The later inserts the thread into the set of suspended threads Ts and calls sched.

The spawn statement has two rules, depending on the initial state of the thread when it is created. The

only difference between these rules is that a thread starting as > (executable) is inserted into the set of active

threads Ta, while a thread starting as ⊥ (non-executable) is inserted into the suspended threads Ts.

The first two rules for raise statement are purely technicalities. The first rule covers an executor

raiseing its own message–state, while the second covers raiseing another active executor. The third rule

states that a raise performed on an inactive executor has no effect.

The signal statement has three rules. The first rule states that if both Es and Ta are non-empty, then an

executor from Es is reactivated by removing it from Es and inserting it into Ea. As will be shown later, the

state of all executors in Es is exactly 〈ω,>〉, meaning they are executing the idle thread. The last two rules

for signal state that if there are no suspended executors Es or active threads Ta, then the statement has no

effect2

The sleep statement sets a thread’s execution status to ⊥ (non-executable). The rules for this statement

are complicated, but the action is quite simple: it sets a thread’s state to ⊥. The four cases handle if the thread

is the current executor’s current thread, if it is some other executor’s current thread, if it is active, or if it is

already suspended. It is important to note that this does not set the executor’s message state to >, nor does

it actually stop the execution of the thread. This detail will become very important in the implementation

of blocking synchronization. To completely stop itself, a thread must execute the sequence sleep.raise

e.safepoint, where e is the current executor. There is no way to block until another thread stops.

The wake statement has two rules. The first rule covers wakeing a suspended thread. The thread is

removed from the suspended threads Ts, and inserted into the active threads Ta with its status set to >

(executable). The second rule covers wakeing a thread which is not suspended, in which case the statement

has no effect.

The scheduler function sched effectively describes what is expected of a real scheduler function. There

are two cases for the function, and it is called in three rules. The first case covers normal scheduling, when

there is an active thread available. The current executor chooses some thread from the active threads Ta and

adopts it as its current thread. The second case covers the case where there are no active threads available.

The current executor sets its current thread to be the idle thread ω and suspends, inserting itself into the

suspended executors Es.
2In the case of no suspended threads, an executor could be restarted, at which point it would execute sched, and be suspended again.

This is case is explicitly stated for clarity’s sake.

35

Definitions:

P = P0, P1, P2, . . . Pn | Pi 7→P Pi+1 (process − execution)
Te(〈Ea, . . .〉) = {∀t | 〈t , ω, . . .〉 ∈ Ea} (executing − threads)

Process-State Correctness Conditions:

∀P = 〈Ea, Es,Ta,Ts〉:

∀〈t . . .〉, 〈t′, . . .〉 ∈ Te(P) (t , t′ ∨ t = t′ = ω) (unique − execution)
Ea ∩ Es = Ø (executor − non − duplication)
Ts ∩ Ta = Ø ∧ Te(P) ∩ Ta = Ø ∧ Te(P) ∩ Ts = Ø (thread − non − duplication)
Ea = Ø→ Ta = Ø (no − deadsleep)

Figure 7.3: Correctness Conditions for Processes and Executions

Note that the three uses of sched introduce various cases. The rule for term discards the previously

executing thread altogether. It is possible that Ta is empty, which may cause the executor to suspend. The

second rule of safepoint adds the current thread to Ta prior to scheduling, meaning that the current thread

may be chosen again, and that Ta cannot be empty, and thus, e cannot be suspended. Lastly, the third rule of

safepoint suspends the current thread, but is otherwise identical to the rule for term3

Figure 7.3 introduces the correctness conditions for a valid process–state, as well as properties which the

scheduler function must uphold. These, combined with the atomicity requirements of the execution semantics

will form the conditions for proving the lock–free scheduler’s correctness. These properties will also prove

that this execution model can serve as a suitable foundation for implementing Concurrent ML.

A process–execution P is defined as a sequence of process–states, such that each successive process–state

is the result of some application of the program–execution function to the current state. For convenience’s

sake, the executing–threads function Te is defined as the currently–executing threads for all active executors,

excluding the idle thread ω.

There are four conditions for a valid process–state. The first, the unique–execution rule states that no

two executors may execute the same thread (unless they are both executing the idle thread). The second, the

executor–non–duplication property states that a given executor must either be active or suspended, but cannot

be both. Similarly, the third, the thread–non–duplication property states that a given thread must either be

assigned to some executor, active, or suspended, but cannot be in more than one of these sets. The last states

if there are any threads active, then some executor must also be active.

Figure 7.4 gives several properties necessary for describing an interactively–scheduled system, that is,

one which is designed to obey some external timing constraint. Up to this point, the conditions given have

been necessary for the runtime to function properly. The properties described from this point on represent

the desired properties of an interactive scheduler, rather than required correctness conditions. It is certainly

possible to implement a non–interactive scheduler which ignores these properties.

Two correctness conditions enable the implementation of the scheduling properties. For executors, the

alarm–clock property simulates a timer interrupt. This property assures that for each executor, there is some

3Indeed, in the actual implementation, they are the same. Threads are not destroyed immediately upon termination.

36

Thread Properties:

∀t = 〈S , . . .〉:

∃τs | ∀si ∈ S ∃si+k((si+k = safepoint ∨ si+k = term) ∧ n < τs) (safepoint − interval)

Scheduling Properties:

∀P, Pi = 〈Ea, Es,Ta,Ts〉 ∈ P | k > |Te(Pi) ∪ Ta ∪ Ts|:

∃τa | ∀ei ∈ Ea ∃Pi+n | (ei = 〈. . . ,>〉) (alarm − clock)
∃τe | ∀t ∈ Ta ∃Pi+n (t ∈ Te(Pi+k) ∧ n < τe) (full − epoch)
|Ea ∪ Es| = 1→ ∃τe | ∀t ∈ Ta ∃Pi+k (t ∈ Te(Pi+n) ∧ n < τe) (weak − epoch)

Figure 7.4: Properties of Interactive-Scheduler Systems

time interval in which its signal state will be raised. Additionally, there is a similar correctness condition for

threads. The safepoint–interval property states that there is an upper bound τs on the amount of time before

the execution of a safepoint for any thread.

In addition to the base conditions, two properties of scheduler functions are defined, both of which con-

cern the maximum “pause” in a given thread’s execution. These properties are not so much required precon-

ditions as they are desired properties of the runtime. The full–epoch property states that there exists some

global interval τe, such that any thread which is active (not executing) will be executed in fewer than τe steps.

The weak–epoch property asserts the same property, but only for executions with a single executor. Obvi-

ously, both properties can only guaranteed for executions with a bounded number of threads4. As it turns

out, the full–epoch property cannot be guaranteed at all under the current execution rules. In reality, this

depends on an unlikely occurrence, that being that one executor stalls indefinitely. However, it still warrants

consideration, as it is a consequence of the lock–free properties of the runtime system.

In order to fully provide a foundation, it is necessary to prove that the execution rules preserve the cor-

rectness properties of process–states. Also presented here is a proof that the full–epoch property cannot be

guaranteed for all possible executions, and a corollary that states when it can be guaranteed.

Theorem 7.1.1 (Correctness Preservation). If some process–state P satisfies the correctness conditions for

process–states, then P′ also satisfies the conditions, where P 7→P P′.

The correctness conditions are:

(i) No two executors may execute the same thread, unless it is the idle thread. Formally:

∀〈t . . .〉, 〈t′, . . .〉 ∈ Te(P) (t , t′ ∨ t = t′ = ω)

(ii) No executor may exist in more than one of Ea or Es. Formally:

Ea ∩ Es = Ø

(iii) No thread may exist in more than one of Te(P), Ta or Ts. Formally:

Ts ∩ Ta = Ø ∧ Te(P) ∩ Ta = Ø ∧ Te(P) ∩ Ts = Ø
4A fork–bomb demonstrates that this cannot be guaranteed when the number of threads increases without bounds

37

(iiii) If an active thread exists, then an active executor must also exist. Formally:

Ea = Ø→ Ta = Ø

Proof. The proof is straightforward from the definition of 7→S , demonstrated below:

For condition (i), the only rule which affects an executor other than e is the second condition of the raise

statement, but this rule only affects the message state me of e′, not its current thread. Therefore, if (i) and (iii)

hold for P, then (i) must hold for P′.

For condition (iii), only the rules for spawn, the second two rules for safepoint, and the rules for wake

add elements to either Ta or Ts. Both rules for spawn add an element to only one set. As spawn creates a

thread, it obviously cannot be currently executing, nor could it have been a member of Ta or Ts. The rule

for wake removes an element t from Ts, and adds it to Ta. Since (iii) must hold for P, and the t ∈ Ts, then

it cannot be in Ta, nor can it be executing. Finally, both the second and the third cases of safepoint add

an the currently–executing thread t to Ta as an argument to sched. However, the sched function removes an

element from Ta, and replaces the current thread with it. Since (iii) must hold for P, then t could not have

been in Ta or Ts, and the element chosen from Ta is either t, or it also could not have been in Ts, nor could it

have been executing.

For condition (iii), the only cases in which an executor is added to either Ea or Es are the first rule for

signal and the second rule for sched. In the first rule for signal, some executor e′ is removed from Es and

placed in Ea. In the second rule of sched, the reverse occurs: some executor e is removed from Ea and placed

in Es. In both cases, since (iii) holds for P, then it also holds for P′ | P 7→P P′.

For condition (iiii), the only case in which an executor is removed from Ea is the second case of sched,

when Ta =Ø. �

The following set of proofs explore the capacity of the execution semantics to implement the weak–epoch

property, their inability to implement the full–epoch property.

First, it is necessary to prove that the number of executors remains constant, and that threads are not

arbitrarily created or destroyed. These are also important correctness conditions.

Theorem 7.1.2 (Conservation of Executors). The number of total executors remains constant across the

process–execution function 7→P. Formally:

∀P = 〈Ea, Es, . . .〉, [P] = 〈E′a, E
′
s, . . .〉 (|Ea ∪ Es| = |E′a ∪ E′s|)

Proof. The lemma is effectively proven by the proof for condition (iii) of theorem 7.1.1. In all cases in which

an executor is added to Ea or Es, it is first removed from the other set. �

Proving a similar conservation property on threads is slightly more intricate.

Theorem 7.1.3 (Conservation of Threads). The total number of threads behaves as follows across the

process–execution function 7→P:

(i) If e = 〈 spawn t.S , . . .〉, it increases by one.

(ii) If e = 〈 term .S , . . .〉, it decreases by one.

(iii) Otherwise, it remains constant.

38

Proof. Proof is by definition.

Condition (i) is trivial. There is only one rule for term, which discards the current thread. Since the

current thread is not in Ta or Ts, by the thread–non–duplication property, the condition holds.

Condition (ii) is similarly trivial. There are only two cases for spawn, both of which insert t into either

Ta or Ts. Since t is freshly created, it cannot exist in Ta or Ts, nor can it be executing.

For condition (iii), the only rules which add or remove a thread from Ta or Ts are the first rule of wake,

and the last two rules of safepoint, both of which call sched. The first rule for wake removes a thread from

Ts and adds it to Ta. The last two rules of sched add the current thread to Ta or Ts, then immediately remove

a thread from Ta and assign it to e. In both cases, the thread is not being added to a set to which it already

belonged, by the thread–non–duplication property, so the condition holds. �

Armed with these, it is now possible to prove that the weak–epoch property can be guaranteed, and that

the full–epoch property cannot be guaranteed.

Theorem 7.1.4 (Impossibility of Full Epoch). It is not possible to implement the full–epoch property, given

the semantics of 7→P.

Proof. Proof is by contradiction.

There is no rule in 7→S which changes the current thread of any executor other than e. Therefore, if some

thread is being executed by some executor e′, it may only be executed if e′ takes a step.

However, the 7→P function executes a step from an indeterminant executor. Therefore, it is possible to

derive an execution wherein some executor does not take a step for an indefinite number of steps. Any given

thread t can be assigned to an executor e, after which e′ does not execute, which causes t to also not be

executed, which violates the full–epoch property. �

The following definition simplifies the proofs to come.

Definition 7.1.5 (Epoch Bound). If there exists some value b such that once any given thread t is scheduled

b times, all other threads must be scheduled at least once before t is run again, then b is an epoch–bound on

threads.

Likewise, if there exists some value b such that once any given executor e executes b steps, all other

executors must execute at least one step before e executes again, then b is an epoch–bound on executors.

Remark 7.1.6. A scheduler function with an epoch–bound is called an “epoch–scheduler”. A scheduler with

epoch–bound of 1 is called a “round–robin scheduler”.

Theorem 7.1.7 (Weak Epoch). It is possible to implement the weak–epoch property, given the semantics of

7→P.

Proof. Proof is by example.

Given theorem 7.1.2 and condition (iiii) of theorem 7.1.1, there will always be exactly one executor, and

it will remain active so long as there is an active thread.

Assume the sched guarantees an epoch–bound b. If the maximum number of threads in the program is

bounded by k, then in the worst case, all k threads execute b times. By the alarm–clock property, the executor

39

type lf_queue(a)

bool lf_enqueue(queue : lf_queue(a),

item : a)

a lf_dequeue(queue : lf_queue(a))

type scheduler

thread* select(sched : scheduler)

thread* discard(sched : scheduler,

thread : thread*)

void insert(sched : scheduler,

thread : thread*)

thread* eschew(sched : scheduler)

Figure 7.5: Local Scheduler and Queue Functions

e is signaled at least once every τa steps, and by the safepoint–interval property, will acknowledge the signal

at least once every d τa
τs
e steps. Therefore,

τe ≤ bkd τa
τs
e �

Theorem 7.1.8. If the system guarantees an epoch–bound be for all executors, then the entire system has the

full–epoch property if all executors have the weak–epoch property

Proof. Proof is by example.

Trivially, this can be proven by having all the schedulers for executors other than e0, always return the

same thread, and have e0’s scheduler schedule all other threads as described in the proof of theorem 7.1.7.

Then all threads on e0 will be executed in at most d
bkd τaτs e

be
e “rounds” of execution by e0, therefore

τe ≤ be|Ea ∪ Es|d
bkd τaτs e

be
e �

Armed with these theorems, it is now possible to prove the well–behavedness of an implementation of

the runtime system. Such a proof must demonstrate that an implementation of each statement is both correct

and linearizable, and that the initial state satisfies the correctness conditions.

Additionally, if the system is interactive, the correctness proofs should demonstrate that the sched func-

tion satisfies the weak–epoch property. The assumption of theorem 7.1.8 holds for most real systems, there-

fore, proving the weak–epoch property effectively proves the full–epoch property as well.

Now that the theoretical model has been established, section 7.2 demonstrates a lock–free implementation

of this model. Following that, section 7.4 proves the correctness of this implementation.

7.2 Scheduling Algorithm

This section specifies the scheduling algorithm to the point where its correctness can be proven. The algorithm

assumes the existence of a local scheduling algorithm and a lock–free queue. Figure 7.5 shows declarations

of several functions which are expected to be defined by the implementation. The local scheduler is used in

a purely synchronous context, and may make use of arbitrarily complex data structures. The lock–free queue

interface is designed to support the queues described by section 7.3.

The select scheduler function cycles the scheduler, returning the thread to execute and returning the

previously executing thread to its structures. The discard function removes the given thread from the

scheduler. The insert function adds a thread to the scheduler. Lastly, the eschew function selects and

40

void safepoint(id : uint) =

mbox = executors[id]

do

old = mbox.run_scheduler

while !CAS(old, 0,

executors[id].mbox)

if old.run_scheduler

sched(id)

...

void idle(id : uint) =

forever

safepoint(id)

sigsuspend(IDLE_MASK);

void raise(id : uint) =

mbox = executors[id]

do

old = mbox.run_scheduler

new = old

new.run_scheduler = true

while !CAS(old, new,

executors[id].mbox)

void signal() =

for (i = 0; i < execs; i++)

if(current(executors[i].sched) ==

NULL)

exec = executors[i].os_exec

raise(id)

kill(exec, WAKEUP_SIGNAL)

break

Figure 7.6: The signal, safepoint and raise Statements, and the Idle Thread.

removes a thread from the scheduler to be sent to the workshare queue. The queue functions are typical

lock–free queue functions, except that lf_enqueue may fail if no free nodes are available, in which case it

returns false. The reasons for this are made clear in section 7.3.

Figure 7.6 shows some of the more basic components of the scheduling algorithm. The safepoint

function implements a check of the safe–point, using a compare–and–set to atomically check and clear the

mailbox. The raise function is similar, except it sets the run_scheduler portion of the mailbox (the

only portion represented in the theoretical model) to true. The signal function uses a kill call, which is

semantically identical to the POSIX function of the same name. Lastly, the idle thread repeatedly executes a

safepoint, then suspends using sigsuspend. This is a slight divergence from the theoretical model, in which

the idle thread would immediately yield back to the scheduler. However, this accounts for the fact that the

idle thread may exit the sigsuspend for reasons other than being signalled. The sigsuspend call assumes

the POSIX semantics of atomically setting the signal mask (which enables receipt of WAKEUP_SIGNAL) and

suspending.

Figure 7.7 shows the implementation of the spawn statement, as well as the update function, which

implements both the wake and sleep statements. Note that spawn takes several arguments: an initial state,

an initial mailbox state, and a pointer. The initial state arguments are straightforward. The pointer is an

address to which a pointer to the thread’s mailbox should be stored. This is used to initialize the entry point

of the thread. Since a thread could be executed prior to the return of spawn, and the address of the thread

mailbox obviously is not known until the thread is created, spawn must store the thread’s mailbox to this

address after allocating the thread structure, but before activating the thread. Note that spawn uses wake to

insert the new thread into the queues. As will be demonstrated, new threads are implicitly in the Ts set, so

wake preserves correct semantics.

The wake function sets the reference flag to true, indicating that the thread is present in the scheduler’s

structures, and the status to RUNNABLE using atomic compare and set. If the reference flag was not previously

set, then the thread is inserted into the lock–free workshare queue if a node is available, and into the scheduler

41

thread* spawn(initial_state : state, // RUNNABLE or SUSPEND

initial_mbox : thread_mbox,

mbox_addr_ptr : thread_mbox**) =

thread : thread* = allocate()

thread.stat_ref.ref = false

thread.stat_ref.state =

state == RUNNABLE ? NONE : SUSPEND

thread.mbox = initial_mbox

*mbox_ptr_addr = thread.mbox

if(state == RUNNABLE)

wake(thread)

thread

void wake(thread : thread*, exec : executor*) =

do

oldstat = thread.stat_ref

newstat.ref = true

newstat.state = RUNNABLE

while ((oldstat.state != RUNNING && oldstat.state != RUNNABLE) ||

!CAS(oldstat, newstat, thread.stat_ref))

if(oldstat.stat != RUNNABLE &&

oldstat.stat != RUNNING)

atomic_inc(active_threads)

if (!oldstat.ref)

if(!lf_enqueue(workshare, thread))

insert(exec.scheduler, thread)

void sleep(thread : thread*) =

do

oldstat = thread.stat_ref

newstat = oldstat

newstat.state = SUSPEND

while ((oldstat.state != SUSPENDED && oldstat.state != SUSPEND) ||

!CAS(oldstat, newstat, thread.stat_ref))

if(oldstat.stat == RUNNABLE && oldstat.stat == RUNNING)

atomic_dec(active_threads)

Figure 7.7: The spawn, wake, and sleep Statements

42

bool setrunning(thread : thread*) =

out = false

cas = true

while(cas)

oldstat = thread.stat_ref

switch(oldstat.stat)

case RUNNING, RUNNABLE:

newstat.state = RUNNING

newstat.ref = oldstat.ref

out = CAS(oldstat, newstat, thread.stat_ref)

cont = !out

case SUSPEND:

newstat.state = SUSPENDED

newstat.ref = false

cont = !CAS(oldstat, newstat, thread.stat_ref)

out

void try_workshare(exec : executor*) =

sched = exec.sched

while(NULL == current(sched))

thread = lf_dequeue(workshare)

if(setrunning(thread)

exec.current = thread

balance(sched)

void balance(sched : scheduler*) =

if(count(sched) < lower_bound(active_threads))

take_threads(sched)

else if(count(sched) > upper_bound(active_threads))

give_threads(sched)

else

swap_threads(sched)

Figure 7.8: Scheduler Support Functions

of the executor which created the thread otherwise. If the flag is set, then the thread is already present

somewhere in the scheduler structures. If the state is changing from non–runnable to runnable, then the

active_threads value is incremented.

The sleep function sets the thread’s state to SUSPEND using a compare and set, the decrements the

active_threads value if the status has gone from a runnable state to a non–runnable one.

Figures 7.8 and 7.9 show the main scheduler functions. The cycle and replace functions implement

the two invocations of the sched function: considering and discarding the current thread respectively. The

term statement is also implemented by replace. The only difference between either cases is the use of the

select or remove functions, which either keep or discard the current thread. Both functions make use of the

try_workshare function, which attempts to pull a thread from the workshare queue. The balance function

is similar, and either pushes work to the workshare, or pulls work from it depending on the number of threads

in the current scheduler. The cycle_threads branch is included to facilitate the epoch properties. The

give_threads, cycle_threads and take_threads functions are not shown. These functions enqueue a

43

void cycle(exec : executor*) =

sched = exec.sched

do

thread = select(sched)

finished = false

if(thread != NULL && setrunning(thread))

finished = true

setcurrent(sched, thread)

balance(sched)

else

thread = discard(sched, thread)

while(!finished && thread != NULL)

try_workshare(exec)

void replace(exec : executor*) =

sched = exec.scheduler

discard(sched, exec.current)

do

thread = select(sched)

finished = false

if(thread != NULL && setrunning(thread))

finished = true

exec.current = thread

balance(sched)

else

thread = discard(sched, thread)

while(!finished && thread != NULL)

try_workshare(exec)

void term(exec : executor*) =

thread = exec

replace(exec)

// safely free thread

Figure 7.9: The Main Scheduler Functions

thread gotten from the local scheduler using eschew, or dequeue a thread from the workshare respectively5.

Lastly, all of the functions make use of the important setrunning function. This function is actually

quite important from the standpoint of proving linearizability. This function uses a compare and set to set the

thread status to RUNNING if the thread is runnable. It also sets the status, and more importantly, unsets the

reference flag if the thread is not runnable.

Now that the algorithm has been described, section 7.4 presents proofs of its correctness by the crite-

ria defined in section 7.1. Once the core has been proven correct, section 7.5 demonstrates useful derived

functionality based on the core statements. Prior to presenting the correctness proofs, however, section 7.3

discusses a modification to the core algorithm to significantly reduce the number of dynamic memory alloca-

tions.
5In the real implementation, they check if a thread is still runnable, and attempt to compare–and–set its state and discard it otherwise.

44

7.3 Lock-Free Worksharing Without Dynamic Allocation

Both the scheduling system and the garbage collector utilize a lock–free fifo queue as a workshare mecha-

nism. In both systems, executors maintain a set of tasks using purely–local data structures, and share work

by periodically moving tasks to or from a shared, lock–free data structure.

In both cases, the runtime implements this structure as a FIFO–queue. In the scheduler, doing so prevents

thread–starvation. In the garbage–collector, the local work queue is implemented as a FIFO–queue in order to

(hopefully) improve memory locality. Though the exact alignment of objects which are sent to the workshare

is indeterminant, using shared FIFO–queue hopefully preserves as much of the original behavior as possible.

The lock–free FIFO algorithm of Michael and Scott[99] can be used as the basis for the workshare queues

used by the runtime system. Michael and Scott’s queue also requires one of several additional mechanisms to

safely reclaim nodes and threads[97, 61, 35, 55, 95], and to prevent the ABA problem6[96]. Unfortunately,

these queues, as well as the safety mechanisms they employ require the use of dynamic allocation. While

this is not a problem in theory, requiring dynamic allocation in a scheduler cycle or to process an object in

a garbage collection cycle will result in high contention on the dynamic allocator and poor performance in

the scheduler or garbage collector. A solution to these problems arises from the fact that, being a workshare

queue, it is not absolutely necessary that every enqueue operation succeed. It is entirely acceptable for the

queue to fill up and reject an attempt to enqueue another task. If the queue is full, then an executor simply

keeps the task in its local structures, as work–starved executors clearly have enough tasks to keep them busy.

This permits a static supply of nodes to be allocated during initialization and used during execution.

7.4 Correctness

This section presents proofs of the correctness of the lock–free scheduling algorithm presented in section.

These proofs are presented separate from the algorithm itself, so as to facilitate better understanding of the

algorithm, and because of the fact that the ability to prove correctness depends in part on properties of the

entire algorithm, not just one component of it.

The following definitions formally state properties that were stated in section 7.2, as well as some new

properties.

Definition 7.4.1 (Assignment to Executors). A thread t is assigned to an executor e if the following conditions

hold:

(i) It is inevitable the current field of e will be t at some point in the future, and no other thread satisfies

this condition at a point farther in the future.

(ii) The ref field is true

Definition 7.4.2 (Idle Thread). A current value of NULL denotes that an executor is executing the idle thread

ω.

Definition 7.4.3 (Membership in Ea). An executor is in Ea if any of the following conditions is met:
6ABA is a problem which arises from the use of compare–and–set operations wherein a new node that happens to have the same

address as a node that was recently removed causes a compare–and–set operation to erroneously succeed.

45

(i) Its current thread is not ω

(ii) Its signal state is asserted and it will execute a safepoint instruction in a finite amount of time.

Definition 7.4.4 (Membership in Es). An executor is in Es if and only if all the following conditions are met:

(i) It will acknowledge signals sent by the kill function in a finite amount of time.

(ii) It does not satisfy any condition of definition 7.4.3

Definition 7.4.5 (Membership in Ta). A thread is in Ta if and only if the following conditions are met:

(i) The stat_ref.state field is either RUNNING or RUNNABLE

(ii) The ref field is true

(iii) The thread is observably present in either workshare or a scheduler.

(iiii) The thread is not assigned to any executor, as per definition 7.4.1

Definition 7.4.6 (Membership in Ts). A thread is in Ts if and only if the following conditions are met:

(i) The thread is not in Ta, as per definition 7.4.5

(ii) The thread is not assigned to any executor, as per definition 7.4.1

(iii) The thread’s status is not NONE.

The following lemma is trivial, but very important, as it proves that access to schedulers is wholly syn-

chronous.

Lemma 7.4.7. An executor’s sched field is never accessed by another executor.

Proof. Schedulers are only modified in cycle, replace, and spawn, and only the current executor’s sched-

uler is modified. �

The following lemma establishes the legal transitions of stat_ref, which proves a powerful tool in the

following proofs.

Lemma 7.4.8. The only possible state transitions for stat_ref are:

(i) (NONE, false)⇒ (RUNNABLE,true)

(ii) (SUSPENDED, false)⇒ RUNNABLE,true

(iii) (SUSPEND, false)⇒ RUNNABLE,true

(iiii) (SUSPEND, true)⇒ RUNNABLE,true

(v) (SUSPEND, true)⇒ SUSPENDED,false

(vi) (RUNNABLE, true)⇒ SUSPEND,true

(vii) (RUNNABLE, true)⇒ RUNNING,true

46

(viii) (RUNNING, true)⇒ SUSPEND,true

Proof. The stat_ref variable is updated only by compare–and–set, therefore only those transitions which

arise from possible values of the old or new values are possible.

First, observe that all transitions explicitly set the state. Therefore, the only transitions to a state are those

that explicitly set that state.

Second, observe that no transition affects a thread regardless of its initial state.

The only place where the reference flag is explicitly set to true is in wake, but state is also set to

RUNNABLE, it is impossible to transition from any state in which ref is false to any state in which ref is

true, and state is anything other than runnable. Likewise, this is the only transition which sets state to

RUNNABLE, so it is impossible to transition to any state in which stat_ref is (RUNNABLE,false).

The only place where the ref flag is set to false is in setrunning, and also sets state to SUSPENDED.

Note that this only occurs if the original state is SUSPEND. Likewise, this is the only transition to any state

in which state is explicitly set to SUSPENDED, therefore, it is impossible to transition to any state in which

stat_ref is (SUSPENDED,true)

A thread is assigned the NONE state only in the spawn function, when it is created (if the initial state

is runnable), and ref is set to false. Note that it is immediately set to (RUNNABLE,true), and that the

thread is invisible to the outside world until spawn inserts it into the workshare queue, which occurs after this

transition. Therefore, (i) represents the only transition in which state is NONE.

No transition other than the one in wake can affect a thread which is SUSPENDED. Given that it is impos-

sible to transition to (SUSPENDED,false), (ii) represents the only transition where state is SUSPENDED.

The only place where state is set to SUSPEND is in sleep. This transition preserves the ref flag, so it is

possible that (SUSPEND,true) may arise. However, by previous observations, it is impossible to transition

to (RUNNABLE,false) or (SUSPENDED,true). Additionally, the only transition to RUNNING requires the

original state to be RUNNABLE. Finally, observe that (SUSPEND,false) may arise if a thread is created in a

suspended state. Therefore (iii), (iiii) and (v) represent the only transitions where state is SUSPEND.

The only transitions which affect a thread which is RUNNABLE are in sleep and setrunning. Both

preserve ref, and set state to SUSPEND and RUNNING respectively. Since there is never any transition to

(RUNNABLE,false), (vi) and (vii) represent the only transitions where state is RUNNABLE.

Lastly, the only transition to RUNNING requires the initial state to be RUNNABLE, and preserves the ref

flag, which, by earlier observations, must be true. The possible only transition from RUNNING is in sleep,

and sets state to SUSPEND, preserving ref. Therefore, (vii) represents the only transition where state is

RUNNING.

This covers all possible starting states. �

Corollary 7.4.9. The following states of stat_ref cannot be reached:

(i) (NONE,true)

(ii) (RUNNING,false)

(iii) (RUNNABLE,false)

(iiii) (SUSPENDED,true)

47

Proof. These are an immediate consequence of the legal state transitions. �

Now that the legal state transitions are known, it is also useful to prove the exact meaning of the ref field.

The following lemmas set the stage for this.

Lemma 7.4.10. A given thread is inserted into workshare or a scheduler only after a stat_ref transition

in which ref goes from false to true

Proof. The only point at which a thread is inserted either into workshare or into a scheduler immediately

follows a transition which explicity sets ref to true, and the insertion is only done if ref was previously

false. �

Corollary 7.4.11. After any transition in which ref goes from false to true, a thread is inserted into

workshare or a scheduler.

Proof. The only transition in which ref is explicitly set to true precedes an insert into either workshare or

a scheduler. �

Lemma 7.4.12. A given thread undergoes a stat_ref transition in which ref goes from true to false only

when it is not observably present in workshare or a scheduler structure, or is not assigned to a scheduler.

Proof. The only transition which explicitly unsets ref is in setrunning, which causes the function to return

false, causing the current thread to be discarded in both cycle and replace, and not to be chosen in

try_workshare. Therefore, all transitions to ref being false follow removing a thread from workshare,

and result in it being discarded. Since access to all schedulers is purely thread–local by lemma 7.4.7, it is

inevitable that it will be discarded after its state has been set, and no other thread will observe it as being in

the scheduler structure. Therefore, a ref is only set to false if the thread cannot be observed to be in any

structure. �

Lemma 7.4.13. Any thread assigned to a scheduler has a stat_ref.ref value of true.

Proof. A thread is assigned to an executor only after the setrunning function successfully completes a

transition to the RUNNING state. By corollary 7.4.9, the stat_ref value (RUNNING, false) is impossible.

This, combined with lemma 7.4.12 proves the condition. �

This lemma proves that presence in the queues or schedulers implies ref is true, and also proves a very

important correctness condition: the absence of observable duplicate entries.

Lemma 7.4.14. If a given thread is observably present in any scheduler or workshare, its stat_ref.ref

is true.

Proof. Immediate from lemmas 7.4.10, 7.4.13, and 7.4.12 and corollary 7.4.11. �

Corollary 7.4.15. The scheduler structures and workshare contain no observable duplicate entries.

Proof. This is an immediate consequence of lemmas 7.4.14 and 7.4.10. �

The previous lemma was very important, as it establishes one of the key conditions for correct execution.

The following proves the other direction of the relationship between ref and presence in the data structures.

48

Lemma 7.4.16. If the stat_ref.ref field is set to true for any thread, then it is inevitable that the thread

will be observably present in workshare or a scheduler structure, or will be assigned to an executor at some

point in the future. Likewise, when a thread’s stat_ref.ref field is set to false, it is no longer observable

in workshare, in a scheduler or assigned to an executor.

Proof. The first part is proven by lemma 7.4.11.

The only points at which a thread is removed from workshare are located in try_workshare, and

take_thread. In both cases, the thread is only discarded after its ref transitions to false Otherwise, it is

inserted into the scheduler.

In the scheduler functions cycle and replace, a thread is only discarded after its ref transitions to

false.

The only other point at which a thread is removed from a scheduler is give_thread. It is only discarded

after its ref transitions to false. Otherwise, it is inserted into workshare.

In all these cases, the transition occurs when the thread is present in a scheduler. Since scheduler access is

purely local, by lemma 7.4.7, the thread is no longer observably present in the scheduler, since the transition

marks the decision to remove it. Therefore, the lemma holds. �

This provides the final piece of a very important lemma, equating the ref field with presence in the

scheduler structures. Several important corollaries follow from this.

Lemma 7.4.17. A thread’s stat_ref.ref is true if and only if the thread is observably present in scheduler

structures, or inevitably will be at some point in the future.

Proof. This is a direct consequence of lemmas 7.4.14 and 7.4.16, and corollary 7.4.15. �

Finally, in preparation for proving correctness and linearization of the statement implementations, the

following lemmas prove correctness and linearization for the scheduler functions.

Lemma 7.4.18. The replace function discards the current thread, removes a thread from Ta and assigns it

to the scheduler, or suspends the executor if there are no threads in Ta, and is linearizable.

Proof. The replace function always calls discard on the scheduler, and all paths replace current with

some thread. The thread which is selected is observed to be in either RUNNABLE or RUNNING states tran-

sitions to (RUNNING,true), at which point it becomes inevitable that the thread will be assigned to the

current executor. Obviously this thread is present in the scheduler structures. Because the transition to

(RUNNING,true) simultaneously causes condition (iiii) of membership in Ta to be violated and satisfies the

definition of assigning a thread to an executor by 7.4.1. This action also causes the current thread to no longer

be assigned to the current executor. Therefore, the action simultaneously satisfies all conditions, making it

the linearization point when a new thread can be found.

If no thread is found which can be assigned to the executor, then assigning NULL to current simultane-

ously discards the current thread and sets the executor’s thread to ω. Since there is a finite number of steps

until the executor will execute sigsuspend, condition (i) of membership in Es is fulfilled. Since there is no

finite upper bound on the amount of time before a safepoint is executed, both options for membership in

49

Ea are violated, which in turn satisfies condition (ii) for membeship in Es. Thus, the executor is simultane-

ously removed from Ea and placed in Es. Thus, the linearization point comes when NULL is assigned to the

current. �

Corollary 7.4.19. replace returns the current thread to Ta or Ts as appropriate, removes a thread from Ta

and assigns it to the scheduler, or suspends the executor if there are no threads in Ta, and is linearizable.

Proof. The proof of replace proves the corollary, with the observation that cycle does not discard the

current thread, but rather that the compare–and–set to (RUNNING,true) either retains the current thread,

causes it to be inserted in Ta if its state is RUNNING or RUNNABLE, or causes it to be inserted into Ts if its status

is SUSPEND or SUSPENDED. �

Now, with all supporting lemmas proven, it is possible to begin the main proofs of correctness. The

primary correctness conditions come from proving that each implementation performs the required operations

and is linearizable.

Theorem 7.4.20 (Correctness of wake). The wake function correctly implements all cases, and is lineariz-

able.

Proof. The first case of wake removes the thread from Ts and inserts it into Ta. This is accomplished when

the thread is inserted either into the scheduler, or into workshare, as all conditions of definiton 7.4.5 are

satisfied, and condition (ii) of definition 7.4.6 is violated. Since at the return of lf_enqueue, the thread is

either in workshare, or will inevitably be inserted into the scheduler, which, by lemma 7.4.7 means it is

observably in the scheduler at that point, the return of lf_enqueue is the linearization point for this case.

In the second case, wake observes the thread to be in Ta and does nothing. The linearization point is when

it fetches the thread’s stat_ref.state as either RUNNABLE or RUNNING. �

Corollary 7.4.21. If the thread’s stat_ref.state is NONE, the wake function inserts it into Ta.

Proof. The proof is subsumed by the proof of the first case of the model’s behavior. �

Theorem 7.4.22 (Correctness of term). The term function correctly implements all cases, and is linearizable.

Proof. There is one case for term, which has exactly the behavior of replace by lemma 7.4.18. Therefore,

the implementation is correct, and the linearization point is the call to replace. �

Theorem 7.4.23. The safepoint function correctly implements all cases, and is linearizable.

Proof. The first case of safepoint is trivial. The linearization point is the compare–and–set of the executor’s

mbox.

The behavior of the second case is exactly the behavior of the cycle function, so the linearization point

is at the call to cycle.

Likewise, the behavior of the third case is exactly the behavior of the replace function, making the

linearization point the call to replace. �

Theorem 7.4.24 (Correctness of spawn). The spawn function correctly implements all cases, and is lineariz-

able.

50

Proof. There are two cases for spawn, one in which the first thread is RUNNABLE, and one in which it is not.

In the case of the thread being RUNNABLE, wake implements the proper behavior by inserting the thread

into Ta, making it the linearization point for this case.

In the case where the thread begins in the SUSPEND state, it is purely local until returned, so the lineariza-

tion point is the return of the function. �

Theorem 7.4.25 (Correctness of raise). The raise function correctly implements all cases, and is lineariz-

able.

Proof. Both cases of raise are implemented the same way. The linearization point is a successful compare–

and–set of the mbox for the executor. �

Theorem 7.4.26 (Correctness of signal). The signal function correctly implements all cases, and is lin-

earizable.

Proof. Signal has two cases, one in which a suspended executor exists, and one in which it doesn’t.

In the first case, the signal function locates a suspended executor, does a compare–and–set to assert

run_scheduler in its mailbox, then sends an OS signal to the thread using kill. Since the only time

a flag in the mailbox is unasserted is when the executor itself executes a safepoint, and the executor is

sigsuspended, or will be in a finite number of steps, this field can be treated as though it were local.

Once the call to kill completes, the target executor’s run_scheduler is asserted, and it will execute a

safepoint upon resuming execution, thus it now satisfies condition (ii) of membership in Ea, and ceases to

satisfy condition (ii) of membership in Es. Thus, the linearization point is the call to kill.

In the second case, the linearization point comes when the signal function completes a snapshot in

which there are no suspended executors. �

Theorem 7.4.27 (Correctness of sleep). The sleep function correctly implements all cases, and is lineariz-

able.

Proof. All cases of sleep are implemented in the same way, despite the statement’s complexity in the model.

A successful compare–and–set to SUSPEND implements correct behavior in the first three cases. In the first

case, the compare–and–set simultaneously violates condition (i) of definition 7.4.5 and satisfies condition (i)

of definition 7.4.6. In second and third cases, it sets the state. Therefore, in the first three cases, the successful

compare–and–set is the linearization point.

In the fourth case, the linearization point comes when the value of stat_ref.state is fetched as

SUSPEND or SUSPENDED, as it becomes inevitable that the function will do nothing. �

This completes the proofs of the various statement implementations. Next, the initial state must be proven

to satisfy the correctness requirements.

Definition 7.4.28 (Initial State). In the initial state, a single thread is assigned to one of the executors, and all

other executors are idle. The resume continuation of the initial thread is the starting state of the program.

Theorem 7.4.29 (Correctness of Initial State). The initial state satisfies the criteria for validity.

51

Proof. The executor- and thread–non–duplication properties are inherently satifsied by definitions 7.4.3,

7.4.4, 7.4.1, 7.4.5, 7.4.6.

The unique–execution property is satisfied by the fact that only one thread exists. The no–deadsleep

property is satisfied by the fact that one executor is active. �

With this, the theorems proven in section 7.1 now apply fully to the runtime system. Finally, it is useful

to prove some properties of interactive scheduling. The following remarks set the stage for proving the

weak–epoch property.

Remark 7.4.30. The native execution environment is assumed to implement the process–execution function

7→P and the alarm–clock property.

Remark 7.4.31. The compiler is assumed to implement the safepoint–interval property.

Theorem 7.4.32 (Weak Epoch). The algorithm can implement the weak–epoch property under the following

assumptions:

(i) Schedulers implement the weak–epoch property

(ii) The eschew function retains additional information in each thread about when it was last executed.

(iii) Once a thread is inserted into a scheduler, eschew will not remove it until it has been executed at least

once.

Proof. First, observe that balance is called at the end of every scheduler function. Second observe that the

only case in which balance does not take a thread from workshare is when it has more than its upper bound,

which implies that there is at least one executor which has fewer threads than the upper bound, assuming the

upper bound is well–chosen. Therefore, at least one thread is removed from workshare per scheduling cycle,

which implies that there is a finite number of scheduler cycles for which a thread inserted into workshare

will remain in it until dequeued.

Given this observation and the assumptions of the theorem, it follows that the weak–epoch property holds

for the entire system. �

7.5 Derived Forms

Previous sections defined a formal model of M:N scheduling, gave a lock–free implementation of it, and

proved the correctness of the implementation. However, the primitives provided by this model are not very

useful by themselves for concurrent programming. Indeed, these primitives are meant to be used as a basis

for implementing more complex synchronization mechanisms, not to provide the entire model by themselves.

This section explores several derived constructs built on the base model.

Figure 7.10 shows a basic non–spinning mutex implementation. The example here is meant to demon-

strate the concept, not to provide an efficient implementation. This implementation makes use of the fact that

sleep does not actually suspend a given thread immediately but rather sets a flag, causing it to be suspended

on the next safe–point. The ability to perform operations atomically within the scope of a single thread sim-

ply by omitting safe–points is another common technique, which is also used here. These techniques are

52

type mutex = < holder : thread*,

queue : thread* >

void unlock(m : mutex) =

do

oldm = m

(holder, queue) = oldm

if(NULL == queue)

newm.holder = NULL

newm.queue = NULL

else

newm.queue = queue.next

newm.holder = queue

while(!CAS64(oldm, newm, m))

wake(queue)

void lock(m : mutex) =

sleep(self)

do

oldm = m

(holder, queue) = oldm

if(NULL == holder)

newm.holder = self

newm.queue = queue

else

self.queue_next = queue

newm.queue = self

newm.holder = holder

while(!CAS64(oldm, newm, m))

if(NULL == holder)

wake(self)

else

raise(self.executor)

safepoint();

Figure 7.10: A Basic Mutex Implementation

used together to set a thread’s status to SUSPEND then declare itself as waiting on a structure in order to allow

another thread to wake it without losing the wakeup. This technique also integrates well with more efficient

implementations of mutexes using efficient spin–locks[7], delayed blocking [43], and other techniques.

The mutex implementation shown above is necessary for implementing complex synchronization, such as

the choose combinator in CML. Additionally, the mutex can be modified easily to implement synchronous

channels, asynchronous channels, futures, and other constructs. Most of these modifications involve simply

changing the structure of the mutex object to facilitate the desired behavior. For instance, in the case of

synchronous channels, there are two queues instead of a “holder” and a queue. Each operation checks the

other queue, dequeuing an operation if one exists, and enqueuning itself otherwise.

Implementing the choose combinator is significantly harder, requiring the ability to simultaneously solve

multiple consensus problems. There is no efficient implementation of choose with synchronous 2–way

channels using only single compare–and–set[90]. The choose combinator can be easily implemented using

the monadic style of software transactional memory[53], and is slightly more difficult to implement using

mutexes. As I have already demonstrated an implementation of mutexes, which can serve as a mechanism

for implementing monadic STM or for implementing choose directly, there is no need to discuss it further.

It is also possible to provide the ability to terminate a thread asynchronously, and to retain dead threads

(sometimes known as “zombies”) until they are marked for destruction. Indeed, the second change is nec-

essary in order to safely reclaim memory held by threads when threads are explicitly destroyed. Threads

cannot be simply destroyed, as there is no way of removing destroyed threads from the scheduler structures.

Instead, they must be marked for destruction, but only truly destroyed when removed from scheduler struc-

tures. Additionally, a thread cannot even be marked for destruction until there are no live references to it in

the program as well. In a garbage–collected program, the same technique proposed by Reppy for garbage–

collecting suspended threads[130] can be put to use. However, as the runtime is intended to also support the

53

bool setrunning(thread : thread*) =

out = false

cas = true

while(cas)

oldstat = thread.stat_ref

switch(oldstat.stat)

case RUNNING, RUNNABLE:

newstat.state = RUNNING

out = CAS(oldstat, newstat, thread.stat_ref)

cont = !out

case SUSPEND:

newstat.state = SUSPENDED

newstat.ref = false

cont = !CAS(oldstat, newstat, thread.stat_ref)

case TERM:

newstat.state = DEAD

newstat.ref = false

cont = !CAS(oldstat, newstat, thread.stat_ref)

case DESTROY:

cont = false;

destroy(thread)

out

Figure 7.11: Modifications for Thread Termination and Destruction

execution of program segments written in non garbage–collected languages, it is also necessary to support

the safe explicit destruction of threads.

Figure 7.11 shows the setrunning function modified to support three new thread statuses: TERM, DEAD,

and DESTROY. The TERM and DEAD states are identical to the SUSPEND and SUSPENDED states, except that

once a thread enters either state, it can no longer be set to RUNNABLE again. Additionally, the garbage–

collector will not preserve the frame in the resume continuation for these states (unless a thread marked TERM

is still executing, which is possible with asynchronous termination). The DESTROY state is similar to TERM

or SUSPEND in that it is unacknowledged. Threads which are maked DESTROY will be destroyed when a

transition is made to a stat_ref state of (DESTROY,false).

Lastly, the ability to send and receive asynchronous signals is present in many operating systems. This

ability can be provided to threads in the runtime with minor modification to the runtime in one of two ways.

In the first, when signals are received, they are recorded in an atomically modified bitmap for the given

executor, and flag is set in the executor’s mailbox, indicating that OS signals have been received. At the next

safe–point, the executor executes a signal handler for the given signal.

The second method takes advantage of the fact that the scheduler and memory allocator are both com-

pletely lock–free, and therefore, reentrant. The signal handler for a given signal simply creates a thread from

a given function. The simplicity with which interrupt threads can be implemented is a significant advantage of

lock–freedom. Non lock–free systems must work much harder to implement the same functionality. It bears

mention that the signal mask and os signal fields in an executor mailbox may still be necessary, depending on

exactly how executors and signals are implemented.

54

Asynchronous signaling between threads can also be implemented by adding a signal mask to a thread

mailbox. When a thread executes a safe–point, it checks its own mailbox for signals and acts accordingly.

The actual sending of signals can be implemented as a modification to wake. The signaling function sets the

thread’s signal mailbox atomically, then performs the usual actions of wake. Since wake does nothing to an

active thread, and because wakeing the target in between setting the mailbox and calling wake has the same

effect, the linearization point is when the mailbox is set.

This chapter has discussed the threading system for the runtime in great detail, presenting a formal seman-

tic model, a concrete algorithm, proofs of correctness, and derived forms. The threading system represents

what is arguably the most intricate portion of the runtime system. The other major component, the garbage

collector is discussed in chapter 8.

Chapter 8

Garbage Collection

This chapter describes the mechanisms for performing dynamic allocation and garbage collection in the run-

time system. The garbage collection algorithms are derived chiefly from the Cheng–Blelloch collector[27],

but also from other collectors. Unlike previous collectors, however, this particular garbage collector is mostly

lock–free, requiring only barrier synchronizations when switching modes.

The mode–switching is a fundamental barrier to a lock–free garbage collector. Any algorithm which

requires mode–switches to be acknowledged by all threads is inherently not lock–free. All collectors of

which I am aware at the time of writing observe this structure. Though I propose ideas for a wholly lock–free

“always–on” collector as future work (chapter 15), such a collector is beyond the scope of this thesis. The

overhead of two or three barriers (especially if done right) is a perfectly reasonable and almost negligible cost

for an otherwise lock–free collector.

Chapter 7 described a formal model for the threading semantics. This was necessary in order to properly

describe the threading model and prove its correctness, primarily due to the sheer complexity of precise

threading semantics and the difficulties inherent in reasoning about concurrent programs. This chapter does

not develop such a model for garbage collection for several reasons. First, the correctness conditions of a

garbage–collector are easier to state, and the “interface” for a garbage collector is markedly simpler, and

can be stated much more succinctly. Additionally, there is already a body of work dealing with the formal

modeling and correctness of garbage collectors[77, 92, 148, 146]. The intended contribution of this thesis

with regard to garbage collection is a mostly lock–free garbage collector, not a formal model of garbage–

collection. The primary intent in forming proofs of correctness for these algorithms is to guarantee that

the lock–free alorithms used herein do not misbehave, rather than to construct a formally–correct garbage–

collector.

Section 8.1 presents an overview of the collector, while section 8.2 presents the exact algorithms. Proofs

of the correctness of these algorithms are in section 8.3.

8.1 Background and Overview

Garbage collection is a programming model wherein objects are allocated dynamically, and released when

they will no longer be used by the program. This is in contrast to malloc–style explicitly–freed memory,

55

56

which must be explicitly released using a delete or free function. Garbage collection is arguably beneficial

for performance even in a single–threaded context[69, 9]. However, in the context of concurrent program-

ming, particularly with lock–free data structures, transactional memory, and other such mechanisms, garbage

collection easily solves a serious problem. The lock–free reclamation problem arises from the fact that once

an object or node is “deleted” from a lock–free structure, there may still exist threads with references to

it. In a non garbage–collected environment, this requires one of several solutions [97, 96, 61, 35, 74, 95]

Additionally, as shown in chapter 5, garbage collection has a synergistic effect with other constructs in the

runtime.

Effective garbage–collection uses a mark–sweep–copy approach, in which the collector begins with a

“root set” of references, and recursively traces the objects, marking them as reachable until it has exhausted

the entire memory graph. Objects which are marked reachable are copied into a new memory space, which

becomes the active space. The previous active space is then treated as free space. The mark–sweep–copy

approach has the advantage of improving memory locality of objects and avoiding fragmentation altogether.

As previously mentioned, allocation is done simply by advancing a pointer.

Generational collection is a further enhancement to the mark–sweep–copy approach. In a generational

collector, objects are grouped into “age–classes”, and most collections deal only with the youngest age–class.

This is based on the notion that most objects are short–lived, while objects which survive long enough are

likely to survive for an even longer time. Generational collection reduces the overhead of most collections

by confining them to the youngest age–class. It also improves locality further by clustering objects together

based on their age (and likely usage patterns).

Semi–space collection is a technique used by non–parallel collectors to reduce the overhead of a single

collection. In a semi–space collector, the collection is divided into several segments. This reduces the pause

in execution incurred by the collector. Even better than the semi–space approach, however, are parallel

collectors. These collectors allow the program to execute while other threads perform the collection. Parallel

collectors have the benefit of fully exploiting the parallelism of the system, and of nearly eliminating the

pause needed to start or stop a collection. Parallel collectors need only execute a barrier synchronization to

change “modes”, which incurs a negligible pause.

The collector presented in this chapter is a mostly lock–free parallel collector. It is compatible both with

the generational and non–generational approach, and can trace through data structures which are allocated

using other methods as well (known as “external” objects). The collector maintains a single “collector”

thread for each executor. Unlike normal threads, collectors are bound to their executors and cannot be moved

between them. Normal program threads are called “mutators”, and may execute alongside any number of

collectors. This collector is designed to handle large arrays in parallel, allowing multiple collectors to work on

them at once. The visible pause in execution is no more than a barrier synchronization, which is necessary for

switching the “mode” of the program and having all executors acknowledge the change in mode. The collector

provides a straightforward implementation of weak pointers, which are pointers which are not followed by

the collector. Lastly, the collector is entirely lock–free with the exception of the mode–change barriers.

This collector requires several things from the runtime and compiler. First, the compiler must generate

type signatures for all datatypes, and must ensure that all garbage–collected objects have a properly–formatted

header. Type signatures provide a tractable means by which to trace the memory graph, with none of the

difficulties that arise from tags[143]. Type signatures are generated and used by several real–world compilers,

57

including the MLton compiler[105]. Second, the compiler must implement two execution modes, which may

be changed at any safe–point. In the first mode, execution is normal. In the second mode, the compiler

must log all updates to mutable objects to a special write–log. Lastly, the compiler must implement pairs of

pointers, deciding which of the pair to use depending on a bit in the execution mode. Global pointers must

be implemented in this way for non–generational collection; for generational collection, all pointers require

this treatment.

The root set for a collection is calculated by starting from all active threads and all global pointers. To

facilitate this, the compiler must generate a structure which lists all global pointer values and their types. The

active threads can be derived by traversing scheduler structures. When a collection is active, the scheduler

itself must keep track of the changes to the status and the resume continuations of threads which have already

been visited by the collector.

A collector thread “claims” a given object by setting the forwarding pointer in its header using a compare–

and–set operation. For objects which are being copied, the new value is the address of the object’s replica in

the destination space. Claimed objects are inserted into a local queue for processing. The queue is a FIFO

queue, and all “neighbors” of a given object are claimed at once, before attempting to process another object.

This attempts to cluster objects so as to improve their locality. The tactic of clustering objects is known to be

beneficial[139], though the lock–free and concurrent nature of this algorithm makes it difficult to do perfectly.

Collectors periodically push objects from their queues into a shared lock–free structure, or pull work from

this structure into their queues, depending on whether they have too much or too little work. Additionally,

arrays of sufficient size are divided amongst all collectors using an atomically–modified bitmap structure.

Arrays which match the size criteria are pushed into a lock–free stack or queue as they are discovered, and

are processed concurrently by all collectors.

While a collection is running, mutators must keep a write–log. When this log becomes full, the executor

stops executing the mutator and begins its collector thread. Upon entry to the collector, the write–log for the

executor is processed, then normal processing begins.

When all work is exhausted, a collector executes a barrier and signals all executors to switch to their

collectors. This will result in the processing of all write–logs, which should not incur a significant overhead,

as there can be at most one new object per entry. Once this is done, the mode is switched, and normal

execution resumes.

8.2 Garbage Collection Algorithms

This section presents the core algorithms of the garbage collector. The garbage collector’s organization is

markedly different from that of the scheduler, in that it is more a “protocol” than an singular algorithm. The

garbage collector requires the cooperation of the compiler, the program, and the garbage collection library

itself. As such, there are many distinct procedures which lack the central organization present in the scheduler.

The program–side interface to the garbage collector is too simple to warrant discussion. Each executor

maintains an allocator structure, from which it allocates memory. In a non–generational collector, this

consists of nothing more than a pointer and a size. Since the allocator is a per–executor structure, memory

is allocated simply by advancing the pointer. When an allocator runs out of memory, the executor requests

58

type allocator

void* prealloc(gen : uint, size : uint)

void* postalloc(gen : uint, size : uint)

void* allocate(gen : uint, size : uint) =

out = prealloc(gen, size)

postalloc(gen, size

out

Figure 8.1: The Garbage Collection and Thread-Local Allocator Interface

another block from the garbage collector. At this point, a voluntary collection may begin if available memory

passes a threshold. A forced collection may begin if memory begins to approach dangerously low levels.

If all free memory is exhausted (except for the free memory necessary to guarantee that the collection fin-

ishes), then all requests will immediately transfer control to the garbage collector thread for that executor.

Additionally, there is a function by which a program can voluntarily start a collection cycle.

Figure 8.1 shows the interface for an allocator. The prealloc and postalloc functions are used later in

the process of “claiming” an object. All functions take a gen argument, indicating the generation from which

to allocate, and a size argument. The prealloc function ensures that sufficient space exists, acquiring more

free space if it is not. The postalloc function actually completes the allocation, advancing the executor’s

pointer. The allocate function demonstrates the equivalence to subsequent prealloc and postalloc

calls.

Since there is a constant number of generations, an allocator can be implemented simply as an array of

pointer pairs. During execution, a program need only increment the first pointer, and check if it exceeds the

second, invoking the garbage collector to allocate another memory pool if it does.

Upon encountering a block, a collector attempts to “claim” it by setting its forwarding pointer using a

compare–and–set. Figure 8.2 shows the claim function. If the object qualifies for collection (as determined

by the collected function), and has not already been claimed, the function attempts to allocate space for

the object, then set the forwarding pointer. In all cases, the function returns the address of the destination

object. If the claim succeeds, the collector finalizes allocation, and adds the object to its queues, or to the

array queue if appropriate, and returns the address in the destination space. If the object has already been

claimed, or the compare–and–set operation failed, the function returns the forwarding pointer value. If the

object is not being collected at all, the function attempts to set the forwarding pointer to the value claimed,

and returns the object’s address in all cases.

The generation and share_array functions are not shown. The first decides which generation from

which to allocate, while the second decides if an array is large enough to be shared, or if it should be processed

as a normal object.

Another important detail is the manner in which the destination object’s header is initialized. The

fwd_ptr is set to claimed, and the bitmap (if it exists) is also initialized such that all clusters are claimed.

This is important, since at the end of collection, the claimed and unclaimed values are switched, making

the destination object become unclaimed. This also causes all objects which were not collected to revert to

an unclaimed status.

59

void add_obj(thread : gc_thread*, obj : gc_header*) =

if(type.objclass == NORMAL || !share_array(obj))

enqueue(thread.queue, obj)

else

lf_enqueue(arrays, obj)

gc_header* claim(thread : gc_thread*, obj : gc_header*) =

type = obj.typeptr

fptr = obj.fwd_ptr

gen = generation(obj)

if(collected(gen))

if(unclaimed == fptr)

newobj = prealloc(gen, size(type))

if(CAS(unclaimed, newobj, obj.fwd_ptr))

out = newobj

postalloc(gen, size(type))

// initialize header

add_obj(thread, obj)

else

out = obj.fwd_ptr

else

out = fptr

else

out = obj

if(CAS(unclaimed, claimed, obj.fwd_ptr))

add_obj(thread, obj)

out

Figure 8.2: Claiming Objects

After claiming objects, a thread proceeds to process objects in its queue, which involves actually copying

the data in the objects to the destination space, and likely involves further claim attempts. Figure 8.4 shows

the process function, and figure 8.3 shows the functions on which it depends. The copy function copies all

non–pointer data, and attempts to claim all pointers to get their proper values in the destination space. Note

that all pointers are double–pointers, and the function accesses the used value in the source space, and writes

the usused value in the destination space.

The processing of constant objects and those which are mutable differs. In the case of constant objects, a

copy is enough to guarantee consistency. In the case of mutable objects, however, a write–after–write hazard

may occur. It is important to note that since objects in the destination space are not actually used until the

end of collection (at which point a barrier will be executed), it is not necessary to guarantee a consistent view

of the data, merely that all write–after–write hazards will be dealt with before the barrier is executed. This is

done by the check function, which scans both objects, checking for equivalence of all fields. If the objects

match, then there was no possible write–after–write. Otherwise, the function copies from the source to the

destination until both are observed to be identical. A more rigorous proof of this function is presented in

section 8.3.

In the case where an object is not being collected, the update function claims all of the used pointers,

storing the resulting addresses to the unused side. The update_check function is analogous to the check,

60

void copy(thread : thread*, dst : void*, src : void*,

nonptr_size : uint, normptrs : uint, weakptrs : uint) =

memcpy(dst, src, nonptr_size)

dstptrs = dst + nonptr_size + sizeof(gc_header)

srcptrs = src + nonptr_size + sizeof(gc_header)

for(i = 0; i < normptrs; i++)

dstptrs[i][unused] = claim(thread, srcptrs[i][used])

if(keep_weak)

for(i = normptrs; i < weakptrs + normptrs; i++)

dstptrs[i][unused] = claim(thread, srcptrs[i][used])

bool check_ptr(dst : gc_header*[2], src : gc_header*[2]) =

do

succeed = true

if(srcptrs[i][used] != NULL)

if(srcptrs[i][used].fwd_ptr != claimed)

if(dstptrs[i][unused] != srcptrs[i][used].fwd_ptr)

succeed = false

dstptrs[i][unused] = srcptrs[i][used].fwd_ptr

else

if(dstptrs[i][unused] != srcptrs[i][used])

succeed = false

dstptrs[i][unused] = srcptrs[i][used]

else if(dstptrs[i][unused] != NULL)

succeed = false

dstptrs[i] = NULL

while(!succeed)

void check(dst : void*, src : void*, nonptr_size : uint,

normptrs : uint, weakptrs : uint) =

for(i = 0; i < nonptr_size; i++)

while(dst[i] != src[i])

dst[i] = src[i]

dstptrs = dst + nonptr_size + sizeof(gc_header)

srcptrs = src + nonptr_size + sizeof(gc_header)

for(i = 0; i < normptrs; i++)

check_ptr(dstptrs + i, srcptrs + i)

for(i = 0; i < normptrs + weakptrs; i++)

if(NULL != dstptrs[i][unused])

check_ptr(dstptrs + i, srcptrs + i)

while(!succeed)

Figure 8.3: The copy and check Functions

61

void update(thread : thread*, obj : gc_header*, normptrs : uint,

weakptrs : uint) =

dstptrs = dst + nonptr_size + sizeof(gc_header)

srcptrs = src + nonptr_size + sizeof(gc_header)

for(i = 0; i < normptrs; i++)

srcptrs[i][unused] = claim(thread, srcptrs[i][used])

if(keep_weak)

for(i = normptrs; i < weakptrs + normptrs; i++)

srcptrs[i][unused] = claim(thread, srcptrs[i][used])

void update_check(obj : gc_header*, nonptr_size : uint,

normptrs : uint, weakptrs : uint) =

do

succeed = true

dstptrs = dst + nonptr_size + sizeof(gc_header)

srcptrs = src + nonptr_size + sizeof(gc_header)

for(i = 0; i < normptrs; i++)

succeed &= check_ptr(srcptrs + i, srcptrs + i)

for(i = 0; i < normptrs + weakptrs; i++)

if(NULL != dstptrs[i][unused])

succeed &= check_ptr(srcptrs + i, srcptrs + i)

while(!succeed)

void process(thread : thread*, obj : void*) =

type = obj.typeptr

nonptr_size = type.nonptr_size

normptrs = type.normptrs

weakptrs = type.weakptrs

constant = type.constant

if(collected(obj))

copy(thread, dst, src, nonptr_size, normptrs, weakptrs)

if(!constant)

check(dst, src, nonptr_size, normptrs, weakptrs)

else

update(thread, obj, normptrs, weakptrs)

if(!constant)

update_check(thread, obj, normptrs, weakptrs)

Figure 8.4: The process Function

62

except that it only checks and propagates modifications involving the pointers.

The exact algorithms for claiming and processing array element clusters are not shown here, primarily

because of their complicated nature and their similarity to the algorithms for processing normal objects. Ar-

rays of sufficient size are preceded by an atomically–modified bitmap. As with the claimed and unclaimed

values, and the used and unused indexes of double–pointers, the bitmaps’ representation alternates between

set and clear bits indicating available clusters each collection cycle.

In the case of mutable objects, it is necessary to perform additional actions when an object is updated after

it has been copied to the destination space. As with the Cheng–Blelloch collector, this collector maintains a

per–executor write log which records each write. When the log is full (or if the executor begins executing its

collector for some other reason), the executor switches to its collector thread to process the log. The write

log must also be updated each time a context–switch occurs, as the resume continuation for the old thread is

altered, likely changing the current frame and the pointers it contains.

Figure 8.5 demonstrates the functions that process a write–log. Log entries include a pointer to the the

object and the offset at which a modification occurred. For each entry, the value in the source object is

repeatedly copied to the destination object until the two fields are observed to be identical. This repeated

copy is necessary to avoid a write–after–write hazard which can occur if a simple copy is performed. If

the offset refers to a pointer, the collector uses claim to acquire the new address. Since write–log entries

only record that a write occurred, there is no need to process multiple entries for the same location. If the

object is in a generation which is not being collected, the unused side of a pointer needs to be updated, but

non–pointer data does not. The top–level process_log function uses the already_processed function to

ensure this1.

Unlike the Cheng–Blelloch collector, there is no need to keep track of the old value of the field. Ad-

ditionally, the initialization of an object does not cause write log entries to be generated, so long as these

writes take place before the object becomes reachable. The double–allocation phase which is necessary in

the Cheng–Blelloch collector is also not necessary, as all new, reachable objects will be saved to the thread’s

frame, or to some existing object, thereby generating write–log entries prior to switching to the collector.

This does imply, however, that the compiler must ensure that there are enough free write–log slots available

to store all updates to the current frame, as well as one to store the update to the resume continuation for the

thread.

The actual work of garbage–collection is performed by a number of garbage–collection threads. Garbage–

collection threads keep their state in a gc_thread structure. Each switch into a garbage–collection thread

represents an attempt at completing collection. The thread will execute a function which executes the thread’s

write log, then attempts to process the entire remaining collection of objects. Garbage collector threads are

designed such that they do not need to save a resume continuation. If a collector is interrupted, it can safely

resume execution at the beginning of the gc_thread function, rather than saving its current state. The

final_barrier can also be implemented in this fashion. Once one collector reaches the final_barrier,

all attempts to allocate memory will cause the executor to switch into its collector. The barrier itself blocks

the underlying executor2, until the last one passes the barrier, in which case it performs the switch out of

1This can be easily implemented with a hash table
2The only other instance in which the runtime blocks an executor is when it runs out of threads to execute.

63

void process_ptr(thread : gc_thread*, src : gc_header**, dst : gc_header **) =

do

cont = false

srcptr = *src

dstptr = *dst

if(NULL != srcptr)

if(dstptr != srcptr.fwd_ptr)

*dstptr = claim(thread, srcptr)

cont = true

else if(NULL != dstptr)

*dstptr = NULL

cont = true

while(cont)

void process_entry(thread : gc_thread*, entry : log_ent) =

src = entry.obj

offset = entry.offset

type = src.typeptr

if(unclaimed != dst)

realoffset = offset + sizeof(gc_header)

if(collected(src))

dst = src.fwd_ptr

if(offset < type.nonptr_size)

while(dst[realoffset] != src[realoffset])

dst[realoffset] = src[realoffset]

else

check_ptr(thread, src + realoffset, dst + realoffset)

else

if(offset > type.nonptr_size)

check_ptr(thread, src + realoffset, src + realoffset)

void process_log(thread : gc_thread*) =

log = thread.log

for(i = 0; i < LOG_SIZE; i++)

if(!already_processed(log[i])

process_entry(thread, log[i])

Figure 8.5: Executing Write Logs

garbage–collection mode and releases all other executors, which immediately invoke their schedulers.

The initial_barrier sets a global variable indicating that garbage–collection mode is active. The

final_barrier sets the same variable, indicating that garbage–collection mode is inactive, swaps the used

and unused indexes for double–pointers, claimed and unclaimed for forwarding pointers, and reverses the

interpretation of array bitmaps, and frees the entire source space.

There are several requirements of the program threads. First, double pointers must be dealt with properly,

which requires the program to know the value of used at all times. Additionally, the write–barrier requires

the program to know whether a collection is underway or not. Finally, the behavior of memory allocation

and safe–points changes when an executor has passed the final_barrier. In practice, all these values can

be kept in a single word, which is updated atomically. While pointer–dereferencing and writes do require a

64

void gc_thread(thread : gc_thread) =

process_log(thread)

while(claim_array_cluster() || claim_root())

while(NULL != (obj = dequeue(thread.queue)))

for(i = 0; i < work_size; i++)

process(thread, obj)

balance(thread);

safepoint_without_context_save()

final_barrier()

void start_collection() =

initial_barrier()

Figure 8.6: Garbage Collection Top-Level Functions

conditional block, aggressive compiler optimizations and speculative architectures should be able to reduce

the cost of there conditionals significantly. Lastly, when the program allocates and initializes an object, it

must properly initialize its gc_header (and bitmap if it is an array of sufficient size). The header’s fwd_ptr

must always be initialized to unclaimed, and its bitmap must also be initialized such that all clusters are

unclaimed.

Now that the algorithm has been presented, section 8.3 proves several correctness conditions.

8.3 Correctness

As I previously discussed, I do not develop a full model of garbage collection as I did for the scheduler. The

primary purpose of these proofs is to establish the well–behavedness of the lock–free algorithms, rather than

to exhaustively proof the garbage collector’s preservation of liveness and typing, the correctness of the root

set, et cetera. For this purpose, I define simple correctness conditions and present proofs that the collector

preserves them.

First, it is necessary to define the meaning of reachability and liveness:

Definition 8.3.1 (Reachability). An object o is reachable with respect to another object o′ if and only if o′

contains a normal pointer to o.

An object o is reachable with respect to set of objects O if and only if o is reachable from some element

of O.

Definition 8.3.2 (Root Set). The root set R is a set of objects which are always reachable, due to the properties

of the program being executed.

Definition 8.3.3 (Live Set). The live set L is the largest possible superset of R such that all objects in L are

either in R or are reachable from some other object in L. If an object is in L, it is said to be live.

Definition 8.3.4 (Visitation). An object is visited in a collection cycle if both claim and process are called

on it.

Definition 8.3.5 (End of Collection Cycles). A collection cycle ends when the last collector executes the

final_barrier

65

Definition 8.3.6 (Object Equivalence). An object o is equivalent to o′ if and only if the following conditions

are met:

i o and o′ have the same type.

ii All non–pointer fields of o and o′ are equal

iii For each normal pointer field in o and o′, both fields point to equivalent objects.

iiii For each weak pointer field in o and o′, both fields point to equivalent objects, or else the destination

object’s pointer is null.

Definition 8.3.7 (Correctness Conditions). The following conditions define correctness of the garbage col-

lector:

(i) There is a bijective mapping between reachable objects in the source space and objects in the destina-

tion space.

(ii) When the final barrier is passed at the end of collection, all objects in the destination space are equiva-

lent to their corresponding objects in the active space.

(iii) The final_barrier is the linearization point for ending collection, adopting the destination space as

the active space, and adding the old active space to the pool of free memory.

Condition (i) implies that all reachable objects are copied, and that a given object has only one duplicate

in the destination space. Condition (ii) implies that the destination space represents a “snapshot” of the source

space at the time when the barrier is passed (at which time the source space becomes the active space). Lastly,

condition (iii) establishes the point at which collection ends and the new active space is adopted.

An important precondition for proving condition (i) is that the reachable objects are in an unclaimed

state at the beginning of every collection. The following lemma sets up for a mutually inductive proof that a

collection cycle finds all reachable objects.

Lemma 8.3.8. Assuming a collection cycle visits all live objects, all live objects at the beginning of the next

collection cycle are unclaimed.

Proof. Proof is by induction.

Leading up to the initial collection, all objects are initialized as unclaimed.

In any given collection cycle, all object’s fwd_ptrs are either set to claimed if the object is not collected

in this cycle, or to a pointer to an object in the destination space if it is. The destination object is initialized

with its fwd_ptr set to claimed. Additionally, all arrays’ bitmaps are either completely claimed if the array

is not collected. If the array is collected, then its replica in the destination space has its bitmap initialized to

be completely claimed. The only way an object could be unclaimed at the end of a collection cycle is if the

collection cycle never visited it. By the base assumption of the lemma, the collection cycle visits all reachable

objects, so only unreachable objects are unclaimed at the end of a collection.

When the final_barrier is passed, the values for claimed and unclaimed, and the interpretation of

bitmaps are reversed, meaning all objects in the destination space, or all objects which were reachable but

were not collected in this cycle become unclaimed. As previously demonstrated, all objects are initialized to

an unclaimed state during normal execution. �

66

Now, it is necessary to prove that an object is visited if it is claimed.

Lemma 8.3.9. If claim is called on an object, process is called on it before the end of the collection cycle,

assuming all objects are unclaimed at the start of the collection cycle.

Proof. Observe that if claim is called on an object at least once, the CAS operation must succeed for one

of those calls, since it tests for the value unclaimed. When the CAS succeeds on an object , it is either

inserted into shared_arrays, or into the collector’s local queue. Additionally, observe that a collector only

executes the final_barrier when the list of shared arrays and its local queue are empty. Finally, observe

that whenever an object is removed from the local queue, it is processed, and an array is only removed from

shared_arrays when all of its clusters have been claimed and processed. �

The second half of the mutual induction involves proving that a collection visits all reachable objects.

Lemma 8.3.10. Assuming all live objects are unclaimed at the beginning of the beginning of a collection

cycle, the cycle visits all live objects.

Proof. Proof is by induction.

With an empty root set, the lemma is vacuously true.

When the live set exactly equals the root set, observe that a collector only executes final_barrier after

all objects in the root set are claimed.

Now, add an new object o to live set L, but not to the root set. By definition 8.3.3, there is some pointer to

it in an object in L. Observe that all pointers in any given object are claimed when the object is processed.

Lastly, observe that whenever a write takes place to a pointer field, the new pointer value is also claimed.

Hence, since all objects in L must be claimed and all claimed objects are processed by lemma 8.3.9, and

all pointers of an object which is processed are claimed, and there must be some pointer to o in some object

in L, then o must be claimed and processed. �

With these lemmas proven, it is now possible to prove that all collections visit all live objects.

Lemma 8.3.11. All collection cycles visit all live objects.

Proof. Proof is by mutual induction using lemmas 8.3.8 and 8.3.10.

Prior to the first induction, all objects are unclaimed, as demonstrated in the proof of lemma 8.3.8, hence,

by lemma 8.3.10, the first collection visits all objects.

Given that all previous collection cycle visited all live objects, then all objects will be unclaimed at the

beginning of the next collection cycle, by lemma 8.3.8, which in turn implies that that collection cycle will

visit all live objects, by lemma 8.3.10. �

Corollary 8.3.12. If an object is claimed in a collection cycle, it is visited by that collection cycle.

Proof. Immediate consequence of lemmas 8.3.9, 8.3.11, and 8.3.8. �

Corollary 8.3.13. For each object in the source space, there is at least one object in the destination space

corresponding to it at the end of a collection cycle.

67

Proof. Observe that when an object is claimed, a copy of it is created in the destination space. By lemma

8.3.11, all objects are visited in every collection cycle. �

This proves one half of condition (i). Now it is necessary to prove that there is at most one copy of any

object in the destination space.

Lemma 8.3.14. An object’s replica is allocated in the destination space, its fwd_ptr is set, and it is

processed at most once in a given collection cycle.

Proof. Observe that an object is processed only if it is in a local queue, or it is in shared_arrays. An object

is inserted into the local queues or shared_arrays, and postalloc is called to complete an allocation if

and only if the CAS operation in claim succeeds. The CAS tests for fwd_ptr to be unclaimed and sets

it so something other than unclaimed, and fwd_ptr is not modified anywhere else, so the operation only

succeeds at most once per collection cycle. �

Corollary 8.3.15. For each object in the source space, there is at most one object in the destination space

corresponding to it at the end of a collection cycle.

Proof. Immediate consequence of lemma 8.3.14 �

Condition (i) is now trivial:

Theorem 8.3.16 (Bijective Copy). There is a bijective mapping between reachable objects in the source

space and objects in the destination space.

Proof. Immediate consequence of corollaries 8.3.13 and 8.3.15. �

Some definitions and lemmas are necessary to set up the proof of condition (ii).

Definition 8.3.17. All writes are logged to the executor’s write–log while a collection cycle is taking place.

Definition 8.3.18. If an object is not copied in a collection cycle, the destination space for it is defined as the

same object, but considering the unused pointer values rather than the used values.

Lemma 8.3.19. An executor’s write–log is completely executed prior to execution of final_barrier.

Proof. Straightforward from the definition of gc_thread. �

Lemma 8.3.20. Write–log execution guarantees that if a field in an object is modified in the source space,

that field will be atomically copied to the destination space at some point before the end of the collection

cycle. If the field is a pointer, the destination will be atomically set to the return value of claim on the source.

Proof. The process_entry function repeatedly performs a copy if it observes that the source and destination

fields differ. If the fields are not observably different, then either a) no write to the source occurred, or b) a

write, followed by an atomic copy occurred. Either case preserves the property.

In the case of pointers, if the object is not being collected, then claim will return the source pointer, and

the equivalence check is a simple equality. If the object is being collected, then claim will set the fwd_ptr

if it is not already set, and return its value regardless. By lemma 8.3.14, fwd_ptr is set at most once, so

68

all subsequent claims will return its value. Therefore, the equivalence test can safely check the destination

against the source’s fwd_ptr.

Lemma 8.3.19 guarantees all write log entries will be executed. The process_log function executes

only one atomic copy for any number of log entries. However, all executions of process_entry after the

first will observe the two objects’ fields to be identical, unless another write occurs by some other executor.

However, if another write occurs, then that executor will generate a write log entry and execute it at some

point in the future. �

Lemma 8.3.21. The process function maintains the property that if a field in an object is modified in the

source space, that field will be atomic–copied to the destination space at some point before the end of the

collection cycle. If the field is a pointer, the destination will be atomically set to the return value of claim on

the source.

Proof. If the object is constant, then no writes occur and the lemma is trivially correct.

When the object is mutable, process performs the same atomic copy performed by a write–log execution

to all fields. By lemma 8.3.20, the property is preserved. �

Lemma 8.3.22. Assuming that the claim function returns a pointer to an object that will be equivalent to its

argument at some point in the future, if all writes to fields in a source object are followed by atomic copies to

the destination at some point in the future, then the source and destination object will be equivalent at some

point before the end of the collection cycle.

Proof. When the last thread enters the gc_thread function in which it will execute final_barrier, no

more writes will occur. Lemma 8.3.20 implies there is some point in the future when all fields which have

been written will be atomic–copied to the destination, and all destination pointers will be atomically set to

the value of claim on the source. Since the destination object is created using the same type signature as the

source, both objects have the same type. Therefore, by the assumptions of the lemma, both objects will be

equivalent. �

Lemma 8.3.23. The claim function returns a pointer to an object that will be equivalent to its argument at

some point before the end of the collection cycle.

Proof. Proof is by induction.

Observe that for a claim on an object with no pointer data, lemma 8.3.22 without assuming this lemma.

By lemma 8.3.9, process will be called on the object at some point in the future after being claimed. Since

lemma 8.3.22 can be used in this case, it follows that the result of claim will be equivalent to its argument at

some point in the future.

Observe that pointers which are NULL are not valid arguments to claim, and process copies the NULL

values to the corresponding object.

Now assume that there are two objects, both with one pointer, which are mutually recursive. Observe that

for both, claim returns an object in the destination space, whose non–pointer data is equivalent by previous

assumptions. Observe that the destination objects are also mutually–recursive, which satisfies definition of

equivalence.

69

Now assume that the lemma is true for all pointers in some object. By lemma 8.3.9 the object will be

processed at some point in the future, and since the lemma holds for all pointers in the object, lemma 8.3.22

can be safely used to guarantee that this object will be consistent at some point in the future. �

Now it is possible to prove condition (ii).

Theorem 8.3.24 (Source–Destination Equivalence). When the final_barrier is passed at the end of col-

lection, all objects in the destination space are equivalent to their corresponding objects in the active space.

Proof. Lemmas 8.3.11 and 8.3.14 imply that each live object will be claimed exactly once. Lemma 8.3.23

implies that claim returns a pointer to an object which is equivalent to its argument at some point before the

end of the collection cycle. Since all pointers in objects which are not copied have their unused index set to

the return value of claim on their used side, and all objects which are copied have their fwd_ptr set to the

result of claim, then the theorem holds. �

The proof of condition (iii) is trivial, given the existing theorems.

Theorem 8.3.25 (Linearization). The final_barrier is the linearization point for ending collection, adopt-

ing the destination space as the active space, and adding the old active space to the pool of free memory.

Proof. Definition 8.3.5 establishes that final_barrier ends a cycle. By theorem 8.3.24 and definition

8.3.18, all non–copied objects (which includes the root set) contain pointers to equivalent objects in the

destination space in the unused index of their pointers. Since final_barrier swaps used and unused, the

second condition is met. Finally, the third condition follows directly from the definition of final_barrier.

�

This completes the proofs of the garbage collector, which in turn completes the runtime system itself. This

part has stated the design rationale for a runtime system for concurrent functional programming, given the

details of its implementation, and proven the correctness of that implementation. This lays the foundation for

using concurrent functional programming to exploit fine–grained parallelism. Part III will describe techniques

in concurrent functional programming which further expose parallelism.

Part III

Reducing False Dependence in
Concurrent Functional Programming

70

Chapter 9

Overview

Concurrent functional programming is able to express fine–grained concurrency by separating a program’s

linear control flow into a tree–like structure of control flows with non–interfering branches. The success of

this strategy depends both on the ability to create and maintain a large number of short–lived threads, and on

the ability to shorten the critical path as much as possible. Part II dealt with implementing a runtime system

which makes creating large numbers of short–lived threads feasible. As the overhead of thread creation

and maintenance drops, the shortest tolerable thread lifespan and the maximum tolerable number of threads

increases.

This part of the thesis concerns itself with the second of the two concerns: shortening the critical path.

Chapter 3 discussed functional programming, higher–order concurrency[132], and the critical concepts of

concurrent functional programming. Even with a runtime which provides infinite parallelism at no cost, a

program’s minimum execution time is still bound by the longest chain of data dependencies. Data dependence

is the prime enemy of parallelism; no chain of dependent operations can be parallelized1

Imperative programming is inherently sequential; each operation is dependent upon the state of the world

at the end of the last one. In effect, the entire program becomes one long dependency chain. Automatically

locating branches in this chain is quite difficult and has resisted considerable research efforts. Functional pro-

gramming, on the other hand is inherently parallel as there is a direct correspondence between function calls

and opportunities to create threads. However, the critical path can be further shortened by eliminating false

data–dependence between functions which produce a structure and the rest of the program which consumes

it.

Futures are the primary means of inter–thread communication in concurrent functional programming.

Futures permit a “placeholder” for a value to be substituted, while a separate thread calculates the actual

value. This enables execution to immediately progress the thread which calls a function, while the actual

return value is calculated in another thread. Hopefully, by the time the future’s value is requested, it has

already been calculated by the other thread.

The näive use of futures for complex data structures leads to a large amount of artificial dependency. In

a case where a first function produces a structure, which is consumed by a second function to produce a

1For an example of a pathological program, consider the program which calculates the first n results of a pseudorandom generator
function which feeds the previous result into the next.

71

72

second structure, any element of the second structure is dependent upon the entire first structure. The real

dependencies may be much less, however. False dependencies in effect prevent functions which “consume”

a complex data structure to begin executing before the function which “produces” them completes.

The ability to process multiple stages of execution concurrently, of course, benefits multi–stage compu-

tations by shortening the critical path and increasing the number of threads which can be live at a given time.

This is analogous to pipelining, which is a cornerstone of modern computer architecture[57]. For this strategy

to succeed, complex structures must be implemented using futures to break the structure into pieces which

can be passed down the pipeline when they are completed. While this approach is effective for basic data

structures, more complex structures must be specifically designed to support this style of programming.

The chapters in this part of the thesis discuss how to effectively implement futures for various kinds of

complex structures. Chapter 10 covers the basics of futures, as well as how to effectively represent futures

of tuple and record types, recursive types, and lists2. As far as I am aware, this chapter introduces concepts

which are either generally known or fairly intuitive, yet unpublished. I present them here for the sake of

completeness, and in order to serve as a starting point for the following chapters. Chapter 11 discusses the

challenges with futures for associative data structures. It presents an effective implementation of such futures,

and discusses various methods for further improving concurrency when one such structure is used to create

another. Chapter 12 discusses futures for the results of a stateful computation. This chapter’s methods are

geared towards encapsulating a modify–in–place pass over some data structure, and allowing subsequent

phases to continue before it completes.

Program code examples in this part are written in Standard ML[103], unlike those in part II. I choose

this language for several reasons. First, the Concurrent ML[130] language, upon which much of the work

in this section is initially based is derived from Standard ML. Additionally, the Standard ML language pro-

vides exactly the sort of language needed to express the ideas of this section: a language built for functional

programming, but which supplies imperative constructs. Imperative techniques are necessary for the im-

plementation of the futures described by chapter 11, and the stateful computations described by chapter 12

obviously depend on state.

2It is a somewhat common practice to represent sets as lists. Futures on sets are a completely different issue.

Chapter 10

Direct Structures

Concurrent functional programming exploits the implicit parallelism in functional programs by expressing

separable control–flows. Calls to sufficiently large functions are performed asynchronously, returning a place-

holder value called a future. At some point, (hopefully after the function has completed), the future is evalu-

ated to produce a concrete value. If the value of the future is already available, it is simply used; otherwise,

the evaluator must wait for the value to be produced. This style not only extracts the natural concurrency of

functional languages, but also allows partial overlapping of dependency among computations.

Futures work well with functions that produce a single scalar value. However, if a function produces more

complicated data, their performance begins to suffer. For instance, in the case of a tuple or a record type1. A

future of a record must be evaluated to get at any one of its fields, which forces the evaluator to wait for all

fields, not just the one it wants. The more complicated the structure, the worse the performance detriment.

All chapters in this part of the thesis describe methods for overcoming this impediment. The methods

described by these chapters create structures which can be operated on while they are semi–complete. This

chapter deals with the most basic case: structures whose meaning matches their implementation, which I term

direct structures. Section 10.1 begins by introducing methods for tuples, vectors2, and recursive structures.

Section 10.2 describes methods suitable for lists. The section also discusses the real meaning of lists, and

when they are actually necessary, rather than merely convenient. This is an important consideration, and is

further explored in chapter 11. For the most part, the concepts described in this chapter are not meant to

represent innovative concepts, but are included for the sake of introduction and completeness.

An important note to make is that none of the structures described in this chapter, or in chapter 11 are

allowed to be mutable. Both of these chapters are oriented toward a situation wherein a producer function

creates a structure, which is then processed by a consumer. The producer can modify the structure, while the

consumer can only read it. Additionally, once a producer creates part of the structure, that action is considered

final. Chapter 12 discusses more general cases, where a structure can be modified in–place.

73

74

Types:

τ F τ future (future)
τ [] (vector)
τ × τ (product)
τ + τ (sum)
µX.τ (recursive)
∀X.τ (universal)
X (type − variable)

Future Translation:

~τ future future� = ~τ future �
~τ [] future � = ~τ future � []
~(τ × τ) future � = ~τ future � × ~τ future �
~(τ + τ) future � = (~τ future � + ~τ future �) future
~(µX.τ) future � = µX.~τ future �
~(∀X.τ) future � = ∀X.~τ future �
~X future � = X future

Figure 10.1: A Type–Translation Function for Futures for Basic Types

10.1 Straightforward Futures

For some structures, there exists a relatively straightforward implementation of futures. This is the case

for compound datatypes such as tuples and records. Similar methods also work for vectors. Indeed, this

section can be thought of as describing a translation from a single future on some data-type to a structure

which can be produced and consumed concurrently, or pipelined. Lazily–evaluated languages also provide a

straightforward method for using futures in a structure or computation. Lazy evaluation makes use of thunks,

which are nothing more than futures without any notion of concurrency. The exact relationship between lazy

evaluation and concurrency will be explored later.

Figure 10.1 shows a type translation function, which translates a future on some compound type into a

more effective future type by “plunging” the futures deeper into the data type. The gist of this function is that

a future on a compound data type is implemented by proceeding down the “tree” of types to the leaves, and

implementing these leaves as futures. It is important to note that despite the formality of the presentation of

this function, it does not represent a transformation which can be blindly applied to a program’s types without

also modifying the program itself. Clearly, plunging futures into a datatype requires modification to accesses

to that type, as some values are changed from concrete values to futures and vice versa.

The first rule addresses double–futures, which serve no beneficial purpose, and are implemented instead

as a single future. In the case of both vector types and product types (and by derivation, tuples and records),

the futures are distributed to the inner types, and the transformation continues. Both recursive and universal

quantification also propagate futures inward and continue the transformation. On any bound type variable,

the transformation halts.
1In C or Java parlance, a struct or an object
2The meaning of “vector” is taken in the context of ML, Haskell and other languages: a non–modifiable array.

75

Sum (and by derivation, variant types) deserve special treatment. As the inner types of a variant may be

arbitrarily complex, it is necessary to distribute futures and recur. However, unlike products types, which are

mere containers, sum types do carry information in the form of which side of the sum has actual meaning (or

in terms of variants, which variant the value is). In the worst case, a program spends a considerable amount of

time deciding which variant to generate, and then spends a considerable amount of time actually generating

the structure. In this case, both the variant and its data must be implemented as futures.

Obviously, some judgement must go into the application of these rules. Sum types, as discussed above

give rise to one pathological case which requires both the variant itself and its inner types to be futures.

However, in the case of a simple enumeration, there is no need to implement the inner types as futures.

Likewise, care must be taken when distributing futures as with product and vector types. It makes no sense,

for instance to translate a simple two–dimensional point implemented using products into a pair of futures,

as both values are likely to be produced at the same time. In short these transformations are meant to be used

where appropriate, with careful judgement, not blindly applied.

10.2 List Futures

Section 10.1 discussed futures for basic compound datatypes. Among these types were recursive types. At a

glance, this treatment applies to lists, as lists are a special case of recursive types. However, the manner in

which lists are used, and the exact data they represent benefits most from a specific treatment.

Lists represent an ordered sequence of items. In functional languages, lists are very often constructed in

reverse–order, then either reversed, or evaluated in such a manner as to take this into account. This is because

elements can be added to the front of a purely–functional list very cheaply, while adding them to the end

requires traversing the entire list.

However, reversing a list requires the presence of all the items. Furthermore, if items are added to the

front, then the “first” item in the list will be the last one actually produced, which presents the same problem.

If a list represents an ordered sequence of data, implementing a list future as a FIFO–queue is preferable.

This requires conscious thought on the part of the programmer, but typically involves reduction of actual

complexity, as lists do not need to be reversed, or items can be processed in the natural order. List futures can

be easily implemented using the CML mailbox type, which implements a buffered asynchronous channel.

As with the types discussed in section 10.1, the decision to distribute futures inward to the elements of the

list requires judgement of the costs and benefits of doing so.

It is often the case, however, that lists are used for purposes other than ordered sequences. It is common,

for instance, to implement sets or even maps using a list. In these cases, a FIFO–queue will not perform

as well. The reason for this is that the list’s structure no longer exactly expresses the meaning of the data

it organizes. Data structures of this kind require considerably more thought in the implementation of their

futures. These sorts of structures are discussed in chapter 11.

Chapter 11

Indirect Structures

Chapter 10 discusses the use of futures to implement structures which can be consumed by one set of threads

even as they are being produced by another. A common assumption in these designs was the similarity

between a complex structure’s implementation and its meaning, or more precisely, a correspondence between

syntax and semantics. For instance, in the case of syntax trees, each node represents some element of syntax

in a structure. Likewise, when a sequence of elements is implemented as a list, the “next” node in the list

directly corresponds to the “next” node in the sequence.

However, the techniques described in chapter 10 are unsuitable for data structures where this is not the

case. In many structures, the implementation of the structure is a matter of convenience or efficiency, while

the actual meaning of the structure is dependent upon global, not local properties. For instance, an unordered

set which happens to be implemented as a list is completely apathetic to the actual ordering of the list; all that

matters is the question “does the list contain a given element”. It is important to note that for the most part,

structures addressed in chapter 10 are equivalent only if they are structurally equivalent, whereas structures

addressed in this chapter may be equivalent, yet have very different internal structures.

Applying the straightforward strategies described in chapter 10 naı̈vely may result in widely varying

performance. In the case of the list–set, the producer of the set may happen to generate the elements of the

set in the exact order in which the consumer accesses them, in which case the list–set will perform quite well.

However, if a consumer happens to attempt to access the element which the producer will generate last, then

the list–set performs no better (and probably worse) than it would if consumers blocked until the entire set

was complete.

This chapter addresses structures where the implementation and meaning diverge, which I term indirect

structures. It discusses methods for implementing futures of these structures which are affected only by the

semantic meaning of the structure, not its syntactic structure. The chapter opens with a discussion of general

strategy, then applies the strategy to sets and maps1. Finally, it discusses methods for further improving the

concurrency of functions which translate one set- or map–futures into another.

It is important to note that this chapter considers only cases where a structure is produced by one thread,

and consumed by another, in which the consumer performs no modification to the structure. Cases in which

a structure is modified in–place are considered in chapter 12

1The most common instance of a map is a hash–table.

76

77

signature SET =

sig

type ’a set

add : ’a * ’a set -> ’a set

member : ’a * ’a set -> bool

remove : ’a * ’a set -> ’a set

...

end

signature MAP =

sig

type (’k, ’a) map

val insert : ’k * ’a * (’k, ’a) map ->

(’k, ’a) map

val lookup : ’k * (’k, ’a) map -> ’a

val exists : ’k * (’k, ’a) map -> bool

val remove : ’k * (’k, ’a) map ->

(’k, ’a) map

...

end

Figure 11.1: Partial Signatures for Sets and Maps

11.1 Futures for Sets and Maps

A set is an unordered collection of unique elements. A map is a set containing associations, or key–value

pairs. In terms of implementation, however, it is often more convenient to characterize sets as maps from

some type to unit (a non–existent value) for the purposes of an actual implementation. Figure 11.1 shows

a simplified signature for maps and sets. In this and other examples in the chapter, some simplifications are

made from the Standard ML utility library for the sake of brevity. In the actual Standard ML utility library,

these signatures require the elements of a set or the keys of a map to be defined in a structure of their own,

which also supplies an order function.

Unfortunately, the concept of an “unordered collection of elements” does not have a straightforward

implementation on traditional computing hardware. Implementations must create some other data structure,

such as a list, a table, or a tree which is interpreted by some set of functions. In the case of maps, a hash–table

is an example of such a structure, designed to implement an imperative map, while a tree–map is a common

implementation of a purely–functional map[115]. In both cases, the internal representation is a matter of

efficiency, while the actual meaning depends on global properties of the structure.

Application of the techniques of chapter 10 to a hash–table would yield an array of list–futures. This

would perform reasonably well for “hits”. However, for “misses”, the algorithm must wait until the entire

table is complete. Structures which make use of lists, balanced trees, or heaps will suffer worse performance

problems, as the final internal structure may not be determined until late in the computation.

It would be better if the operations on the data structure, rather than the structure itself were treated

as synchronous operations. This approach better captures the true nature of indirect structures, in essence

creating a future on the result, while leaving the actual internal representation up to implementation. The

remainder of this section describes a simple implementation of this for maps, and thereby, sets. Subsequent

sections explore the case of ordered indirect data structures, and finally describe methods for efficiently

moving data from one indirect–structure’s future to another.

Figure 11.2 shows a simple implementation of a map future structure in Standard ML. This structure also

gives a straightforward definition for a set, which is achieved simply by using an element as the first type pa-

rameter, and unit as the second. The structure uses lock–free hash–tables, particularly the insertIfAbsent

78

type ’a future

structure LFHashTab

signature MAP_FUTURE =

sig

type (’k, ’a) map_future

val insert : (’k, ’a) map_future -> ’k * ’a -> unit

val find : (’k, ’a) map_future -> ’k -> ’a option future

val finish : (’k, ’a) map_future -> unit

end

structure MapFuture : MAP_FUTURE =

struct

type (’k, ’a) map_future =

(’k, ’a future) LFHashTab.hash_table

fun insert table (key, value) =

let

val f = future ()

val ent = LFHashTab.insertIfAbsent table (key, f)

in

putIfAbsent (ent, SOME value)

end

fun find table key =

let

val f = future ()

val ent = LFHashTab.insertIfAbsent table (key, f)

in

ent

end

val finish =

let

fun putNone future =

putIfAbsent (future, NONE)

in

LFHashTab.app putNone

end

end

Figure 11.2: An Implementation of a Basic Map–Future

79

fun pathology () =

let

val set = Set.empty

val set1 = addTenRandomNums set

val set2 = addTenRandomNums set

in

if Set.member (set1, 42) andalso

Set.member (set2, 13) then

set1

else

set2

end

Figure 11.3: A Pathological Case for Futures on Purely-Functional Maps

operation to inject a future into the table. This future is then returned from this and all subsequent lookups.

The lookup and insert functions are almost identical. Note that the lookup function returns a future, not

an actual value. This will become important in later discussions.

The future type here is an alias for the CML SyncVar.iVar type; however, in this example, some

modification to the type is necessary. Both the insert and finish functions run the risk of raising an

exception if the future type follows the same semantics as the CML ivar type. Under CML, there exists

no way to atomically check if an ivar is empty and put a value if it is. Hence, both functions may put a

value into an already–full future for some pathological executions. This is averted by assuming the future

type supports a putIfAbsent function, which atomically checks if a future is empty, and performs a put if

it is.

This particular implementation has several limitations. It cannot be used in the typical style of a purely–

functional structure, wherein modifications do not destroy the original copy. Furthermore, once all entries

are present, there may exist futures which have been inserted in anticipation of a value which will never be

present. These must be signaled as having no value using the finish function.

Lastly, implementations of the functions app, map, and others must block until the table is finished,

which is impossible with the exact structure presented above. I will address the issue of a functionalizing the

structure first, then describe methods for overcoming the need to get a future when translating one table to

another, as well as how to properly implement the map–like functions.

Unfortunately, there exists no way to preserve purely–functional semantics on a map, and efficiently

implement a map future. Figure 11.3 shows a pathological case, wherein two sets are created in a manner

which relies on the functional properties of the original set, then a different one is returned depending on the

contents of both sets. The problem arises from the fact that it is impossible to know when a given element

has been committed to the final set of elements that will be returned.

A compromise exists based on the concept of “committing” an element to the final set. The functional

properties of the data structure can be preserved by keeping a temporary set of changes using a purely–

functional map or set. When these changes become inevitable, a commit function is called to “send” them

to the consumer. Once committed, these changes cannot be undone. In compiler terminology, a commit

should be performed at any point which dominates the exit of the producer function, and before which some

80

structure Map : MAP

signature FUNC_MAP_FUTURE =

sig

type (’k, ’a) map_future

val insert : ’k * ’a * (’k, ’a) map_future -> (’k, ’a) map_future

val find : ’k * (’k, ’a) map_future -> ’a option future

val commit : (’k, ’a) map_future -> (’k, ’a) map_future

val finish : (’k, ’a) map_future -> unit

end

structure FuncMapFuture : FUNC_MAP_FUTURE =

struct

type (’k, ’a) map_future =

((’k, ’a) MapFuture.map_future,

(’k, ’a) Map.map)

fun insert (key, value, (mapfuture, changes)) =

(mapfuture, Map.insert (key, value, changes))

fun commit (mapfuture, changes) =

(mapfuture, Map.empty) before

Map.app (MapFuture.insert mapfuture) changes

fun find (key, (mapfuture, _)) =

MapFuture.lookup mapfuture key

fun finish (mapfuture, changes) =

(commit (mapfuture, changes);

MapFuture.finish mapfuture)

end

Figure 11.4: A Map Future with Functional Features

81

number of inserts may have been performed. Note that in figure 11.3, the only such point occurs just

prior to the exit of the function pathology, which will result in poor performance. Better performance will

result if functions are structured such that commit–points are very common. Also note that if every insert is

a commit–point, then the basic implementation in figure 11.2 suffices.

Figure 11.4 shows a functionalized map future, built using the basic structure from figure 11.2. This

map future implementation uses a functional map to store changes. This change–log is used to insert all the

accumulated operations. In order to avoid accumulating a large change–log, a fresh functional map is created

with each commit.

This implementation takes advantage of the permissive semantics of the insert function in MapFuture.

It is possible that two threads, both of which have a functional map future with a common “ancestor” may

commit, and in doing so, insert a value which already exists (in this case, the intersection of their change–

logs). A real implementation should provide both an insert and an insertIfAbsent operation.

The FuncMapFuture provides some degree of the benefits of a purely–functional data structure, though

commit operations must still be inserted in order to “ferry” over data once its presence in the final structure is

guaranteed. However, the map-style functions must still block until the structure is finished in most cases.

Section 11.2 will discuss a method for dealing with this problem.

11.2 Pipelining Map and Set Futures

One of the major benefits of the methods discussed in chapter 10 was the ability to not only process a single

structure as it was being created, but to be able to “pipeline” an entire series of such structures. In a multi–

stage computation many phases can operate concurrently, each consuming and producing a structure. So far,

the methods described in this chapter allow a single producer and consumer to overlap; however, because the

structures require a finish operation before some futures can be evaluated, there is no way to achieve the

sort of pipelining possible with other structures.

This section describes techniques for achieving this sort of pipelining. In summary, these techniques

revolve around the ability to extract a value from one map future and insert it into another without ever

actually requiring its value. At a glance, this is relatively simple. However, with more work, it becomes

possible not only to blindly transport values from one map to another, but to perform transformations on

them in the style of map or filter without needing to evaluate the future until it becomes available.

The techniques in this section make greater use of synchronous events[131]. The event type in CML

and CML–like languages provides an elegant abstraction, which allows the result of a get operation on a

future to be treated as a first–class value. Particularly useful is the wrap function, which permits a post–

synchronization action to be attached to an event. This becomes vital for implementations of map, or for less

direct translations between various futures, as it allows a synchronous function to be delayed until the future

becomes available.

Figure 11.5 shows a map future suitable for pipelining. Note that the signature has changed, with the

future now returning the event type from find, rather than the future type. Additionally, this structure adds

an insertEvent function, which permits an event to be inserted into the table. This enables the pipelining

of the table by permitting a value to be transferred from one table to another without ever performing a get

82

signature MAP_FUTURE =

sig

type (’k, ’a) map_future

val insert : (’k, ’a) map_future -> ’k * ’a -> unit

val insertEvent : (’k, ’a) map_uture -> ’k * ’a option event -> unit

val find : (’k, ’a) map_future -> ’k -> ’a option event

val finish : (’k, ’a) map_future -> unit

end

structure MapFuture : MAP_FUTURE =

struct

datatype ’a entry = Future of ’a option future * ’a option event

| Event of ’a option event

type (’k, ’a) map_future = (’k, ’a entry) LFHashTab.hash_table

fun insertEvent table (key, event) =

case LFHashTab.insertIfAbsent table (key, Event event) of

Future (f, _) => putIfAbsent (f, SOME value)

| _ => ()

fun insert table (key, value) =

insertEvent table (key, always (SOME value))

fun find table key =

let

val f = future ()

in

case LFHashTab.insertIfAbsent (key, Future (f, getEvt f), table) of

Future (_, evt) => evt

| Event evt => evt

end

val finish =

let

fun putNone (Future (f, _)) = putIfAbsent (f, NONE)

| putNone _ = ()

in

LFHashTab.app putNone

end

end

Figure 11.5: A Map–Future Implementation for Pipelining

83

operation.

This structure lays most of the groundwork for pipelinable map futures. However fully implementing the

map, mapPartial, and filter family of functions requires further modifications. Efficiently implementing

the fold operation requires an extension to CML event combinators to support an efficient, unordered fold

operation over a list of events.

Implementing the map family of functions is not as simple as moving all entries in the source table to the

destination. It will often be the case that entries will be inserted into the source after the point in time at which

the map takes place, which will result in an incorrect result. Therefore, when a table is mapped (or filtered

or mapPartialed), it must possibly defer lookups to the source table. This seemingly has a high potential

cost. However, the cost is one–time, as once an event has been synchronized upon, further synchronizations

yield the value immediately (this is similar to the amortization of costs in the union–find data structure).

Figure 11.6 shows a map–future which supports the functions map, mapPartial, and filter. In order

to facilitate this, the structure of a map is expanded to include a function from the key type to an event. For

freshly created tables, a constant function which always returns always NONE is used. For all other tables,

the find function on the source table is used.

The most intricate portion of the structure’s implementation comes from “joining” two events: the event

derived from the previous structure and the event representing the entry being inserted into the current struc-

ture. Since neither event’s result is apparent until it is synchronized upon and both events do indeed yield

a value, either SOME value, indicating that the structure does indeed contain the requested value, or NONE

indicating that it does not. This precludes the use of the choose combinator to “select” which event ac-

tually yields a value2. Concurrent ML does not provide either a join or sequential composition for events,

and implementing a system which provides such a composition has proven to be quite difficult[40]. My

work on this topic[91] has demonstrated that the combination of both sequential–composition (or join) and

choice–composition is equivalent to solving existentially quantified boolean formulae (SAT).

A similar issue prevents the use of events for the finish function. At first glance, it seems possible to

have a separate event which is synchronized upon by finish, and to use choose to decide between an event

representing the actual value (representing the get function) and an event representing no value (the event

synchronized upon by finish). However, there is no way to “join” the finish events of the source and

the destination tables. An tempting, but flawed alternative solution is to have the finish function of the

destination table synchronize on the finish event of the source before triggering its own event. However,

this approach may fail if both the future event and the finish event have been activated, as choose may

select the “wrong” one. Additionally, there is no way to force the event from the destination table to take

precedence over the event from the source.

The solution takes advantage of the fact that the events returned by the find and insert will always

become active, as a value will always be put into the future. This makes it pointless to include these events in

a choose. Because of this, it is possible to synthesize the sequential composition of synchronization on both

futures without the usual consequence of causing choose to misbehave. This is also beneficial, as it allows

inserts to the destination table to take precedence over values inherited from the source.

The app and fold functions must still wait until the table is completely finished, as entries may be

2So-called “conditional synchronization” is impossible in either CML, or its underlying model, π–calculus.

84

structure PipelineMapFuture =

struct

datatype ’a entry = Future of ’a option future * ’a option event

| Event of ’a option event

type (’k, ’a) map_future =

((’k, ’a) LFHashTab.hash_tab, ’k -> ’a option event)

fun localmap (m, _) = m

fun combine _ (SOME value) = SOME value

| combine evt NONE = sync evt

fun insertEvent (table, func) (key, event) =

let

val evt = wrap (event, combine (func key))

in

case LFHashTab.insertIfAbsent table (key, Event (combine event)) of

Future (f, _) => putIfAbsent (f, SOME value)

| _ => ()

end

fun insert fut (key, value) =

insertEvent fut (key, always (SOME value))

fun find (table, func) key =

let

val f = future ()

val evt = wrap (getEvt f, combine (func key))

in

case LFHashTab.insertIfAbsent (key, Future (f, evt), table) of

Future (_, evt) => evt

| Event evt => evt

end

fun map func fut =

(LFHashTab.create (), wrap (LFHashTab.find fut, Option.map func))

fun mapPartial func fut =

(LFHashTable.create (), wrap (LFHashTab.find fut, Option.mapPartial func))

fun filter func fut =

(LFHashTable.create (), wrap (LFHashTab.find fut, Option.filter func))

end

Figure 11.6: Modifications to Support Map-style Functions

85

inserted after the call completes, which will be missed by the two functions. As discussions above mention

an explicit finish event, I have omitted such an event, as well as the app and fold functions from figure 11.6

to avoid confusion. The actual finish event is implemented as a unit future, the first future representing

the source–table’s, and the second representing the current table’s. The same technique of having finish

wait on the source table’s finish event before triggering its own can be used here. Also, both functions must

recursively union source tables with the current table, always giving the destination table’s entries precedence.

This is actually achieved fairly easy with higher–order functional programming, by composing the applied

or folded function with another, which checks the destination–level table for a value with the given key,

substituting that instead.

Set–futures can be implemented as a map–future with the element type as a key, and unit as the value.

Map–futures will play an integral role in the implementation of futures for stateful computations, which are

discussed in chapter 12.

Chapter 12

Stateful Computations

Chapters 10 and 11 have dealt with futures for data structures in a strictly consumer/producer model. This

model is the norm in functional programming, wherein a structure is produced by one function. However,

there are cases where in–place modification of a complex structure can be simpler and more efficient than

walking and reconstructing it entirely. An example of such a case comes from the analysis phases of a

compiler, which set various attributes for components of a program.

Modification in–place presents a problem for several reasons. The function modifying the structure may

not follow any predictable pattern. In a structure representing a program, for instance, most attributes depend

upon the values of other attributes (which, in turn depend on others). Since these structures can be complex

or tree–like, and traversal of them often involves recursively walking down into them, the problem of the

structure changing cannot be solved by simple synchronization.

The solution presented in this chapter makes use of the techniques described in chapter 11 for imple-

menting map–futures. The essence of the technique presented in this chapter is the treatment of a stateful

computation as an entity itself, and the creation of a future of its results. In short, the stateful computation

is viewed as a function which produces a new structure, even though it does not. Section 12.1 describes the

technique in detail, while section 12.2 explores the similarity between this technique and lazy–evaluation,

and the benefits thereof.

12.1 Path-Keyed Maps

Techniques in the previous chapters have focused on a “pipelining” approach to concurrency, using futures

to allow various phases of a program to overlap. Phases which modify a structure in–place, however, resist

both pipelining and more basic methods of parallelization. The problem for pipelining stems from the fact

that the assumptions of the producer/consumer model, which have been essential for the methods described

in the previous chapters do not hold here. Additionally, in the worst case, the in–place modification follows

a structure defined by a set dependencies, which may not be at all apparent from the structure itself.

The technique presented in this chapter creates a future for the results of such a computation. This future

is treated exactly like a map–future, which is keyed by paths into the data structure to desired attributes. This

method treats the map–future as an object representing the final results of the computation, and the paths as

86

87

type attribute = string * string

datatype tree =

Node of attribute list ref *

(string * tree) list

val modifyTree : tree -> unit

val subtree : tree * string -> tree

val attr : tree * string -> string

fun process tree =

let

val () = modifyTree tree

val sub =

subtree (tree, "students")

val subsub = subtree (sub, "Bob")

in

attr (subsub, "rank")

end

datatype tree =

Node of (string * tree) list

type path = string list

val modifyTree : tree -> (path, string)

map_future

fun process tree =

let

val attrs = modifyTree tree

val path = ["Students", "Bob",

"rank"]

in

wrap (lookup attrs path,

Option.valOf)

end

Figure 12.1: A Simple Example of a Tree–Like Data Structure

queries against the final result.

It bears mention that the techniques described in this chapter are intended for modification of existing

values, not for values which are calculated and added to an existing data structure where there was no value

before. The latter can be implemented quite simply using basic futures.

To create a future on modification in–place, all mutable fields are removed from a data structure. These

will instead be accessed through paths, which act as keys into a map–future, which will be produced by the

in–place modification function and consumed by subsequent phases of computation. The paths themselves

can be derived from field names for records, indexes for arrays, keys for maps, and in other similar ways for

other data types.

Figure 12.1 shows a simple example of the transformation described above. The modifyTree function

walks the tree, adding or removing attributes, but not changing the tree structure itself. The process function

runs modifyTree, then extracts one of the attributes of a node several levels down. The left side shows

conventional methods, while the right shows the same program modified using the technique described in

this chapter.

In the program on the right, modifyTree is assumed to be a function which creates a map–future, then

starts a thread to modify the tree, returning the map–future as a result. Also note that the process function

will return an event, rather than a concrete result. Since the table will hold a value for the given path, it is safe

to assume the result of synchronizing on the event will always yield SOME value, hence wrapping the event in

the valOf function.

This technique works well for modification phases which make small changes, such as to attributes. If a

phase makes major structural changes, however, it becomes significantly harder to traverse the tree structure,

as traversals must query the result–future, then wrap further traversal functions around the result of the

query. Keen readers may note that this method of traversal is a more–expensive, less–direct version of simply

88

rewriting the structure using the techniques in previous chapters. When this is the case, it is better to revert

to the producer/consumer model, and generate a whole new structure.

12.2 Lazy Concurrent Evaluation

Section 12.1 described the technique of using a map–future to represent the results of in–place modification

of a data structure. This technique works by treating aspects of the result of in–place modification as queries,

effectively reducing the problem to that of futures on associative data structures. This section explores how

this technique can be adapted in a manner similar to lazy evaluation in order to compute the minimum set of

values necessary for a result in the most concurrent fashion possible.

The method of using a map–future to represent the results of a in–place modification also serves to expose

parallelism within the stateful computation itself. The final state of some given variable (or attribute, in the

context of complex structures) can be thought of as a function of the final states of other variables, and so on.

This gives rise to a dependency graph, whose structure may be very different from the actual structure being

modified. For instance, in program analysis, a function is pure if it calls no impure functions, or if it calls

impure functions in a manner such that they access only local data. Depending on the complexity of analysis,

a function’s purity may depend on many other aspects of the program.

In cases where there are no “loops” in the dependencies for the final values of attributes, the result–future

technique provides a convenient way to parallelize the modification phase. If a given attribute is a function of

others, then the result–future itself can be used to gather the necessary futures. Rather than start one thread

which sequentially calculates the attributes for the entire tree, many threads are created, which calculate

attributes on-demand.

Figure 12.2 shows a trivial example in which several functions which compute attributes of a data struc-

ture. These attributes depend on other attributes, which are requested from the results future, causing

threads to be created to calculate them. This technique is very similar to lazy–evaluation in languages such

as Haskell. A benefit of lazy–evaluation is that a value is only computed if it is necessary. This technique

goes a step further by computing only the necessary values in a fashion which maximizes their concurrency.

Previous work has examined parallel lazy execution of purely–functional languages[19, 54]. This technique

executes in–place modification in a similar manner.

It should be noted, however, that some attributes require a pass over the entire structure, or a significant

portion of it. For instance, deciding where a given value can be treated as a constant in a program requires a

pass over the entire program. In these cases, applying the concurrent lazy evaluation technique will reduce

performance, as a pass over the entire program will be made for every single value. In these cases, it is

better to simply start a thread which makes a single pass over the entire structure, calculating the values of all

attributes which require it1.

As a final note, the case in which there is a cycle in the dependencies among attributes cannot be addressed

by this method. Such a cycle must be addressed by global reasoning. Often this involves the detection of

such cycles and their elimination based on some global reduction, iteration to a fixed–point, or finding a

solution to some set of constraints2. While the algorithms for dealing with such cases can be parallelized
1This thread can still be started lazily.
2All three of these techniques are solutions to such a case in the context of compilers

89

fun gpa results name =

let

fun doGpa name = ...

in

spawnc doGpa name;

wrap (lookup results ["students", name, "gpa"], Option.valOf)

end

fun rank results name =

let

val path = ["students", name, "rank"]

fun doRank "Bob" =

let

val mine = gpa results "Bob"

val hers = gpa results "Alice"

val res = if sync mine > sync hers then 1 else 2

in

insert results (path, res)

end

in

spawnc doRank name;

wrap(lookup results path, Option.valOf)

end

fun process tree =

let

val results = modifyTree tree

val path = ["Students", "Bob",

"rank"]

in

rank "Bob"

end

Figure 12.2: Calculation of Attributes using Lazy Concurrent Evaluation

90

using techniques from this part, the cyclic dependencies prevent knowing any one attribute without knowing

the others. Similarly, if dependencies form a long, singly–linked chain, Then there there exists no way to

parallelize the computation. Dependencies are the chief limiting factor to parallelism, and if there is no fan–

out in the dependency graph, then no technique can find parallelism in the algorithm, because it simply does

not exist.

Aside from these two cases, which represent the limiting factors on the parallelism of a program, this

chapter has described a method for implementing futures on the results of an in–place modification of a data

structure, and extended the method to expose parallelism within the modification itself.

This concludes the discussion of false dependence, which began by introducing basic techniques for direct

structures, and continued to describe techniques for implementing futures on indirect structures, namely

sets and maps. These techniques serve to improve the performance of concurrent functional programs by

shortening their critical paths, as well as allowing multiple phases of a program to operate at once, thereby

allowing more threads to exist at once. The final section concludes this part by discussing the relationship

between these ideas and concepts in computer architecture.

12.3 Relationship to Computer Architecture

As a final note, I will mention the relationship between the ideas presented herein and similar concepts in

computer architecture. Because of the omnipresence of parallelism in architecture, many of its concepts and

ideas appear in other domains as they relate to concurrency and parallelism. Because parallelism is readily

available in hardware, methodologies used therein make excellent examples for other domains.

The techniques described in this part relate to architecture concepts in several ways. First, and most

obviously, the notion of pipelining is common throughout all three chapters. Permitting stages to overlap

benefits concurrent functional programming by shortening the critical path and producing more threads at

any given time. Pipelining also has the potential to reduce memory usage, as many structures may never need

to exist in a fully–complete state.

The concepts introduced in chapter 11 bear a resemblance to explicit speculation in VLIW architectures.

Though the intent is different, the concepts are quite similar. Both feature the ability to perform speculative

operations which yield possibly–nonexistent values, and to “chain” such operations, validating them at a later

time.

Lastly, the techniques described in this chapter regarding stateful computation, particularly the lazy con-

current evaluation technique bear a strong resemblance to dataflow architectures. Dataflow machines com-

pute values “back–to–front”, using a graph structure (which can be implemented as an associative map in the

manner I describe) in a very similar way to what this chapter proposes.

This similarity to hardware has been explored by other efforts. Past efforts, namely the π–RED+[45]

engine have examined the use of speculative execution in software. Additionally, the Bluespec language and

semantics are inspired by hardware design, but bear a striking similarity to π–calculus. The ideas in these

chapters, by contrast, were designed within the context of higher–order concurrency, and came to share many

ideas with computer architecture. This apparent relationship may prove helpful in the future. As concurrency

becomes increasingly important, concepts from hardware may inspire solutions in other domains.

Part IV

Conclusions, Retrospect, and Future
Work

91

Chapter 13

Conclusions

This thesis has presented concurrent functional programming as a workable means of parallelizing programs

in which there is very little coarse–grained concurrency. It has presented arguments from existing work on

the parallelism in functional programming, as well as concrete examples of how functional programs readily

admit parallelism. The thesis has discussed the two main factors which limit the viability of concurrent

functional programming, and has presented work which aims to address these factors.

The thesis began by discussing concurrent functional programming as compared to the traditional model

of concurrency. Traditional concurrency is dependent on the ability of the programmer to split workloads

among several large threads. While this works for some types of programs, it is not always the case that

coarse–grained parallelism can be found, or that enough exists to be worth the cost to create threads. Tra-

ditional threads generally carry a high cost to create and maintain, which means that for the most part, the

number of threads must be small, and threads cannot be created or destroyed often.

Some programs have a structure which is inhospitable towards traditional parallelism. When a program’s

data structures are represented as tree- or graph–structures as opposed to arrays, parallel traversal via tra-

ditional parallelism becomes significantly harder. Furthermore, when the traversal order is not regular, but

occurs in an order determined by the actual content of the structure, parallelizing the traversal is far more

difficult still. Finally, multiple stages in a program introduce false data dependencies, which further limit

parallelism.

Concurrent functional programming is able to deal with both of these cases. Because functional pro-

gramming produces separable control flows in the form of function calls, the technique effectively exposes

fine–grained parallelism, as exists in a tree–traversal. Furthermore, by constructing data structures intelli-

gently, multi–stage computation can be pipelined. Unfortunately, the traditional runtime does not support

this style of programming very well. Traditional threads are heavyweight structures with considerable setup

and maintenance costs. The rapid creation of short–lived threads does not perform well if implemented di-

rectly on top of a traditional threading mechanism. Additionally, the multiple stages of computation are still

a problem if they are not dealt with. Futures, which are one of the core mechanisms of concurrent functional

programming can limit the parallelism of a program if they are used naı̈vely.

In summary, there are two limiting factors on the performance of concurrent functional programming.

The first is the lack of runtime support. The second is the issue of false data dependence.

92

93

The second part of the thesis devoted itself to the issue of runtime support. Systems tend to be built as

various components or layers, which provides the advantage that one layer can be changed independently

of the others. However, the disadvantage of this is that layers which are infrequently changed (such as

runtime systems) can become a liability if the basic assumptions under which they were created are no longer

valid. I have argued in this thesis that this is the case with regard to concurrent functional programming and

traditional program runtime systems. The traditional runtime system was built to execute single–threaded

programs written in a C–like language. I have argued that a runtime for concurrent functional programming

operates on fundamentally different assumptions and therefore should be built accordingly.

The design proposed in part II makes use of several design decisions which are seemingly expensive by

themselves, but have a mutually beneficial interaction when combined. Heap–allocating frames is no more

(and perhaps less) expensive than stack–allocation of frames in the presence of garbage–collection. This

heap–allocation also gives a very simple, straightforward implementation of both threads and continuations.

Saving a frame pointer is all that is needed to create a continuation, and threads require only the overhead of

inserting a structure into the scheduler. Garbage–collection also has significant benefits in a highly–parallel

programming environment, eliminating the lock–free memory reclamation problem and in many cases, the

ABA problem. This lightweight implementation of threading, along with a lock–free scheduler implemen-

tation makes M:N threading feasible by eliminating some of the major problems with that approach. Lastly,

safe–points, which are a mechanism commonly used for garbage collection also permit a very lightweight

context switching and asynchronous messaging framework.

The thesis presented a lock–free scheduler implementation and a mostly lock–free garbage collector. The

scheduler also makes use of existing work on lock–free memory allocation. The presentation of the scheduler

developed a formal semantic model of M:N scheduling and proved the lock–free algorithms to be a correct

implementation of these semantics. The garbage collector did not warrant a full formal model, as such work

already exists. However, as most of the garbage–collector is lock–free, the thesis does present several strong

guarantees and prove that the algorithms preserve them. These guarantees are strong enough to demonstrate

correctness in conjunction with other work on provably correct garbage collectors.

The third part of the thesis developed the idea of futures for complex data structures. This part addressed

the issue of false data dependence in a multi–stage program. Futures are used in concurrent functional pro-

gramming to represent values which are being calculated by another thread. While this works for simple

values, naı̈ve use on complex structures introduces false data dependence, making subsequent values de-

pendent on the entire structure, rather than just what is necessary. The third part introduced methods for

implementing futures for complex data structures, beginning with structures whose meaning is derived di-

rectly from their representation. Following this, the thesis addressed structures which have a meaning which

differs from their internal structure. Finally, the thesis moved away from the producer–consumer model. The

final chapter dealt with representing futures on the results of computations which modify a structure in–place.

The techniques in this chapter not only allow subsequent steps to proceed, but also provide a mechanism to

effectively parallelize such in–place modification steps.

In addition to developing these ideas, I have developed and am continuing to develop a real implemen-

tation of the runtime system I propose herein. Unfortunately, as concurrent functional programming has

suffered from lack of runtime support, there is not a large existing body of programs which can act as a

94

benchmark. Therefore, exhaustively testing the runtime system’s performance is extremely difficult. More-

over, there are no alternative approaches to test it against at the time of writing. Most concurrent functional

language runtimes are either not parallel, or are proofs–of–concept, and building support for a concurrent

functional language directly on top of a traditional runtime is a considerable (and fruitless) effort in its own

right.

Considering these issues, this thesis has presented the runtime system more as a foundational system, pre-

senting formal semantics and proofs of correctness. Since the runtime I have proposed is not an incremental

improvement to existing systems, but an entirely new direction, it is impossible to present the sort of perfor-

mance comparisons which are common for incremental improvements. However, if the runtime is to act as a

foundation for concurrent functional programming and a starting point for future work on runtime support for

it, then the design must be well–founded in all of its design decisions, its semantics, and its implementation.

As such, this thesis has presented detailed arguments and proofs covering each of these areas in an effort to

provide a sound foundation for future work.

Chapter 14

Retrospect

This chapter exists because I believe that as new models for concurrent programming come into existence, it

will become necessary to undertake an effort similar to the one undertaken by this thesis. Because runtime

systems are infrequently redesigned or changed, it is likely that at some point in the future, some new model

of concurrent computation will suffer poor performance due to an outdated runtime system, just as I have

argued that concurrent functional programming does now. Therefore, I have written this chapter, which

outlines the thought process of this thesis in a more narrative style for the sake of future research efforts.

This thesis began as an investigation into the parallelization and distribution of a compiler. I chose this

project, believing that compilers represent a pathological case for parallelism, as they combine several very

difficult problems from the standpoint of classical pthread–style parallelism. My investigations were to center

around whole–program compilation, as this style of compilation can require significant resources for even

medium–sized programs.

I was also originally considering techniques for distributed compilation; however, I abandoned distribu-

tion in favor of parallelism as my approaches changed. Nonetheless, the techniques I describe for implement-

ing futures and pipelining stages of computation can be adapted to a distributed setting. The end product of

my thoughts concerning distribution was to split a program’s call graph into sections, which would be com-

piled by separate machines. Since many of the optimizations performed by compilers[109, 80] have time–

complexity greater than n2, the costs of distribution are paid for in any sufficiently large compilation task.

However, this technique relies on being able to split a call–graph into non–interacting subgraphs. This gen-

erally requires removing several functions from interprocedural optimization, or else duplicating or inlining

commonly–called functions. Most unfortunately, this approach does compromise the quality of optimization,

as it does not actually perform whole–program compilation, but rather whole–subprogram compilation for

some (hopefully) loosely coupled set of subprograms.

My original approach was still very centered around the split–workload, shared–state approach to par-

allelism, as found in scientific computing, graphics, and other commonly–parallelized areas. Surprisingly,

many compilation steps can be divided into split workloads, though without pipelining, the benefits are con-

siderably less. However some troublesome cases remain. Most troubling are the analysis phases and register

allocation. The analysis phases do not consume one structure in order to produce another, rather they “deco-

rate” or modify an existing structure in–place.

95

96

Register allocation is even more troublesome. Register allocation is done by generating an interference

graph and solving for a coloring. This is a complex, multistage, and infinitely worse, iterative fixed–point

based algorithm. In short, it combines all the worst possible cases. My original approach to the problem was

to modify Lal George and Andrew Appel’s algorithm to eliminate the “give up and try again” methodology,

replacing it with an approach which modifies the existing data structures and continues. As it turns out, part of

the actual graph coloring algorithm itself (the part which derives an elimination ordering) can be parallelized

by degrees with a worksharing approach similar to that used by the garbage–collector. However, using the

ordering to color the graph is strictly non–parallel.

This effort demonstrated several things. First, forward–progress, that is not “giving up and starting over”

is an important quality which should be preserved in order to maximize parallelism. The second observation

was that any algorithm or technique which relies on strictly–ordered iteration, like dynamic programming

or iteration to a fixed–point presents a very strong barrier, if not the strongest barrier to parallelism I have

observed in the course of this research. Lastly, even in such cases, there often exists opportunities for par-

allelism within each iterative cycle, even if the iterative cycles themselves can neither be parallelized nor

pipelined effectively.

In addition to register allocation1, I was also investigating how to deal with the analysis phases found in

the compiler. While register allocation presents a single monolithic parallelism challenge, the analysis phases

are difficult in that they compute properties of functions and variables based on properties of others, and they

modify the program structure in–place. Parallelizing the computation of properties is nontrivial, as a naı̈ve

approach may recompute some value several times or yield incorrect results (I was still working under the

shared–state and split–workload way of thinking at this time). Also, compilation cannot continue until the

entire analysis is complete.

I had already begun to explore the techniques described in chapters 10 and 11 at this time. Working on

an unrelated and seemingly fruitless compiler phase: the final production of a program in its binary format

nonetheless yielded several important lessons. The first was the ease and effectiveness of the concurrent

functional style of programming at parallelizing even a phase which is seemingly inherently sequential. The

second was the deleterious effects of stream–based I/O on parallelism. Rewriting portions of this phase using

an indexed I/O scheme resulted in much greater capacity for parallelism. Further investigations into the idea

of futures, as well as the concepts of monads and lazy–evaluation yielded the results in chapter 12, which

provided a way to parallelize and pipeline the in–place–modifying analysis phases.

Embracing concurrent functional programming, however, raised new issues. While it seemed to almost

effortlessly expose parallelism where the split–workload, shared–state way of thinking could only chip away,

the actual support for concurrent functional programming is lacking. While many such languages have very

lightweight, elegant 1:N threading models, those few which actually support real parallelism tend to directly

map threads to kernel threads (executors, in my terminology), which does not perform as well as one would

hope. As I mention in part II, traditional pthread–style threading assumes small, relatively fixed numbers of

long–lived threads.

After reviewing literature, I suspected that concurrent functional programming may be able to achieve

1As it turns out, I independently discovered a result which others had also discovered about six months prior: that SSA–form
programs generate chordal interference graphs, which can be colored in polynomial time with significantly more parallelism. This
put an end to my efforts to improve register allocation. However, the lessons learned from this effort apply to other areas as well.

97

the same level of performance as more traditional styles of concurrent programming, and that the reason

this performance is not realized is that the traditional notion of runtime environments strongly favors single–

threaded imperative programming. With this in mind, I set out to design a runtime system from the ground up

to fully support concurrent functional programming, the results of which are found in chapter 5. In the end,

I arrived at a runtime architecture which combines elements of existing functional language runtimes, but

completely dispenses with the traditional runtime system which usually sits underneath such systems. As I

discuss in chapter 5, these components function well together. Of particular importance in my design was the

absence of locks in the scheduler. This permits the executors to run without stalling: a problem encountered

by other M:N threading systems.

Though scheduling was undoubtedly the central concern for the runtime system, I also sought to build

a garbage collection system free from locks. I began with the Cheng–Blelloch garbage collector, which

is highly parallel in its own right, seeking to remove all blocking synchronization. Unfortunately, this is

impossible given the collector’s “on/off” modus operandi. Mode switching which must be acknowledged by

all threads is inimical to lock–freedom. However, my efforts to design a mostly–lock–free garbage collector

did yield an algorithm which differs substantially from the one of Cheng and Blelloch, and requires only

barrier synchronization at each mode–switch. This algorithm is very hospitable to real–time guarantees,

requiring no mode–switch overhead other than the barrier, supporting modification of the heap during a

collection, and operating within the confines of the normal scheduler system.

At this point the thesis had grown from parallelizing a compiler to something broader: a view of paral-

lelism from the standpoint of concurrent functional programming, rather than the traditional coarse–grained

approach. This view necessarily incorporates improvements to the critical communication mechanism (fu-

tures) as well as a new model of the underlying runtime system. The beauty of concurrent functional program-

ming itself is that it follows almost effortlessly from ordinary functional programming. In a higher–order,

polymorphically–typed functional language, it is possible to write a function which transforms an arbitrary

function call into a thread, and returns the function call’s result as a future. Of course, the preferred approach

is to use the techniques in part III to allow pipelining of subsequent stages of computation. Regrettably, there

does not exist a wide body of existing work which uses concurrent functional programming to acheive paral-

lelism, precisely because the problems I aim to solve by the work of this thesis are not solved. This precludes

exhaustive testing of the performance of the system and techniques I advocate2

This change in focus became the defining point of this thesis. The thesis’ topic came to be the question of

“how does one effectively make use of fine–grained parallelism”, rather than simply “how does one parallelize

a compiler”. The answer, I concluded, is concurrent functional programming, and from here, I set out to solve

the two major limiting factors on the effectiveness of this style of programming: false data dependence and

the lack of runtime support. If these problems can be effectively solved, then programs can be parallelized

by executing branches in their control flows as separate threads, and by minimizing data dependence in the

program. In short, concurrent functional programming frames the issue of finding parallelism in a program

as the much more tractable question of “how many threads can be kept alive at once”, rather than the bleak

picture painted by Ahmdahl’s Law which rules the world of coarse–grained parallelism.

2This is a problem faced by both the transactional memory and functional programming research communities.

Chapter 15

Future Work

The first and most obvious opportunity for continuing my work in this area is to implement a working com-

piler using the techniques from this thesis. The only published effort to parallelize a compiler at the time of

writing of this thesis is the implementation of the Glasglow Haskell Compiler[46] using parallel lazy evalu-

ation techniques[19, 54]. I am aware from personal conversations[4, 106] that Intel, as well as others have

attempted and abandoned such projects in the past. The successful implementation of a parallel compiler

would demonstrate the viability of fine–grained concurrency.

In a broader sense, the use of parallelism in programs where there is no coarse–grained parallelism re-

mains relatively unexplored from the standpoint of practical experience. However, if parallelism is to become

the primary mechanism for improving performance of programs, this area must be not only explored, but mas-

tered to the fine degree to which conventional (coarse–grained) parallelism has been developed. Furthermore,

if work is to continue is this direction, it will be necessary to build a set of implementations which make use

of fine–grained concurrency to act as benchmarks and test suites for various developments.

In addition to developing implementations of programs which exploit fine–grained concurrency using the

techniques described in this thesis, there is additional work to be done in the area of programming language

and library support for concurrent functional programming. The techniques described in part III require

careful use to be beneficial to performance. Moreover, the constructs I have described are not organized into

any taxonomy, but rather are presented in an order that makes sense from the standpoint of developing the

concepts. Future work on these structures should focus on developing a more comprehensive collection of

structures, similar to what exits for conventional (non–concurrent) data structures.

As far as programming languages are concerned, the primary existing languages (C++, Java) are simply

inadequate for concurrent functional programming. The common functional languages (Haskell, OCaml,

Standard ML, Lisp) suffer from their own pathologies, being generally unsuited for full–scale production

environments. There are several notable production languages which are built with concurrency in mind, or

are able to support the concurrent functional programming style. Two noteworthy examples are the Erlang

and Bluespec languages. Erlang provides a Haskell–like purely–functional language with a explicit threading

and asynchronous messaging. The hardware–centric Bluespec language provides what amounts to polyadic

π–calculus: a concurrent execution model built on synchronous message–passing. Development of functional

languages suitable for production use, as well as languages based on a concurrent programming model are

98

99

necessary if use of fine–grained concurrency is to become commonplace.

It remains to be seen whether a truly lock–free garbage collector would indeed be beneficial. As previ-

ously mentioned, the need to switch the collector “on” and “off” prevents a lock–free implementation under

the current scheme. A lock–free collector would most likely take an “always–on” approach, continuously

reclaiming memory. While this may seem to have a considerable overhead, it is possible that a collector

could be designed which is able to do this efficiently.

The runtime system developed in part II is based on the activation model, and relies only on the allocation

of large memory blocks (slices). As such, it is naturally friendly to a port to bare–metal (meaning running

directly on hardware, with no operating system). A bare–metal port of the runtime could serve as a foundation

for both operating systems kernels written in higher–level languages, and for high–parallelism operating

systems. The proofs of correctness provided in this thesis also establish a foundation for verified operating

systems.

Lastly, the runtime system proposed in part II is only a starting point. Future work on runtime systems

should aim to incrementally improve the performance of runtime systems built for concurrent functional pro-

gramming, or else to propose new models by starting from the basics and making design decisions, as I did

in chapter 5. The runtime architecture advocated by this thesis is a start; however, it is built for concurrent

functional programming in languages like Haskell or ML, which are based on λ–calculus. More progressive

concurrent languages which are based on a model of concurrency like π–calculus may suffer poor perfor-

mance in the same way that concurrent functional programming suffers from a runtime built for imperative

languages with coarse–grained concurrency. As a simple example, an inadequacy of the runtime system I

propose in this thesis when used as a runtime for a π–calculus based language is that it assumes threads are

created, rather than simply existing as they do in π–calculus1. Though concurrent functional programming is

quite powerful when it comes to exploiting fine–grained concurrency, one cannot expect that it is the terminal

end of progress in this area. As newer models are developed, it will again be necessary to provide the runtime

systems to support these models and the programming methods to make the most of them.

1This is intended purely as an example to demonstrate a possible line of thought, not to imply that future research should adopt a
strategy based this example.

Bibliography

[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Brian R. Murphy, Bratin Shah, and Tatiana Shpeisman. Com-

piler and runtime support for efficient software transactional memory. In 27th ACM SIGPLAN Sympo-

sium on Programming Language Design and Implementation, 2006.

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic snap-

shots of shared memory. Journal of the ACM, 40(4), 1993.

[3] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. PhD thesis, Mas-

sachusetts Institution of Technology, 1986.

[4] Conversations with Ali–Reza Adl–Tabatabai.

[5] James Anderson. Multi–writer composite registers. Distributed Computing, 7(4), 1994.

[6] James Anderson, Ambuj Singh, and Mohamed Gouda. The elusive atomic register. Technical report,

University of Texas, Austin, 1986.

[7] Thomas Anderson. The performance of spin-lock alternatives for shared-memory multiprocessors.

IEEE Transactions on Parallel and Distributed Systems, 1(1), 1990.

[8] Thomas Anderson, Brian Bershad, Edward Lazowska, and Henry Levy. Scheduler activations. In

ACM Transactions on Computer Systems, 1992.

[9] Andrew Appel. Garbage collection can be faster than stack allocation. In Information Processing

Letters, 1987.

[10] Andrew Appel. Compiling with Continuations. Cambridge University Press, 1992.

[11] Andrew Appel and Trevor Jim. Continuation–passing, closure passing style. In 16th ACM SIGPLAN

Principles of Programming Languages, 1989.

[12] Andrew Appel and David MacQueen. A standard ML compiler. In Conference on Functional Pro-

gramming Languages and Computer Architecture, 1987.

[13] Joe Armstrong. Making Reliable Distributed Systems in the Presence of Software Errors. PhD thesis,

Royal Institute of Technology, Sweden, 2003.

[14] Conversations with Arvind.

100

101

[15] Arvind and David Culler. Dataflow architectures. Annual Review of Computer Science, 1(1), 1986.

[16] Arvind, Rishiyur Nikhil, and Keshav Pingali. I–structures: Data structures for parallel computing.

ACM Transactions on Programming Languages and Systems, 11(4), 1989.

[17] David Bacon, Perry Cheng, and V Rajan. A real–time garbage collector with low overhead and con-

sistent utilization. ACM SIGPLAN Notices, 38(1), 2003.

[18] Peter Bailey and Malcolm Newey. Implementing ML on distributed memory multiprocessors. In Work-

shop on Languages, Compilers and Run-Time Environments for Distributed Memory Multiprocessors,

1992.

[19] Clement Baker-Finch, David King, and Philip Trinder. An operational semantics for parallel lazy

evaluation. In 5th ACM SIGPLAN International Conference on Functional Programming, 2000.

[20] Paul Barth, Rishiyur Nikhil, and Arvind. M–structures: Extending a parallel, non–strict language with

state. In 5th ACM Conference on Functional Programming Languages and Computer Architectures,

1991.

[21] Gregory Benson, Matthew Butner, Shaun Padden, and Alex Fedosov. The virtual processor interface:

Linux kernel support for user-level thread systems, 2007.

[22] Hans Boehm. Threads cannot be implemented as a library. In 26th ACM SIGPLAN Symposium on

Programming Language Design and Implementation, 2005.

[23] James Burns and Gary Peterson. Constructing multi–reader atomic values from non–atomic values. In

16th ACM Symposium on Principles of Distributed Computing, 1987.

[24] Nicholas Carriero and David Gelernter. S/NET’s Linda kernel. ACM Transactions on Computing

Systems, 4(2), 1986.

[25] Perry Cheng. Scalable Real-Time Parallel Garbage Collection for Symmetric Multiprocessors. PhD

thesis, Carnagie Mellon University, Pittsburgh, PA, 2001.

[26] Perry Cheng and Guy Blelloch. On bounding time and space for multiprocessor garbage collection. In

20th ACM SIGPLAN Symposium on Programming Language Design and Implementation, 1999.

[27] Perry Cheng and Guy Blelloch. A parallel, real–time garbage collector. In 22nd ACM SIGPLAN

Symposium on Programming Language Design and Implementation, 2001.

[28] William Clinger. Foundations of Actor Semantics. PhD thesis, Massachusetts Institution of Technol-

ogy, 1981.

[29] Richard Cole and Ofer Zajicek. The APRAM: Incoprorating asynchrony into the PRAM model. In 1st

ACM Symposium on Parallel Algorithms and Architectures, 1989.

[30] Eric Cooper and Richard Draves. C Threads. Technical report, Carnegie Mellon University, 1988.

102

[31] Peter Damron, Alexandra Federova, Yossi Lev, Victor Luchango, and Daniel Nussbaum. Hybrid

transactional memory. ACM SIGPLAN Notices, 41(11), 2006.

[32] Olivier Danvy and Julia Lawall. Back to direct style II: First–class continuations. In ACM Symposium

on LISP and Functional Programming, 1992.

[33] Randall Dean. Using continuations to build a user–level threads library. In 3rd USENIX Mach Con-

ference, 1993.

[34] K. Debattista, K. Vella, and J. Cordina. Wait–free cache–affinity thread scheduling. Software, IEE

Proceedings, 150(2), 2003.

[35] David Detlefs, Paul Martin, Mark Moir, and Jr. Guy Steele. Lock–free reference counting. In 21st

ACM SIGPLAN Symposium on Principles of Distributed Computing, 2002.

[36] Edsger Dijkstra. Cooperating sequential processes. Programming Languages, 1968.

[37] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for garbage collection in statically

typed languages. In 13th ACM SIGPLAN Symposium on Programming Language Design and Imple-

mentation, 1992.

[38] Thomas Doeppener. Threads: A system for the support of concurrent programming. Technical report,

Brown University, 1987.

[39] Damien Doligez and Xavier Leroy. A concurrent, generational garbage collector for a multithreaded

implementation of ML. In 20th ACM SIGPLAN Symposium on Principles of Programming Languages,

1993.

[40] Kevin Donnelly and Matthew Fluet. Transactional events. In 11th ACM SIGPLAN International

Conference on Functional Programming, 2006.

[41] Richard Draves, Brian Bershad, Richard Rashid, and Randall Dean. Using continuations to imple-

ment thread management and communication in operating systems. ACM SIGOPS Operating Systems

Review, 25(5), 1991.

[42] Julian Elischer, Jonathan Mini, Daniel Eischen, and David Xu. KSE (kernel scheduling entity) library.

Component of the FreeBSD Operating System.

[43] Joseph R. Eykholt, Steve R. Kleiman, Steve Barton, Roger Faulkner, Anil Shivalingiah, Mark Smith,

Dan Stein, Jim Voll, Mary Weeks, and Dock Williams. Beyond multiprocessing: Multithreading the

sunOS kernel. In Summer USENIX Technical Conference and Exhibition, 1992.

[44] Stephen Fortune and John Wyllie. Parallelism in random access machines. In 10th Annual Symposium

on Theory of Computing, 1978.

[45] Dieter Gartner and Werner Kludge. π–red+: A compiling graph–reduction system for a full–fledged

λ–calculus. In ARCS, 1993.

[46] The Glasglow Haskell Compiler. http://www.haskell.org.

103

[47] P. Gibbons. A more practical PRAM model. In ACM Symposium on Parallel Algorithms and Archi-

tectures, 1989.

[48] Seth Goldstein. Lazy Threads: Compiler and Runtime Structures for Fine–Grained Parallel Program-

ming. PhD thesis, University of California, Berkeley, 1997.

[49] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison Wesley, 1996.

[50] Irene Greif. Semantics of Communicating Parallel Processes. PhD thesis, Massachusetts Institution

of Technology, 1975.

[51] Carl Gunter, Didier Remy, and Jon Riecke. A generalization of exceptions and control in ML–like

languages. In Functional Programming Languages and Computer Architecture, 1995.

[52] Kevin Hammond and Greg Michaelson. Research Directions in Parallel Functional Programming.

Springer–Verlag, 1999.

[53] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable memory trans-

actions. In 10th ACM SIGPLAN Conference on Principles and Practices of Parallel Programming,

2005.

[54] Tim Harris, Simon Marlow, and Simon Peyton-Jones. Haskell on a shared–memory multiprocessor.

In ACM SIGPLAN Workshop on Haskell, 2005.

[55] Thomas Hart, Paul McKenny, and Angela Brown. Making lockless synchronization fast: Performance

implications of memory reclamation. In 20th International Parallel and Distributed Processing Sym-

posium, 2006.

[56] Danny Hendler, Nir Shavit, and Lena Yerushlami. A scalable lock–free stack algorithm. In 16th ACM

Symposium on Parallelism in Algorithms and Architectures, 2004.

[57] John Hennessy and David Patterson. Computer Architecture, A Quantitative Approach. Morgan Kauf-

mann, 2003.

[58] Maurice Herlihy. Impossibility and universality results for wait–free synchronization. In 7th ACM

SIGPLAN Symposium on Principles of Distributed Computing, 1988.

[59] Maurice Herlihy. Wait–free synchronization. In ACM Transactions on Programming Languages and

Systems, 1991.

[60] Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM Transactions

on Programming Languages and Systems, 15(5), 1993.

[61] Maurice Herlihy, Victor Luchango, and Mark Moir. The repeat offender problem: A mechanism for

supporting dynamic-sized lock-free data structures. In 16th International Conference on Distributed

Computing, 2002.

[62] Maurice Herlihy and Eliot Moss. Lock–free garbage collection for multiprocessors. In 3rd ACM

Symposium on Parallel Algorithms and Architectures, 1993.

104

[63] Maurice Herlihy and Eliot Moss. Transactional memory: Architectural support for lock free data

structures. In International Symposium on Computer Architecture, 1993.

[64] Maurice Herlihy and Sergio Rajasbaum. Algebraic topology and distributed computing- a primer. In

Lecture Notes in Computer Science, 1996.

[65] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. The Journal

of the ACM, 46(6), 1999.

[66] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2007.

[67] Maurice Herlihy and Jeanette Wing. Linearizability: A correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Systems, 12(3), 1990.

[68] Maurice Herlihy and Jeannette Wing. Axioms for concurrent objects. In 14th ACM SIGPLAN Sympo-

sium on Principles of Programming Languages, 1987.

[69] Matthew Hertz and Emery Berger. Quantifying the performance of garbage collection vs. explicit

memory management. In 20th ACM SIGPLAN Symposium on Object–Oriented Programming, Lan-

guages, Systems, and Applications, 2005.

[70] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for artificial

intelligence. Technical report, Massachusetts Institute of Technology, 1973.

[71] Robert Hieb, Kent Dybvig, and Carl Bruggeman. Representing control in the presence of first–class

continuations. In 11th ACM SIGPLAN Symposium on Programming Language Design and Implemen-

tation, 1990.

[72] Tony Hoare. Monitors: An operating system structuring concept. Communications of the ACM, 17(10),

1974.

[73] Tony Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[74] Richard Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin Hertzberg. McRT–malloc: A

scalable transactional memory allocator. In 5th International Symposium on Memory Management,

2006.

[75] IEEE and The Open Group. IEEE Standard 1003.1-2001. IEEE, 2001.

[76] ISO/IEC. ISO 9899-1999. ISO/IEC, 1999.

[77] Paul Jackson. Verifying a garbage collection algorithm. In 11th International Conference on Theorem

Proving in Higher Order Logics, 1998.

[78] Richard Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Management. John

Wiley and Sons, 1996.

[79] Jorg Keller, Christoph Kessler, and Jesper Traff. Practical PRAM Programming. John Wiley and Sons,

2001.

105

[80] Ken Kennedy and John Allen. Optimizing Compilers for Modern Architectures. Morgan Kaufmann,

1997.

[81] Leslie Lamport. The mutual exclusion problem, part I- a theory of interprocess communication. Jour-

nal of the ACM, 33(2), 1986.

[82] Leslie Lamport. The mutual exclusion problem, part II- statements and solutions. Journal of the ACM,

33(2), 1986.

[83] Leslie Lamport. On interprocess communication, part I. Distributed Computing, 1(2), 1986.

[84] Leslie Lamport. On interprocess communication, part II. Distributed Computing, 1(2), 1986.

[85] Jochen Liedtke. Improving IPC through kernel design. In 14th ACM Symposium on Operating System

Principles, 1993.

[86] Jochen Liedtke. On microkernel construction. In 15th ACM Symposium on Operating System Princi-

ples, 1995.

[87] Virendra Marathe, Michael Spear, Christopher Heriot, Athul Acharya, David Eisenstat,

William Scherer III, and Michael Scott. Lowering the cost of nonblocking software transactional

memory. In 1st ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for

Transactional Computing, 2006.

[88] Brian Marsh, Michael Scott, Thomas LeBlanc, and Evangelos Markatos. First–class user–level

threads. In 13th ACM Symposium on Operating System Principles, 1991.

[89] Henry Massalin. Synthesis: An Efficient Implementation of Fundamental Operating System Services.

PhD thesis, Columbia University, 1991.

[90] Eric McCorkle. Simultaneous–consensus and the complexity of concurrent protocols. Submitted to

19th International Conference on Concurrency Theory.

[91] Eric McCorkle. Synchronous channels, choice, and transactions: Analysis, implementation and feasi-

bility. Submitted to 19th International Conference on Concurrency Theory.

[92] Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A general framework for certifying

garbage collectors and their mutators. ACM SIGPLAN Notices, 42(6), 2007.

[93] Austen McDonald, Jae Woong Chung, Brian Carlstrom, Chi Cao Minh, Hassan Chafi, Christos

Kozyrakis, and Kunle Olukotun. Architectural semantics for practical transactional memory. In 33rd

International Symposium on Computer Architecture, 2006.

[94] Marshall McKusick and George Neville-Neil. Design and Implementation of the FreeBSD Operating

System. Addison Weseley, 2004.

[95] Maged Michael. Safe memory reclamation for dynamic lock–free objects using atomic reads and

writes. In 25th ACM SIGPLAN Symposium on Principles of Distributed Computing, 2002.

106

[96] Maged Michael. ABA prevention using single–word instructions. Technical report, IBM Research

Division, 2004.

[97] Maged Michael. Hazard pointers: Safe memory reclamation for lock–free objects. IEEE Transactions

on Parallel and Distributed Systems, 15(6), 2004.

[98] Maged Michael. Scalable lock–free dynamic memory allocation. In 25th ACM SIGPLAN Symposium

on Programming Language Design and Implementation, 2004.

[99] Maged Michael and Michael Scott. Simple, fast, and practical non–blocking and blocking queue

algorithms. In 15th ACM SIGPLAN Symposium on Principles of Distributed Computing, 1996.

[100] Sun Microsystems. Multithreading in the Solaris operating system. Technical report, Sun Microsys-

tems, 2002.

[101] Robin Milner. A Calculus of Communicating Systems. Springer–Verlag, 1980.

[102] Robin Milner. Communicating and Mobile Systems. Cambridge University Press, 1999.

[103] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML. MIT

Press, 1997.

[104] Jayadev Misra. Axioms for memory access in asynchronous hardware systems. Transactions on

Programming Languages and Systems, 8(1), 1986.

[105] The MLton SML compiler. http://mlton.org.

[106] Correspondance on the MLton compiler developer’s mailing list. http://mlton.org.

[107] Eric Mohr, David Kranz, and Robert Halstead. Lazy task creation: A technique for increasing the

granularity of parallel programs. Technical report, MIT, 1990.

[108] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using elimination to implement scalable

and lock–free FIFO queues. In 17th ACM Symposium on Parallelism in Algorithms and Architectures,

2005.

[109] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[110] Alexandar Nanevski, Paul Govereau, and Greg Morrisett. Type theoretic semantics for transactional

concurrency. Technical report, Harvard University, 2007.

[111] Rishiyur Nikhil. Id language reference manual. Technical report, Massachusetts Institute of Technol-

ogy, 1991.

[112] Rishiyur Nikhil, Gregory Papadopoulos, and Arvind. T: A multithreaded massively parallel architec-

ture. In 19th International Symposium on Computer Architecture, 1992.

[113] Risiyur Nikhil, Arvind, J Hicks, S Aditya, L Augustsson, J Maessen, and Y Zhou. pH language

reference manual. Technical report, Massachusetts Institute of Technology, 1991.

107

[114] Naomi Nishimura. Asynchronous shared memory parallel computing. In 2nd ACM Symposium on

Parallel Algorithms and Architectures, 1990.

[115] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1996.

[116] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Eliot Kolodner, Victor Leikehman, and Avi Owshanko. A

parallel, incremental, and concurrent gc for servers. ACM SIGPLAN Notices, 37(5), 2002.

[117] Susan Owiki and David Gries. Verifying properties of parallel programs: An axiomatic approach.

Communications of the ACM, 19(5), 1976.

[118] Vivek Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and portable web server. In

Annual USENIX Technical Conference, 1999.

[119] Nikolaus Papaspyrou. A Formal Semantics for the C Programming Language. PhD thesis, National

Technical University of Athens, 1998.

[120] Simon Peyton-Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In 23rd ACM SIG-

PLAN Symposium on Principles of Programming Languages, 1996.

[121] Benjamin Pierce and David Turner. PICT: A programming language based on the π–calculus. Techni-

cal report, Indiana University, 1997.

[122] Benjamin R. Pierce. Advanced Topics in Types and Programming Languages. MIT Press, 2002.

[123] Benjamin R. Pierce. Types and Programming Languages. MIT Press, 2002.

[124] G. Plotkin. A structural approach to operational semantics. Technical report, University of Aarhus,

1981.

[125] William Pugh. Fixing the Java memory model. In Java Grande Conference, 1999.

[126] William Pugh. The Java memory model is fatally flawed. Concurrency- Practice and Experience,

12(6), 2000.

[127] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional memory. In The 32nd

International Symposium on Computer Architecture, 2005.

[128] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alessandro Forin, David

Golub, and Michael Jones. Mach: A system software kernel. In 34th Computer Society International

Conference, 1989.

[129] John Reppy. Asynchronous signals in standard ML. Technical report, Cornell University, 1990.

[130] John Reppy. Concurrent ML: Design, application, and semantics. In Functional Programming, Con-

currency, Simulation, and Automated Reasoning, 1993.

[131] John Reppy. First–class synchronous operations. In Theory and Practice of Parallel Programming,

1994.

108

[132] John Hamilton Reppy. Higher–Order Concurrency. PhD thesis, Cornell University, Ithaca, NY, 1992.

[133] Davide Sangiorgi and David Walker. The π–Calculus: A Theory of Mobile Processes. Cambridge

University Press, 2003.

[134] Bratin Shah, Ali-Reza Adl-Tabatabai, Richard Hudson, Chi Cao Minh, and Benjamin Hertzberg.

McRT–STM: A high performance software transactional memory system for a multi–core runtime.

In 11th ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming, 2006.

[135] Ori Shalev and Nir Shavit. Split–ordered lists: Lock–free extensible hash tables. In 22nd ACM

SIGPLAN Symposium on Principles of Distributed Computing, 2003.

[136] Zhong Shao and Andrew Appel. Space–efficient closure representations. In ACM Symposium on LISP

and Functional Programming, 1994.

[137] Nir Shavit and Dan Touitou. Software transactional memory. In The 14th Annual ACM Symposium on

Principles of Distributed Computing, 1995.

[138] Olin Shivers. Continuations and threads: Expressing machine concurrency directly in advanced lan-

guages. In 2nd ACM SIGPLAN Workshop on Continuations, 1997.

[139] David Siegwart and Martin Hirzel. Improving locality with parallel heirarchical copying gc. In Pro-

ceedings of the 5th International Symposium on Memory Management, 2006.

[140] Standard ML of New Jersey. http://smlnj.org.

[141] Stackless python. http://www.stackless.com.

[142] Christopher Strachey and Christopher Wadsworth. Continuations: A mathematical semantics for han-

dling full jumps. In Higher–Order and Symbolic Computation, 2000.

[143] Andrew Tolmach. Tag–free garbage collection using explicit type parameters. In ACM Symposium on

LISP and Functional Programming, 1994.

[144] Victor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving the correctness of highly–

concurrent linearizable objects. In 11th ACM SIGPLAN Conference on Principles and Practice of

Parallel Programming, 2007.

[145] John Valois. Lock–free linked lists using compare–and–swap. In 14th Annual Symposium on Princi-

ples of Distributed Computing, 1995.

[146] Joseph Vanderwaart and Karl Crary. A typed interface for garbage collection. In ACM SIGPLAN

International Workshop on Types in Language Design, 2003.

[147] Mitchell Wand. Continuation–based multiprocessing. In ACM Symposium on LISP and Functional

Programming, 1980.

[148] Daniel Wang and Andrew Appel. Type–preserving garbage collectors. ACM SIGPLAN Notices, 36(3),

2001.

109

[149] Peter Wegner. Programming Languages: Information Structures and Machine Organization. McGraw

Hill, 1971.

[150] Luke Yen, Jayaram Bobba, Michael Marty, Kevin Moore, Haris Volos, Mark Hill, Michael Swift,

and David Wood. LogTM–SE: Decoupling hardware transactional memory from caches. In 13th

International Symposium on High Performance Computer Architecture, 2007.

[151] Alexandre Zamulin. Formal semantics of java expressions and statements. Programming and Com-

puter Software, 29(5), 2003.

