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Abstract

In this report I describe my results on the Tree Edit Distance problem [13, 27]. The edit
distance between two ordered rooted trees with vertex labels is the minimum cost of trans-
forming one tree into the other by a sequence of elementary operations consisting of delet-
ing and relabeling existing nodes, as well as inserting new nodes. Tree Edit Distance has
applications in many fields such as computer vision, computational biology and compiler
optimization. I describe an algorithm that computes the edit distance between two trees of
sizes n and m, where m < n, and runs in O(nm2(1+log n

m
)) = O(n3) time and O(nm) space.

The previously best known algorithm for this problem, which is due to Philip Klein [22],
runs in O(m2n log n) = O(n3 log n) time and O(mn) space. Next, a matching lower bound
is proved for the family of decomposition strategy algorithms, which includes the previous
fastest algorithms for this problem. The best previously known lower bound for this family
was Ω(n2 log2 n). Finally, I describe recent results on the Longest Common Subtree problem.
This is an interesting special case of Tree Edit Distance in which only insertions and dele-
tions are considered (i.e., the cost of all relabeling operations is infinite, and the cost of any
insertion or deletion is 1). I describe a few algorithms for this problem, the fastest of which
runs in O(Lr log r log log m), where L is the size of the LCS (L ≤ m) and r is the number
of pairs of vertices with matching labels, one from each tree (r ≤ nm). These algorithms
combine techniques from sparse string LCS (Longest Common Subsequence), with Tree Edit
Distance algorithms.

The tree edit distance paper [13] is a joint work with Erik Demaine, Benjamin Rossman
and Oren Weimann. The longest common subtree paper [27] is a joint work with Dekel Tsur,
Oren Weimann and Michal Ziv-Ukelson.
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Introduction

1.1 Overview

The problem of comparing trees occurs in diverse areas such as structured text databases
like XML, computer vision, compiler optimization, natural language processing, and compu-
tational biology [6, 9, 23, 30, 33].

One example for an application is the analysis of RNA molecules in computational biology.
Ribonucleic acid (RNA) is a polymer consisting of a sequence of nucleotides (Adenine, Cy-
tosine, Guanine, and Uracil) connected linearly via a backbone. In addition, complementary
nucleotides (AU, GC, and GU) can form hydrogen bonds, leading to a structural formation
called the secondary structure of the RNA. Because of the nested nature of these hydrogen
bonds, the secondary structure of RNA can be naturally represented by an ordered rooted
tree [16, 38] as depicted in Fig. 1.1. Recently, comparing RNA sequences has gained increas-
ing interest thanks to numerous discoveries of biological functions associated with RNA. A
major fraction of RNA’s function is determined by its secondary structure [26]. Therefore,
computing the similarity between the secondary structure of two RNA molecules can help
determine the functional similarities of these molecules.

The tree edit distance metric is a common similarity measure for rooted ordered trees.
It was introduced by Tai in the late 1970’s [33] as a generalization of the well-known string
edit distance problem [37]. Let F and G be two rooted trees with a left-to-right order
among siblings and where each vertex is assigned a label from an alphabet Σ. The edit
distance between F and G is the minimum cost of transforming F into G by a sequence of

(a)
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Figure 1.1: Two different ways of viewing an RNA sequence. In (a), a schematic 2-
dimensional description of an RNA folding. In (b), the RNA as a rooted ordered tree.
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elementary operations consisting of deleting and relabeling existing nodes, as well as inserting
new nodes (allowing at most one operation to be performed on each node). These operations
are illustrated in Fig. 1.2. Formally, given a node v in F with parent v′, relabel changes the
label of v, delete removes a non-root node v and sets the children of v as the children of v′

(the children are inserted in the place of v as a subsequence in the left-to-right order of the
children of v′), and insert (the complement of delete) connects a new node v as a child of
some v′ in F making v the parent of a consecutive subsequence of the children of v′. The
cost of the elementary operations is given by two functions, c

del
and c

match
, where c

del
(τ) is

the cost of deleting or inserting a vertex with label τ , and c
match

(τ1, τ2) is the cost of changing
the label of a vertex from τ1 to τ2. Since a deletion in F is equivalent to an insertion in G
and vice versa, we can focus on finding the minimum cost of a sequence of just deletions and
relabelings in both trees that transform F and G into isomorphic trees.

delete node y

insert node yy

T1 T2 Tk T1 T2 Tk

x

T1 T2 Tk

relabel node x to y

relabel node y to x

Figure 1.2: The three editing operations on a tree with vertex labels.

The Longest Common Substring (string LCS) of two strings, a special case of string edit
distance, is the longest subsequence of symbols that appears in both strings. It corresponds
to the edit distance with infinite cost for changing labels and unit costs for insertions and
deletions. The generalization of this problem to rooted, ordered, labeled trees is called the
Largest Common Subtree problem, and was considered by Lozano and Valiente [24] and Amir
et al. [1]. In this problem we wish to find the minimal number of insertion and deletions
operations (as defined for tree edit distance above), that transform one of the trees into the
other. Again, since a deletion in one tree is equivalent to an insertion in the other and vice
versa, the problem is equivalent to finding a largest forest that can be obtained from each of
the two trees by only deleting nodes. The size of such a largest forest (size of the LCS) is a
commonly used measure for the similarity between pairs of trees.

1.2 Related work and previous results.

To state running times, we need some basic notation. Let n and m denote the sizes |F | and |G|
of the two input trees, ordered so that n ≥ m. Let nleaves and mleaves denote the corresponding
number of leaves in each tree, and let nheight and mheight denote the corresponding height of
each tree, which can be as large as n and m respectively.

1.2.1 Tree edit distance

Tai [33] presented the first algorithm for computing tree edit distance, which requires O(n2
leavesm

2
leavesnm)

time and space, and thus has a worst-case running time of O(n3m3) = O(n6). Zhang and

3



Shasha [30] improved this result to an O(min{nheight, nleaves} ·min{mheight,mleaves} ·nm) time
algorithm using O(nm) space. In the worst case, their algorithm runs in O(n2m2) = O(n4)
time. Klein [22] improved this result to a worst-case O(m2n log n) = O(n3 log n) time algo-
rithm using O(nm) space. These last two algorithms are based on closely related dynamic
programs, and both present different ways of computing only a subset of a larger dynamic
program table; these entries are referred to as relevant subproblems. Dulucq and Touzet
[14] introduced the notion of a decomposition strategy (see Section 2.1.4) as a general frame-
work for algorithms that use this type of dynamic program, and proved a lower bound of
Ω(nm log n log m) time for any such strategy.

Many other solutions have been developed; see [2, 6, 35] for surveys. The most recent
development is by Chen [10], who presented a different approach that uses results on fast
matrix multiplication. Chen’s algorithm runs in O(nm + nm2

leaves + nleavesm
d
leaves) time and

O(n + (m + n2
leaves) min{nleaves, nheight}) space. Here d is the exponent for computing the

min-plus product of two square matrices. According to Chen1, d = 2.5. Hence, the worst
case running time of his algorithm is O(nm2.5) = O(n3.5). Therefore, Klein’s is the fastest
in terms of worst-case time complexity among all these algorithms. Previous improvements
to Klein’s O(n3 log n) time bound were achieved only by constraining the edit operations or
the scoring scheme [9, 29, 31, 39].

1.2.2 Largest common subtree

To date, computing the LCS of two trees is done using tree edit distance algorithms [1]. This
is in contrast with the situation for string LCS. The edit distance problem on strings (and
hence also string LCS) can be solved in O(st) time and space, where s and t (s ≤ t) are the
lengths of the strings [18, 37]. The only known speedups to the string edit distance algorithm
are by a logarithmic factor [12, 25, 7]. For the string LCS problem however, it is possible

to obtain time complexities better than Õ(mn) in favorable cases [19, 21, 3, 20, 11, 28].
This is achieved by exploiting the sparsity inherent to the LCS problem and measuring the
complexity by parameters other than the lengths of the input. Many string LCS algorithms
originate in either Hirschberg [19] or Hunt and Szymanski [21]. Given two strings of lengths
s, t (s ≤ t) over an alphabet Σ, let L denote the size of their LCS (obviously, L ≤ s), and let r
denote the number of matching pairs of characters, one from each string (r ≤ st). Hirschberg’s
algorithm achieves an O(tL + t lg |Σ|) time complexity by computing chains in succession.
The Hunt-Szymanski algorithm achieves an O(r lg s) time complexity by extending partial
chains, and can be improved to O(r lg lg s) by using the successor data-structure of van Emde
Boas [36]. No algorithms that exploit sparsity in the tree LCS problem have been previously
suggested.

1Chen claims that an algorithm due to Fredman [15] achieves d = 2.5. Indeed, Fredman proves that
n2.5 addition and comparison operations suffice to determine the min-plus product of two n by n matrices.
However, he does not provide an algorithm that actually computes this product in O(n2.5) time. To the best
of our knowledge, the best upper bound for this problem is O(n3/ log2 n), due to Chan [8]
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1.3 Summary of results

1. For the tree edit distance problem We present a new algorithm that falls into the same
decomposition strategy framework of [14, 22, 30]. In the worst case, our algorithm re-
quires O(nm2(1+log n

m
)) = O(n3) time and O(nm) space. The corresponding sequence

of edit operations can easily be obtained within the same time and space bounds. We
therefore improve upon all known algorithms in the worst case time complexity. Our
approach is based on Klein’s, but whereas the recursion scheme in Klein’s algorithm is
determined by just one of the two input trees, in our algorithm the recursion depends
alternately on both trees.

2. We prove a worst-case lower bound of Ω(nm2(1 + log n
m

)) time for all decomposition
strategy algorithms for the tree edit distance problem. This bound improves the pre-
vious best lower bound of Ω(nm log n log m) time [14], and establishes the optimality
of our algorithm among all decomposition strategy algorithms.

3. For the longest common subtree problem, we show how to modify Zhang and Shasha’s
and Klein’s algorithms using ideas from Hunt-Szymanski and Hirschberg string LCS
algorithms. Our first algorithm runs in time O(r ·height(F ) ·height(G) · lg lg m)) where
r is the number of pairs (v ∈ F,w ∈ G) such that v and w have the same label. Our
second algorithm runs in time O(Lr · lg r · lg lg m)), where L = |LCS(F,G)|. To derive
this algorithm we present a novel three dimensional alignment graph.
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Lower and Upper Bounds for Tree
Edit Distance

2.1 A unified presentation of previous algorithms

2.1.1 Definitions

Both the existing algorithms and our new algorithm compute the edit distance of finite
ordered Σ-labeled forests, henceforth forests. These are forests that have a left-to-right order
among siblings and each vertex is assigned a label from a given finite alphabet Σ such that two
different vertices can have the same label or different labels. The unique empty forest/tree
is denoted by ∅. The vertex set of a forest F is written simply as F , as when we speak
of a vertex v ∈ F . For a forest F and v ∈ F , σ(v) denotes the label of v, Fv denotes the
subtree of F rooted at v, and F − v denotes the forest F after deleting v. The special case
of F − root(F ) where F is a tree and root(F ) is its root is denoted F ◦. The leftmost and
rightmost trees of a forest F are denoted by LF and RF and their roots by `F and rF . We
denote by F − LF the forest F after deleting the entire leftmost tree LF ; similarly F − RF .
A left-to-right postorder traversal of F is the postorder traversal of all its trees LF , . . . , RF

from left to right. For a tree T , the postorder traversal is defined recursively as the postorder
traversal of the forest T ◦ followed by a visit of root(T ) (as opposed to a preorder traversal
that first visits root(T ) and then T ◦). A forest obtained from F by a sequence of any number
of deletions of the leftmost and rightmost roots is called a subforest of F .

Given forests F and G and vertices v ∈ F and w ∈ G, we write c
del

(v) instead of c
del

(σ(v))
for the cost of deleting or inserting σ(v), and we write c

match
(v, w) instead of c

match
(σ(v), σ(w))

for the cost of relabeling σ(v) to σ(w). δ(F, G) denotes the edit distance between the forests
F and G.

Because insertion and deletion costs are the same (for a node of a given label), insertion in
one forest is tantamount to deletion in the other forest. Therefore, the only edit operations
we need to consider are relabelings and deletions of nodes in both forests. In the next
two sections, we briefly present the algorithms of Shasha and Zhang, and of Klein. This
presentation, inspired by the tree similarity survey of Bille [6], is somewhat different from
the original presentations and is essential for understanding our algorithm.
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2.1.2 Zhang and Shasha’s algorithm

Given two forests F and G of sizes n and m respectively, the following lemma is easy to
verify. Intuitively, the lemma says that in any sequence of edit operations the two rightmost
roots in F and G must either be matched with each other or else one of them is deleted.

Lemma 2.1 ([30]). δ(F, G) can be computed as follows:

• δ(∅, ∅) = 0

• δ(F, ∅) = δ(F − rF , ∅) + c
del

(rF )

• δ(∅, G) = δ(∅, G− rG) + c
del

(rG)

• δ(F, G) = min





δ(F − rF , G) + c
del

(rF ),
δ(F, G− rG) + c

del
(rG),

δ(R◦
F , R◦

G) + δ(F −RF , G−RG) + c
match

(rF , rG)

Lemma 2.1 yields an O(m2n2) dynamic programming algorithm. If we index the vertices
of the forests F and G according to their left-to-right postorder traversal position, then entries
in the dynamic program table correspond to pairs (F ′, G′) of subforests F ′ of F and G′ of G
where F ′ contains vertices {i1, i1 + 1, . . . , j1} and G′ contains vertices {i2, i2 + 1, . . . , j2} for
some 1 ≤ i1 ≤ j1 ≤ n and 1 ≤ i2 ≤ j2 ≤ m.

However, we next show that only O(min{nheight, nleaves}·min{mheight,mleaves}·nm) different
relevant subproblems are encountered by the recursion computing δ(F, G). We calculate the
number of relevant subforests of F and G independently, where a forest F ′ (respectively G′) is
a relevant subforest of F (respectively G) if it occurs in the computation of δ(F, G). Clearly,
multiplying the number of relevant subforests of F and of G is an upper bound on the total
number of relevant subproblems.

We now count the number of relevant subforests of F ; the count for G is similar. First,
notice that for every node v ∈ F , F ◦

v is a relevant subproblem. This is because the recursion
allows us to delete the rightmost root of F repeatedly until v becomes the rightmost root; we
then match v (i.e., relabel it) and get the desired relevant subforest. A more general claim
is stated and proved later on in Lemma 2.3. We define

keyroots(F ) = {the root of F} ∪ {v ∈ F | v has a left sibling}.
It is easy to see that every relevant subforest of F is a prefix (with respect to the postorder
indices) of F ◦

v for some node v ∈ keyroots(F ). If we define v’s collapse depth cdepth(v) to
be the number of keyroot ancestors of v, and cdepth(F ) to be the maximum cdepth(v) over
all nodes v ∈ F , we get that the total number of relevant subforest of F is at most

∑

v∈keyroots(F )

|Fv| =
∑
v∈F

cdepth(v) ≤
∑
v∈F

cdepth(F ) = |F |cdepth(F ).

This means that given two trees, F and G, of sizes n and m we can compute δ(F, G) in
O(cdepth(F ) · cdepth(G) ·nm) = O(nheight ·mheight ·nm) time. Zhang and Shasha also proved
that for any tree T of size n, cdepth(T ) ≤ min{nheight, nleaves}, hence the result. In the worst
case, this algorithm runs in O(m2n2) = O(n4) time.
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2.1.3 Klein’s algorithm

Klein’s algorithm is based on a recursion similar to Lemma 2.1. Again, we consider forests
F and G of sizes |F | = n ≥ |G| = m. Now, however, instead of recursing always on the
rightmost roots of F and G, we recurse on the leftmost roots if |LF | ≤ |RF | and on the
rightmost roots otherwise. In other words, the “direction” of the recursion is determined by
the (initially) larger of the two forests. We assume the number of relevant subforests of G is
O(m2); we have already established that this is an upper bound.

We next show that Klein’s algorithm yields only O(n log n) relevant subforests of F . The
analysis is based on a technique called heavy path decomposition [17, 32]. We mark the root
of F as light. For each internal node v ∈ F , we pick one of v’s children with maximal number
of descendants and mark it as heavy, and we mark all the other children of v as light. We
define ldepth(v) to be the number of light nodes that are proper ancestors of v in F , and
light(F ) as the set of all light nodes in F . It is easy to see that for any forest F and vertex
v ∈ F , ldepth(v) ≤ log |F | + O(1). Note that every relevant subforest of F is obtained by
some i ≤ |Fv| consecutive deletions from Fv for some light node v. Therefore, the total
number of relevant subforests of F is at most

∑

v∈light(F )

|Fv| ≤
∑
v∈F

1 + ldepth(v) ≤
∑
v∈F

(log |F |+ O(1)) = O(|F | log |F |).

Thus, we get an O(m2n log n) = O(n3 log n) algorithm for computing δ(F, G).

2.1.4 The decomposition strategy framework

Both Klein’s and Zhang and Shasha’s algorithms are based on Lemma 2.1. The difference
between them lies in the choice of when to recurse on the rightmost roots and when on the
leftmost roots. The family of decomposition strategy algorithms based on this lemma was
formalized by Dulucq and Touzet in [14].

Definition 2.2. Let F and G be two forests. A strategy is a mapping from pairs (F ′, G′) of
subforests of F and G to {left, right}. A decomposition algorithm is an algorithm based on
Lemma 2.1 with the directions chosen according to a specific strategy.

Each strategy is associated with a specific set of recursive calls (or a dynamic programming
algorithm). The strategy of Shasha and Zhang’s algorithm is S(F ′, G′) = right for all F ′, G′.
The strategy of Klein’s algorithm is S(F ′, G′) = left if |LF ′ | ≤ |RF ′|, and S(F ′, G′) = right
otherwise. Notice that Zhang and Shasha’s strategy does not depend on the input trees,
while Klein’s strategy depends only on the larger input tree. Dulucq and Touzet proved a
lower bound of Ω(mn log m log n) time for any decomposition strategy algorithm.

The following lemma states that every decomposition algorithm computes the edit dis-
tance between every two root-deleted subtrees of F and G.

Lemma 2.3. Given a decomposition algorithm with strategy S, the pair (F ◦
v , G◦

w) is a relevant
subproblem for all v ∈ F and w ∈ G regardless of the strategy S.

Proof. First note that a node v′ ∈ Fv (respectively, w′ ∈ Gw) is never deleted or matched
before v (respectively, w) is deleted or matched. Consider the following specific sequence of
recursive calls:

8



• Delete from F until v is either the leftmost or the rightmost root.

• Next, delete from G until w is either the leftmost or the rightmost root.

Let (F ′, G′) denote the resulting subproblem. There are four cases to consider.

1. v and w are the rightmost (leftmost) roots of F ′ and G′, and S(F ′, G′) = right (left).

Match v and w to get the desired subproblem.

2. v and w are the rightmost (leftmost) roots of F ′ and G′, and S(F ′, G′) = left (right).

Note that at least one of F ′, G′ is not a tree (since otherwise this is case (1)). Delete
from one which is not a tree. After a finite number of such deletions we have reduced
to case (1), either because S changes direction, or because both forests become trees
whose roots are v, w.

3. v is the rightmost root of F ′, w is the leftmost root of G′.

If S(F ′, G′) = left, delete from F ′; otherwise delete from G′. After a finite number of
such deletions this reduces to one of the previous cases when one of the forests becomes
a tree.

4. v is the leftmost root of F ′, w is the rightmost root of G′.

This case is symmetric to (3).

2.2 An O(m2n(1 + log n
m)) algorithm

In this section we present our algorithm for computing δ(F, G) given two trees F and G of
sizes |F | = n ≥ |G| = m. The algorithm recursively uses a decomposition strategy in a
divide-and-conquer manner to achieve O(nm2(1+ log n

m
)) = O(n3) running time in the worst

case. For clarity we describe the algorithm recursively and analyze its time complexity. In
Section 2.4 we prove that the space complexity of a bottom-up non recursive implementation
of the algorithm is O(mn) = O(n2).

2.2.1 Description of the algorithm

Before presenting our algorithm, let us try to develop some intuition. We begin with the
observation that Klein’s strategy always determines the direction of the recursion according to
the F -subforest, even in subproblems where the F -subforest is smaller than the G-subforest.
However, it is not straightforward to change this since even if at some stage we decide to
choose the direction according to the other forest, we must still make sure that all subproblems
previously encountered are entirely solved. At first glance this seems like a real obstacle
since apparently we only add new subproblems to those that are already computed. Our key
observation is that there are certain subproblems for which it is worthwhile to choose the
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(F)

Figure 2.1: A tree F with n nodes. The black nodes belong to the heavy path. The white
nodes are in TopLight(F ), and the size of each subtree rooted at a white node is at most n

2
.

Note that the root of the tree belongs to the heavy path even though it is light.

direction according to the currently larger forest, while for other subproblems we had better
keep choosing the direction according to the originally larger forest.

The heavy path of a tree F is the unique path starting from the root (which is light) along
heavy nodes. Consider two trees, F and G, and assume we are given the distances δ(F ◦

v , G◦
w)

for all v ∈ F and w ∈ G. By lemma 2.3, these are relevant subproblems for any decomposition
strategy algorithm. How would we go about computing δ(F, G) in this case? Using Shasha
and Zhang’s strategy would require O(|F ||G|) time, while using Klein’s strategy would take
O(|F ||G|2) time. Let us focus on Klein’s strategy since Shasha and Zhang’s strategy is
independent of the trees. Note that even if we were not given the distance δ(F ◦

u , G◦
w) for a

node u on the heavy path of F , we would still be able to solve the problem in O(|F ||G|2)
time. To see why, note that in order to compute the relevant subproblem δ(Fu, Gw), we must
compute all the subproblems required for solving δ(F ◦

u , G◦
w) even if δ(F ◦

u , G◦
w) is given.

We define the set TopLight(F ) to be the set of roots of the forest obtained by removing
the heavy path of F . Note that TopLight(F ) is the set of light nodes with ldepth 1 in F
(see the definition of ldepth in Section 2.1.3). This definition is illustrated in Fig. 2.1. It
follows from Lemma 2.3 that if we compute δ(Fv, G) for all v ∈ TopLight(F ), we would also
compute all the subproblems δ(F ◦

v′ , G
◦
w) for any w ∈ G and v′ not on the heavy path of F .

Note that Klein’s strategy solves δ(Fv, G) by determining the direction according to Fv even
if |Fv| < |G|. We observe that we can do better if in such cases we determine the direction
according to G. It is important to understand that making the decisions according to the
larger forest when solving δ(F ◦

v , G◦
w) for any v ∈ F and w ∈ G (i.e., regardless of whether v

is on the heavy path or not) would actually increase the running time. The identification of
the set TopLight(F ) is crucial for obtaining the improvement.

Given these definitions, the recursive formulation of our algorithm is simply:

10



(1) If |F | < |G|, compute δ(G,F ) instead.

(2) Recursively compute δ(Fv, G) for all v ∈ TopLight(F ).

(3) Compute δ(F, G) using the following decomposition strategy: S(F ′, G′) = left if
F ′ is a tree, or if `F ′ is not the heavy child of its parent. Otherwise, S(F ′, G′) =
right. However, do not recurse into subproblems that were previously computed
in step (2).

The algorithm’s first step makes sure that F is the larger forest, and the second step makes
sure that δ(F ◦

v′ , G
◦
w) is computed and stored for all v′ not in the heavy path of F and for all

w ∈ G. Note that the strategy in the third step is equivalent to Klein’s strategy for binary
trees. For higher valence trees, this variant first makes all left deletions and then all right
deletions, while Klein’s strategy might change direction many times. They are equivalent in
the important sense that both delete the heavy child last. The algorithm is evidentally a
decomposition strategy algorithm, since for all subproblems, it either deletes or matches the
leftmost or rightmost roots. The correctness of the algorithm follows from the correctness of
decomposition strategy algorithms in general.

2.2.2 Time complexity analysis

We show that our algorithm has a worst-case running time of O(m2n(1+log n
m

)) = O(n3). We
proceed by counting the number of subproblems computed in each step of the algorithm. We
call a subproblem trivial if at least one of the forests in this subproblem is empty. Obviously,
the number of distinct trivial subproblems is O(n2). Let R(F, G) denote the number of
non-trivial relevant subproblems encountered by the algorithm in the course of computing
δ(F,G). From now on we only count non-trivial subproblems, unless explicitly indicated
otherwise.

We observe that any tree F has the following two properties:

(∗)
∑

v∈TopLight(F )

|Fv| ≤ |F |. Because Fv and Fv′ are disjoint for all v, v′ ∈ TopLight(F ).

(∗∗) |Fv| < |F |
2

for every v ∈ TopLight(F ). Otherwise v would be a heavy node.

In step (2) we compute δ(Fv, G) for all v ∈ TopLight(F ). Hence, the number of subprob-
lems encountered in this step is

∑
v∈TopLight(F ) R(Fv, G). For step (3), we bound the number

of relevant subproblems by multiplying the number of relevant subforests in F and in G. For
G, we count all possible O(|G|2) subforests obtained by left and right deletions. Note that
for any node v′ not in the heavy path of F , the subproblem obtained by matching v′ with any
node w in G was already computed in step (2). This is because any such v′ is contained in Fv

for some v ∈ TopLight(F ), so δ(F ◦
v′ , G

◦
w) is computed in the course of computing δ(Fv, G) (by

Lemma 2.3). Furthermore, note that in step (3), a node v on the heavy path of F cannot be
matched or deleted until the remaining subforest of F is precisely the tree Fv. At this point,
both matching v or deleting v result in the same new relevant subforest F ◦

v . This means
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that we do not have to consider matchings of nodes when counting the number of relevant
subproblems in step (3). It suffices to consider only the |F | subforests obtained by deletions
according to our strategy. Thus, the total number of new subproblems encountered in step
(3) is bounded by |G|2|F |.

We have established that if |F | ≥ |G| then

R(F,G) ≤ |G|2|F |+
∑

v∈TopLight(F )

R(Fv, G)

and if |F | < |G| then

R(F, G) ≤ |F |2|G|+
∑

w∈TopLight(G)

R(F,Gw)

We first show, by a crude estimate, that this leads to an O(n3) running time. Later, we
analyze the dependency on m and n accurately.

Lemma 2.4. R(F,G) ≤ 4(|F ||G|)3/2.

Proof. We proceed by induction on |F | + |G|. In the base case, |F | + |G| = 0, so both
forests are empty and R(F,G) = 0. For the inductive step there are two symmetric cases.
If |F | ≥ |G| then R(F, G) ≤ |G|2|F | + ∑

v∈TopLight(F ) R(Fv, G). Hence, by the induction
hypothesis,

R(F, G) ≤ |G|2|F |+
∑

v∈TopLight(F )

4(|Fv||G|)3/2

= |G|2|F |+ 4|G|3/2
∑

v∈TopLight(F )

|Fv|3/2

≤ |G|2|F |+ 4|G|3/2
∑

v∈TopLight(F )

|Fv| max
v∈TopLight(F )

√
|Fv|

≤ |G|2|F |+ 4|G|3/2|F |
√
|F |
2

= |G|2|F |+
√

8(|F ||G|)3/2 ≤ 4(|F ||G|)3/2

Here we have used facts (∗) and (∗∗) and the fact that |F | ≥ |G|. The case where |F | < |G|
is symmetric.

This crude estimate gives a worst-case running time of O(n3). We now analyze the
dependence on m and n more accurately. Along the recursion defining the algorithm, we
view step (2) as only making recursive calls, but not producing any relevant subproblems.
Rather, every new relevant subproblem is created in step (3) for a unique recursive call of
the algorithm. So when we count relevant subproblems, we sum the number of new relevant
subproblems encountered in step (3) over all recursive calls to the algorithm. We define sets
A,B ⊆ F as follows:

A =
{
a ∈ light(F ) : |Fa| ≥ m

}

B =
{
b ∈ F−A : b ∈ TopLight(Fa) for some a ∈ A

}

Note that the root of F belongs to A. Intuitively, the nodes in both A and B are exactly
those for which recursive calls are made with the entire G tree. The nodes in B are the last
ones, along the recursion, for which such recursive calls are made. We count separately:
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(i) the relevant subproblems created in just step (3) of recursive calls δ(Fa, G) for all
a ∈ A, and

(ii) the relevant subproblems encountered in the entire computation of δ(Fb, G) for all
b ∈ B (i.e.,

∑
b∈B R(Fb, G)).

Together, this counts all relevant subproblems for the original δ(F, G). To see this, consider
the original call δ(F, G). Certainly, the root of F is in A. So all subproblems generated in
step (3) of δ(F, G) are counted in (i). Now consider the recursive calls made in step (2) of
δ(F,G). These are precisely δ(Fv, G) for v ∈ TopLight(F ). For each v ∈ TopLight(F ), notice
that v is either in A or in B; it is in A if |Fv| ≥ m, and in B otherwise. If v is in B, then all
subproblems arising in the entire computation of δ(Fv, G) are counted in (ii). On the other
hand, if v is in A, then we are in analogous situation with respect to δ(Fv, G) as we were in
when we considered δ(F, G) (i.e., we count separately the subproblems created in step (3) of
δ(Fv, G) and the subproblems coming from δ(Fu, G) for u ∈ TopLight(Fv)).

Earlier in this section, we saw that the number of subproblems created in step (3) of
δ(F,G) is |G|2|F |. In fact, for any a ∈ A, by the same argument, the number of subproblems
created in step (3) of δ(Fa, G) is |G|2|Fa|. Therefore, the total number of relevant subproblems
of type (i) is |G|2 ∑

a∈A |Fa|. For v ∈ F , define depthA(v) to be the number of proper ancestors
of v that lie in the set A. We claim that depthA(v) ≤ 1 + log n

m
for all v ∈ F . To see this,

consider any sequence a0, . . . , ak in A where ai is a descendent of ai−1 for all i ∈ [1, k]. Note
that |Fai

| ≤ 1
2
|Fai−1

| for all i ∈ [1, k] since the ais are light nodes. Also note that Fa0 ≤ n and
that |Fak

| ≥ m by the definition of A. It follows that k ≤ log n
m

, i.e., A contains no sequence
of descendants of length > 1 + log n

m
. So clearly every v ∈ F has depthA(v) ≤ 1 + log n

m
.

We now have the number of relevant subproblems of type (i) as

|G|2
∑
a∈A

|Fa| ≤ m2
∑
v∈F

1 + depthA(v) ≤ m2
∑
v∈F

(2 + log
n

m
) = m2n(2 + log

n

m
).

The relevant subproblems of type (ii) are counted by
∑

b∈B R(Fb, G). Using Lemma 2.4,
we have ∑

b∈B

R(Fb, G) ≤ 4|G|3/2
∑

b∈B

|Fb|3/2

≤ 4|G|3/2
∑

b∈B

|Fb|max
b∈B

√
|Fb|

≤ 4|G|3/2|F |√m = 4m2n.

Here we have used the facts that |Fb| < m and
∑

b∈B |Fb| ≤ |F | (since the trees Fb are disjoint
for different b ∈ B). Therefore, the total number of relevant subproblems for δ(F, G) is at
most m2n(2 + log n

m
) + 4m2n = O(m2n(1 + log n

m
)). This implies:

Theorem 2.5. The running time of the algorithm is O(m2n(1 + log n
m

)).

2.3 A tight lower bound for decomposition algorithms

In this section we present a lower bound on the worst case running time of decomposition
strategy algorithms. We first give a simple proof of an Ω(m2n) lower bound. In the case
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where m = Θ(n), this gives a lower bound of Ω(n3) which shows that our algorithm is worst-
case optimal among all decomposition algorithms. To prove that our algorithm is worst-case
optimal for any m ≤ n, we analyze a more complicated scenario that gives a lower bound of
Ω(m2n(1+ log n

m
)), matching the running time of our algorithm, and improving the previous

best lower bound of Ω(nm log n log m) time [14].
In analyzing strategies we will use the notion of a computational path, which corresponds to

a specific sequence of recursion calls. Recall that for all subforest-pairs (F ′, G′), the strategy
S determines a direction: either right or left. The recursion can either delete from F ′ or from
G′ or match. A computational path is the sequence of operations taken according to the
strategy in a specific sequence of recursive calls. For convenience, we sometimes describe a
computational path by the sequence of subproblems it induces, and sometimes by the actual
sequence of operations: either “delete from the F -subforest”, “delete from the G-subforest”,
or “match”.

We now turn to the Ω(m2n) lower bound on the number of relevant subproblems for any
strategy.

Lemma 2.6. For any decomposition algorithm, there exists a pair of trees (F,G) with sizes
n,m respectively, such that the number of relevant subproblems is Ω(m2n).

(F) (G)

v

rv�v
�w rw

w

Figure 2.2: The two trees used to prove an Ω(m2n) lower bound (Lemma 2.6).

Proof. Let S be the strategy of the decomposition algorithm, and consider the trees F and
G depicted in Fig. 2.3. According to lemma 2.3, every pair (F ◦

v , G◦
w) where v ∈ F and w ∈ G

is a relevant subproblem for S. Focus on such a subproblem where v and w are internal
nodes of F and G. Denote v’s right child by vr and w’s left child by w`. Note that F ◦

v is
a forest whose rightmost root is the node vr. Similarly, G◦

w is a forest whose leftmost root
is w`. Starting from (F ◦

v , G◦
w), consider the computational path cv,w that deletes from F

whenever the strategy says left and deletes from G otherwise. In both cases, neither vr nor
w` is deleted unless one of them is the only node left in the forest. Therefore, the length
of this computational path is at least min{|Fv|, |Gw|} − 1. Recall that for each subproblem
(F ′, G′) along cv,w, the rightmost root of F ′ is vr and the leftmost root of G′ is w`. It follows
that for every two distinct pairs (v1, w1) 6= (v2, w2) of internal nodes in F and G, the relevant
subproblems occurring along the computational paths cv1,w1 and cv2,w2 are disjoint. Since
there are n

2
and m

2
internal nodes in F and G respectively, the total number of subproblems
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along the cv,w computational paths is given by:

∑

(v,w) internal nodes

min{|Fv|, |Gw|} − 1 =

n
2∑

i=1

m
2∑

j=1

min{2i, 2j} = Ω(m2n)

The Ω(m2n) lower bound established by Lemma 2.6 is tight if m = Θ(n), since in this
case our algorithm achieves an O(n3) running time. To establish a tight bound when m is
not Θ(n), we use the following technique for counting relevant subproblems. We associate a
subproblem consisting of subforests (F ′, G′) with the unique pair of vertices (v, w) such that
Fv, Gw are the smallest trees containing F ′, G′ respectively. For example, for nodes v and w,
each with at least two children, the subproblem (F ◦

v , G◦
w) is associated with the pair (v, w).

Note that all subproblems encountered in a computational path starting from (F ◦
v , G◦

w) until
the point where either forest becomes a tree are also associated with (v, w).

Lemma 2.7. For every decomposition algorithm, there exists a pair of trees (F, G) with sizes
n ≥ m such that the number of relevant subproblems is Ω(m2n log n

m
).

(F) (G)

v
rv�v �w

rw

w

Figure 2.3: The two trees used to prove Ω(m2n log n
m

) lower bound (Lemma 2.7).

Proof. Consider the trees illustrated in Fig. 2.3. The n-sized tree F is a complete balanced
binary tree, and G is a “zigzag” tree of size m. Let w be an internal node of G with a single
leaf wr as its right subtree and w` as a left child. Denote m′ = |Gw|. Let v be a node in F
such that Fv is a tree of size n′ + 1 where n′ ≥ 4m ≥ 4m′. Denote v’s left and right children
v` and vr respectively. Note that |Fv`

| = |Fvr | = n′
2

Let S be the strategy of the decomposition algorithm. We aim to show that the total
number of relevant subproblems associated with (v, w) or with (v, w`) is at least n′

4
(m′ − 2).

Starting from the subproblem (F ◦
v , G◦

w), which is relevant by lemma 2.3, let c be the com-
putational path that always deletes from F (no matter whether S says left or right). We
consider two complementary cases.
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Case 1: n′
4

left deletions occur in the computational path c, and at the time of the n′
4
th left

deletion, there were fewer than n′
4

right deletions.

We define a set of new computational paths {cj}1≤j≤n′
4

where cj deletes from F up through

the jth left deletion, and thereafter deletes from F whenever S says right and from G whenever
S says left. At the time the jth left deletion occurs, at least n′

4
≥ m′− 2 nodes remain in Fvr

and all m′ − 2 nodes are present in Gw`
. So on the next m′ − 2 steps along cj, neither of the

subtrees Fvr and Gw`
is totally deleted. Thus, we get m′ − 2 distinct relevant subproblems

associated with (v, w). Notice that in each of these subproblems, the subtree Fv`
is missing

exactly j nodes. So we see that, for different values of j ∈ [1, n′
4
], we get disjoint sets of m′−2

relevant subproblems. Summing over all j, we get n′
4
(m′ − 2) distinct relevant subproblems

associated with (v, w).

Case 2: n′
4

right deletions occur in the computational path c, and at the time of the n′
4
th

right deletion, there were fewer than n′
4

left deletions.

We define a different set of computational paths {γj}1≤j≤n′
4

where γj deletes from F up

through the jth right deletion, and thereafter deletes from F whenever S says left and from
G whenever S says right (i.e., γj is cj with the roles of left and right exchanged). Similarly
as in case 1, for each j ∈ [1, n′

4
] we get m′ − 2 distinct relevant subproblems in which Fvr

is missing exactly j nodes. All together, this gives n′
4
(m′ − 2) distinct subproblems. Note

that since we never make left deletions from G, the left child of w` is present in all of these
subproblems. Hence, each subproblem is associated with either (v, w) or (v, w`).

In either case, we get n′
4
(m′ − 2) distinct relevant subproblems associated with (v, w) or

(v, w`). To get a lower bound on the number of problems we sum over all pairs (v, w) with Gw

being a tree whose right subtree is a single node, and |Fv| ≥ 4m. There are m
4

choices for w
corresponding to tree sizes 4j for j ∈ [1, m

4
]. For v, we consider all nodes of F whose distance

from a leaf is at least log(4m). For each such pair we count the subproblems associated with
(v, w) and (v, w`). So the total number of relevant subproblems counted in this way is

∑
v,w

|Fv|
4

(|Gw| − 2) =
1

4

∑
v

|Fv|
m
4∑

j=1

(4j − 2)

=
1

4

log n∑

i=log 4m

n

2i
·2i

m
4∑

j=1

(4j − 2) = Ω(m2n log
n

m
)

Theorem 2.8. For every decomposition algorithm and n ≥ m, there exist trees F and G of
sizes Θ(n) and Θ(m) such that the number of relevant subproblems is Ω(m2n(1 + log n

m
)).

Proof. If m = Θ(n) then this bound is Ω(m2n) as shown in Lemma 2.6. Otherwise, this
bound is Ω(m2n log n

m
) which was shown in Lemma 2.7.
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2.4 Implementing the algorithm in O(mn) space

The recursion presented in Section 2.2 for computing δ(F,G) translates into an O(m2n(1 +
log n

m
)) time and space algorithm. In this section we reduce the space complexity of this

algorithm to O(mn). We achieve this by ordering the relevant subproblems in such a way
that we need to record the edit distance of only O(mn) relevant subproblems at any point
in time. For simplicity, we assume the input trees F and G are binary. At the end of this
section, we show how to remove this assumption.

The algorithm TED fills a global n by m table ∆ with values ∆vw = δ(F ◦
v , G◦

w) for all
v ∈ F and w ∈ G.

TED(F, G)

1: If |F | < |G| do TED(G,F ).

2: For every v ∈ TopLight(F ) do TED(Fv, G).

3: Fill ∆vw for all v ∈ HeavyPath(F ) and w ∈ G.

Step 3 runs in O(|F ||G|2) time and assumes ∆vw has already been computed in step 2
for all v ∈ F − HeavyPath(F ) and w ∈ G (see Section 2.2). In the remainder of this section
we prove that it can be done in O(|F ||G|) space.

In step 3 we go through the nodes v1, . . . , vt on the heavy path of F starting with the leaf
v1 and ending with the root vt where t = |HeavyPath(F )|. Throughout the computation we
maintain a table T of size |G|2. When we start handling vp (1 ≤ p ≤ t), the table T holds the
edit distance between Fvp−1 and all possible subforests of G. We use these values to calculate
the edit distance between Fvp and all possible subforests of G and store the newly computed
values back into T . We refer to the process of updating the entire T table (for a specific vp)
as a period. Before the first period, in which Fv1 is a leaf, we set T to hold the edit distance
between ∅ and G′ for all subforests G′ of G (this is just the cost of deleting G′).

Note that since we assume F is binary, during each period the direction of our strategy
does not change. Let left(v) and right(v) denote the left and right children of a node v.
If vp−1 = right(vp), then our strategy is left throughout the period of vp. Otherwise it is
right. We now explain what goes into computing a period. This process, which we refer
to as ComputePeriod(vp), both uses and updates tables T and ∆. At the heart of this
procedure is a dynamic program. Throughout this description we assume that our strategy
is left. The right analogue is obvious. We now describe two simple subroutines that are called
by ComputePeriod(vp).

If Fvp−1 can be obtained from Fvp by a series of left deletions, the intermediate left subforest
enumeration with respect to Fvp−1 and Fvp is the sequence Fvp−1 = F0, F1 . . . , Fk = Fvp such
that Fk′−1 = Fk′ − `Fk′ for all 1 ≤ k′ ≤ k = |Fvp| − |Fvp−1|. This concept is illustrated in
Fig. 2.4. The subroutine
IntermediateLeftSubforestEnum(Fvp−1 , Fvp) associates every Fk′ with `Fk′ and lists
them in the order of the intermediate left subforest enumerations with respect to Fvp−1 and
Fvp . This is the order in which we access the nodes and subforests during the execution of
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Figure 2.4: The intermediate left subforest enumeration with respect to Fvp−1 and Fvp is the
sequence of forests Fvp−1 = F0, F1, . . . , F5 = Fvp .

ComputePeriod(vp), so each access will be done in constant time. The intermediate left
and right subforest enumerations required for all periods (i.e., for all of the vps along the
heavy path) can be prepared once in O(|F |) time and space by performing |F | deletions on
F according to our strategy and listing the deleted vertices in reverse order.

Let w0, w1, . . . , w|G|−1 be the right-to-left preorder traversal of a tree G. We define Gi,0

as the forest obtained from G by making i right deletions. Notice that the rightmost tree
in Gi,0 is Gwi

(the subtree of G rooted at wi). We further define Gi,j as the forest obtained
from G by first making i right deletions and then making j left deletions. Let j(i) be the
number of left deletions required to turn Gi,0 into the tree Gwi

. We can easily compute
j(0), . . . , j(|G| − 1) in O(|G|) time and space by noticing that j(i) = |G| − i − |Gwi

|. Note
that distinct nonempty subforests of G are represented by distinct Gi,js for 0 ≤ i ≤ |G| − 1
and 0 ≤ j ≤ j(i). For convenience, we sometimes refer to G◦

wi
as Gi,j(i)+1 and sometimes as

the equivalent Gi+1,j(i). The two subforest are the same since the forest Gi,j(i) is the tree Gwi
,

so making another left deletion, namely Gi,j(i)+1 is the same as first making an extra right
deletion, namely Gi+1,j(i). The left subforest enumeration of all nonempty subforests of G is
defined as

G|G|−1,j(|G|−1), . . . , G|G|−1,0 , . . . , G2,j(2), . . . , G2,0 , G1,j(1), . . . , G1,0 , G0,0

The subroutine LeftSubforestEnum(G) associates every Gi,j with the left deleted
vertex `Gi,j

and lists them in the order of the left subforest enumeration with respect to G, so
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Figure 2.5: The indexing of various subforests (shown in solid black) of G (shown in gray).
The right-to-left preorder traversal of G is w0, w1, . . . , w|G|−1. The subforest Gi,j is the forest
obtained from G by first making i right deletions and then making j left deletions. All
nonempty subforests of G are captured by all 0 ≤ i ≤ |G|−1 and 0 ≤ j ≤ j(i) = |G|−i−|Gwi

|.
The index of G itself is G0,0. In the special case of G◦

w1
= G2,4 we sometimes use the equivalent

index G1,5.

that we will be able to access `Gi,j
in this order in constant time per access. This procedure

takes O(|G|) time and space for each i by performing first i right deletions and then j left
deletions, and listing the left deleted vertices in reverse order. The entire subroutine therefore
requires O(|G|2) time and space. The above definitions are illustrated in Fig. 2.5. There are
obvious “right” analogues of everything we have just defined.

The pseudocode for ComputePeriod(vp) is given below. As we already mentioned, at
the beginning of the period for vp, the table T stores the distance between Fvp−1 and all
subforests of G and our goal is to update T with the distance between Fvp and any subforest
of G. For each value of i in decreasing order (the loop in Line 3), we compute a temporary
table S of the distances between the forests Fk′ in the intermediate left subforest enumeration
with respect to Fvp−1 and Fvp and the subforest Gi,j for 0 ≤ j ≤ j(i) in the left subforest
enumeration of G. Clearly, there are O(|F ||G|) such subproblems. The computation is done
for increasing values of k′ and decreasing values of j according to the basic relation in Line
4. Once the entire table S is computed, we update T , in Line 5, with the distances between
Fk = Fvp and Gi,j for all 0 ≤ j ≤ j(i). Note that along this computation we encounter the
subproblem which consists of the root-deleted-trees F ◦

vp
= Fk−1 and G◦

wi−1
= Gi,j(i−1). In line

7, we store the value for this subproblem in ∆vp,wi−1
. Thus, going over all possible values

for i, the procedures updates the entire table T and all the appropriate entries in ∆, and
completes a single period.

19



ComputePeriod(vp)

Overwrites T with values δ(Fvp , G
′) for all subforests G′ of G, and fills in ∆ with

values δ(F ◦
vp

, G◦
w) for every w ∈ G.

Assumes T stores δ(Fvp−1 , G
′) for all subforests G′ of G, and vp−1 = right(vp) (if

vp−1 = left(vp) then reverse roles of “left” and “right” below).

1: F0, . . . , Fk ← IntermediateLeftSubforestEnum(Fvp−1 , Fvp)

2: G|G|−1,j(|G|−1), . . . , G0,0 ← LeftSubforestEnum(G)

3: for i = |G| − 1, . . . , 0 do

4: compute table S ←
(
δ(Fk′ , Gi,j)

)
k′=1,...k
j=j(i),...,0

via the dynamic program:

δ(Fk′ , Gi,j) = min





c
del

(`Fk′ ) + δ(Fk′−1, Gi,j),

c
del

(`Gi,j
) + δ(Fk′ , Gi,j+1),

c
match

(`Fk′ , `Gi,j
) + δ(L◦Fk′

, L◦Gi,j
)

+ δ(Fk′–LFk′ , Gi,j–LGi,j
)

5: T ← δ(Fvp , Gi,j) for all 0 ≤ j ≤ j(i), via S

6: Q ← δ(Fk′ , Gi,j(i−1)) for all 1 ≤ k′ ≤ k, via S

7: ∆ ← δ(F ◦
vp

, Gi,j(i−1)) via S

8: end do

The correctness of ComputePeriod(vp) follows from Lemma 2.1. However, we still need
to show that all the required values are available when needed in the execution of Line 4.
Let us go over the different subproblems encountered during this computation and show that
each of them is available when required along the computation.

δ(Fk′−1, Gi,j):

• when k′ = 1, F0 is Fvp−1 , so it is already stored in T from the previous period.

• for k′ > 1, δ(Fk′−1, Gi,j) was already computed and stored in S, since we go over values
of k′ in increasing order.

δ(Fk′ , Gi,j+1):

• when j = j(i) and i+j(i) = |G|−1, then Gi,j(i)+1 = ∅ so δ(Fk′ , ∅) is the cost of deleting
Fk′ , which may be computed in advance for all subforests within the same time and
space bounds.

• when j = j(i) and i + j(i) < |G| − 1, recall that δ(Fk′ , Gi,j(i)+1) is equivalent to
δ(Fk′ , Gi+1,j(i)) so this problem was already computed, since we loop over the values of
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i in decreasing order. Furthermore, this problem was stored in the array Q when line
6 was executed for the previous value of i.

• when j < j(i), δ(Fk′ , Gi,j+1) was already computed and stored in S, since we go over
values of j in decreasing order.

δ(L◦Fk′
, L◦Gi,j

):

• this value was computed previously (in step 2 of TED) as ∆vw for some v ∈ F −
HeavyPath(F ) and w ∈ G.

δ(Fk′–LFk′ , Gi,j–LGi,j
):

• if j 6= j(i) then Fk′ − LFk′ = Fk′′ where k′′ = k′ − |LFk′ | and Gi,j − LGi,j
= Gi,j′ where

j′ = j + |LGi,j
|, so δ(Fk′′ , Gi,j′) was already computed and stored in S earlier in the

loop.

• if j = j(i), then Gi,j is a tree, so Gi,j = LGi,j
. Hence, δ(Fk′–LFk′ , Gi,j–LGi,j

) is simply
the cost of deleting Fk′′ .

The space required by this algorithm is evidently O(|F ||G|) since the size of S is at most
|F ||G|, the size of T is at most |G|2, the size of Q is at most |F |, and the size of ∆ is |F ||G|.
The time complexity does not change, since we still handle each relevant subproblem exactly
once, in constant time per relevant subproblem.

Note that in the last time ComputePeriod() is called, the table T stores (among other
things) the edit distance between the two input trees. In fact, our algorithm computes the
edit distance between any subtree of F and any subtree of G. We could store these values
without changing the space complexity.

This concludes the description of our O(mn) space algorithm. All that remains to show
is why we may assume the input trees are binary. If they are not binary, we construct in
O(m + n) time binary trees F ′ and G′ where |F ′| ≤ 2n, |G′| ≤ 2m, and δ(F, G) = δ(F ′, G′)
using the following procedure: Pick a node v ∈ F with k > 2 children which are, in left to
right order, left(v) = v1, v2, . . . , vk = right(v). We leave left(v) as it is, and set right(v) to be
a new node with a special label ε whose children are v2, v3, . . . , vk. To ensure this does not
change the edit distance, we set the cost of deleting ε to zero, and the cost of relabeling ε to
∞. The same procedure is applied to G as well. We note that another way to remove the
binary trees assumption is to modify ComputePeriod() to work directly with non-binary
trees at the cost of slightly complicating it. This can be done by splitting it into two parts,
where one handles left deletions and the other right deletions.
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New Upper Bounds for The Largest
Common Subtree Problem

3.1 Preliminaries

In order to discuss the Largest Common Subtree problem we need some definitions in addition
to those of section 2.1

For a pair of trees F, G, two nodes v ∈ F,w ∈ G with the same label are called a match
pair. We assume without loss of generality that the roots of the two input trees form a match
pair (if this property does not hold for the two input trees, we can add new roots to the trees
and solve the tree LCS problem on the new trees).

The Euler string of a tree F is the string obtained when performing a left-to-right DFS
traversal of F and writing down the label of each node twice: when the DFS traversal first
enters the node and when it last leaves the node. We define eF (i) to be the index such that
both the ith and eF (i)th characters of the Euler string of F were generated from the same
node of F . Note that eF (eF (i)) = i.

For i ≤ j, we denote by F [i..j] the forest induced by all nodes v ∈ F whose Euler string
indices both lie between i and j.

The tree LCS problem can be formulated in terms of matchings1. Let F and G be two
forests. We say that a set M ⊆ V (F )× V (G) is an LCS matching between F and G if

1. M is a matching, namely every v ∈ F appears in at most one pair of M and every
v ∈ G appears in at most one pair.

2. For every (v, v′) ∈ M , label(v) = label(v′).

3. For every (v, v′), (w,w′) ∈ M , v is an ancestor of w if and only if v′ is an ancestor of
w′.

4. For every (v, v′), (w, w′) ∈ M , v appears before w in the postorder traversal of F if and
only if v′ appears before w′ in the postorder traversal of G.

An LCS matching M between F and G corresponds to a common subforest of F and G of
size |M |, and vice versa. Therefore, the LCS problem is equivalent to finding a maximal size
matching.

1Matchings can also be used to formulate the tree edit distance problem of Chapter 2, as well as other
variants of the problem.
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For two forests F and G, let LCSR(F, G) (resp., LCSL(F, G)) denote the size of the largest
forest that can be obtained from F and G by node deletions without deleting the root of the
rightmost (resp., leftmost) tree in F or G. If the roots of the rightmost trees in F and G
are not a match pair then we define LCSR(F,G) = 0. Clearly, LCSR(F, G) ≤ LCS(F,G) and
LCSL(F,G) ≤ LCS(F, G).

Lemma 3.1. If F and G are trees whose roots have equal labels then LCSR(F, G) =
LCSL(F,G) = LCS(F, G).

Proof. Let r and r′ be the roots of F and G, respectively. We need to show that there is an
LCS matching between F and G of size LCS(F, G) in which both r and r′ are matched. Let
M be an LCS matching between F and G of size LCS(F, G). If r and r′ are matched in M
we are done. Moreover, we cannot have that both r and r′ are not matched in M since in
this case M ′ = M ∪ {(r, r′)} is an LCS matching between F and G of size LCS(F, G) + 1, a
contradiction.

Now, assume w.l.o.g. that r is not matched in M and r′ is matched. Let v be the vertex
in F that is matched to r′ in M . Then, M ′ = M ∪ {(r, r′)} \ {(v, r′)} is an LCS matching
between F and G with size LCS(F, G).

A path decomposition of a tree F is a set of disjoint paths in F such that (1) each path
ends in a leaf, and (2) each node appears in exactly one path. The main path of F with
respect to a decomposition P is the path in P that contains the root of F . The heavy path
decomposition presented in section refklein is an example for a path decomposition of a tree.
The main path P of the heavy path decomposition is exactly the heavy path of section 2.2.1

A successor data-structure is a data-structures that stores a set of elements S with a key
for each element and supports the following operations: (1) insert(S, x): inserts x into S (2)
delete(S, x): removes x from S (3) pred(S, k): returns the element x ∈ S with maximal key
such that key(x) ≤ k (4) succ(S, k): returns the element x ∈ S with minimal key such that
key(x) ≥ k. Van Emde Boas presented a data structure [36] that supports each of these
operations in O(lg lg u) time, where the set of legal keys is {1, 2, . . . , u}.

3.2 An O(r · height(F ) · height(G) · lg lg m) algorithm

In this section we present an O(r · height(F ) · height(G) · lg lg m) time algorithm for com-
puting the LCS of two trees F and G of sizes n and m and heights height(F ) and
height(G) respectively. The relation between this algorithm and Zhang and Shasha’s
O(nm · height(F ) · height(G)) time algorithm [30] is similar to the relation between Hunt
and Szymanski’s O(r lg lg m) time algorithm [21] and Wagner and Fischer’s O(mn) time
algorithm [37] in the string LCS world.

We describe an algorithm based on that of Zhang and Shasha using an alignment graph.
This approach was also used in [34, 4, 5]. The alignment graph BF,G of F and G is an edge-
weighted directed graph defined as follows. The vertices of BF,G are (i, j) for 1 ≤ i ≤ 2n and
1 ≤ j ≤ 2m. Intuitively, vertex (i, j) corresponds to LCS(F [1..i], G[1..j]), and edges in the
alignment graph correspond to edit operations. The graph has the following edges:
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Figure 3.1: Example of an alignment graph for two trees F and G.

1. Edges (i − 1, j) → (i, j) and (i, j − 1) → (i, j) with weight 0 for every i and j. These
edges either connect vertices which represent the same pair of forests, or represent
deletion of the rightmost root of just one of the forests. Both cases do not change the
LCS, hence the zero weight we assign to these edges.

2. An edge for every match pair v ∈ F, w ∈ G, except for the roots of F and G. Let i
and eF (i) be the two characters of the Euler string of F that correspond to v, where
eF (i) < i, and let eG(j) < j be the two characters of the Euler string of G that
correspond to w. We add an edge (eF (i), eG(j)) → (i, j) with weight LCS(Fv, Gw) to
BF,G. This edge corresponds to matching the rightmost trees of F [1..i] and G[1..j] and
its weight is obtained by recursively applying the algorithm on the trees Fv and Gw.
Note that we cannot add an edge of this type for the match pair of the roots of F and
G because we cannot compute the weight of such edge by recursion.

3. An edge (2n − 1, 2m − 1) → (2n, 2m) with weight 1, which corresponds to the match
between the roots of F and G.

Figure 3.1 shows an example of an alignment graph. For an edge e = (i, j) → (i′, j′), let
tail(e) = (i, j) and head(e) = (i′, j′). The ith coordinate of a vector x is denoted by xi. For
example, for e above, head(e)2 = j′.

Lemma 3.2. The maximum weight of a path in BF,G from vertex (1, 1) to vertex (i, j) is
equal to LCS(F [1..i], G[1..j]).

Proof. We prove the lemma using induction on i + j. The base of the induction (when
i = j = 0) is trivially true. Consider some i and j. Let v and w be the vertices that generate
locations i and j in the Euler strings of F and G, respectively.

Let p be a path from (1, 1) to (i, j) of maximum weight. We first show that there is an LCS
matching M between F [1..i] and G[1..j] of size at least weight(p). Let e = (i′, j′) → (i, j)
be the last edge on p. Denote by p′ the prefix of p up to but not including e. From the
construction of the graph we have that i′ + j′ < i + j, so by the induction hypothesis,
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weight(p′) ≤ LCS(F [1..i′], G[1..j′]). Therefore, there is an LCS mapping M ′ between F [1..i′]
and G[1..j′] of size weight(p′). There are three cases, depending on the type of e.

1. If e is an edge of the first type above, then weight(e) = 0, and M = M ′ is the
corresponding matching (note that F [1..i′] and G[1..j′] are subforests of F [1..i] and
G[1..j], respectively, so M ′ is also an LCS matching between F [1..i] and G[1..j]).

2. If e is an edge of the second type above then i′ = eF (i) and j′ = eG(j). Let M ′′ be an
LCS matching between Fv and Gw of size LCS(Fv, Gw). By construction, weight(e) =
LCS(Fv, Gw). The forest F [1..i] is the disjoint union of the forests F [1..i′] and Fv (as
i′ = eF (i)), and Fv is the rightmost tree in F [1..i]. Similarly, G[1..j] is the disjoint
union of the forests G[1..j′] and Gw, and Gw is the rightmost tree in G[1..j]. Therefore,
M = M ′ ∪ M ′′ is an LCS mapping between F [1..i] and G[1..j] of size weight(p′) +
weight(e) = weight(p).

3. If e is of the third type above then v and w are the roots of F and G, respectively.
Hence, M = M ′ ∪ {(v, w)} is an LCS mapping between F [1..i] and G[1..j] of size
weight(p′) + 1 = weight(p).

We next prove the opposite direction. Let M be an LCS mapping between F [1..i] and
G[1..j] of maximum size. We will show that there is path p from (1, 1) to (i, j) with weight
at least |M |. If v is not matched in M then M is an LCS matching between F [1..i − 1]
and G[1..j]. By, induction, there is a path p′ from (1, 1) to (i− 1, j) of weight at least |M |.
Since there is an edge (i− 1, j) → (i, j) in BF,G, we obtain that there is a path from (1, 1) to
(i, j) of weight at least |M |. The same argument holds if w is not matched in M . Suppose,
therefore, that both v and w are matched in M . We have that eF (i) < i (otherwise v is not
a vertex of F [1..i] so it cannot be matched in M) and eG(j) < j. Moreover, v and w are
the last vertices in the postorders of F [1..i] and G[1..j], respectively, so v must be matched
to w. If (i, j) 6= (2n, 2m), then M ′′ = M ∩ (V (Fv) × V (Gw)) is an LCS matching between
Fv and Gw, and M ′ = M \M ′′ is an LCS matching between F [1..i] − Fv = F [1..eF (i)] and
G[1..j] − Gw = G[1..eG(j)]. By induction, there is a path p′ from (1, 1) to (eF (i), eG(j))
of weight at least |M ′|. Therefore, there is a path from (1, 1) to (i, j) with weight at least
|M ′|+LCS(Fv, Gw) ≥ |M ′|+|M ′′| = |M |. Finally, if (i, j) = (2n, 2m) then M ′ = M \{(v, w)}
is an LCS matching between F [1..i− 1] and G[1..j− 1]. By induction there is a path p′ from
(1, 1) to (i− 1, j − 1) of weight at least |M ′|, so there is a path from (1, 1) to (i, j) of weight
at least |M ′|+ 1 = |M |.

Zhang and Shasha’s algorithm computes the maximum weight of a path from (1, 1) to
(i, j), for every vertex (i, j) of BF,G. By Lemma 3.2, this gives LCS(F, G) at the vertex
(2n, 2m). If there are only few match pairs, we can do better. Denote the set of edges in
BF,G with nonzero weights by EF,G. Clearly, |EF,G| = r. We will exploit the sparsity of the
edges EF,G by ignoring the edges with weight 0 and the vertices that are not the endpoint of
an edge in EF,G. We define the score of e ∈ EF,G as the maximum weight of a path in BF,G

from (1, 1) to head(e) that passes through e.

Lemma 3.3. score(e) = LCSR(F [1..head(e)1], G[1..head(e)2]) for every edge e ∈ EF,G.
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Proof. Fix e ∈ EF,G, and let (v, w) be the corresponding match pair. Following the proof of
Lemma 3.2, we have that for every path p from (1, 1) that ends at head(e) and passes through
e, there is an LCS matching M = M ′ ∪M ′′ between F [1..head(e)1] and G[1..head(e)2] whose
size is equal to weight(p). Furthermore, M ′′ is an LCS matching between Fv and Gw of size
LCS(Fv, Gw). By Lemma 3.1, we may assume that v is matched to w in M ′′. It follows that
score(e) ≤ LCSR(F [1..head(e)1], G[1..head(e)2]).

In the opposite direction, let M be a matching between F [1..head(e)1] and G[1..head(e)2]
of size LCSR(F [1..head(e)1], G[1..head(e)2]) such that (v, w) ∈ M . Following the
proof of Lemma 3.2 we define a path p from (1, 1) to head(e) with weight at least
|M |. Since (v, w) ∈ M , it follows that p passes through e. Therefore, score(e) ≥
LCSR(F [1..head(e)1], G[1..head(e)2]).

By Lemmas 3.1 and 3.3 we have that LCS(F,G) = score((2n − 1, 2m − 1) → (2n, 2m)).
We now describe a procedure that computes LCS(F, G) in O(|EF,G| · lg lg m) time, assuming
we have already computed LCS(Fv, Gw) for every match pair v ∈ F, w ∈ G except for the
roots of F and G. This procedure computes score(e) for every e ∈ EF,G. It uses a successor
data-structure S that stores edges from EF,G, where the key of an edge e is head(e)2. The
procedure handles the rows of the alignment graph in increasing order. For row i, it first
handles all edges e with head(e)1 = i. An important invariant is that when handling row
i, for all j, pred(S, j) stores the last edge from EF,G in a maximal weight path from (1, 1)
to (i, j) among all the paths whose nonzero weight edges were already considered by the
algorithm. To maintain the invariant, when considering an edge e whose head is (i, j), if
score(e) > score(pred(S, j)), then e is a better way to reach (i, j) than pred(S, j). Hence, we
insert e into S. In this case we also check if score(succ(S, j + 1)) ≤ score(e). If so, e is also
better than succ(S, j + 1) so we delete succ(S, j + 1) from S. After handling all edges whose
head is in row i, score(pred(S, j)) is exactly LCS(F [1..i], G[1..j],). Therefore, we can now
update the scores of all the edges e with tail(e) = (i, j) with weight(e) + score(pred(S, j)).
The pseudocode for the procedure is as follows (we assume that score(NULL) = 0).

1: for i = 1, . . . , 2n do
2: for every e ∈ EF,G with head(e)1 = i do
3: j ← head(e)2

4: if score(e) > score(pred(S, j)) then
5: insert(S, e)
6: while succ(S, j + 1) 6= NULL and score(succ(S, j + 1)) ≤ score(e) do
7: delete(S, succ(S, j + 1))
8: for every e ∈ EF,G with tail(e)1 = i do
9: score(e) ← weight(e) + score(pred(S, j))

To analyze the running time, let us count the number of times each operation on S is
called. Each edge of EF,G is inserted or deleted at most once. The number of successor
operations is the same as the number of deletions, and the number of predecessor operations
is the same as the number of edges. Hence, the total number of operations on S is O(|EF,G|).
Using the successor data-structure of van Emde Boas [36] we can support each operation on
S in O(lg lg m) time yielding a total running time of O(|EF,G| · lg lg m). By running the above
procedure recursively on every match pair we get that the total time complexity is bounded
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by

O


 ∑

match pair (v,w)

|EFv ,Gw | · lg lg m


 = O


lg lg m ·

∑

match pair (v,w)

depth(v) · depth(w)




= O (lg lg m · r · height(F ) · height(G)) .

3.3 An O(mr lg r · lg lg m) algorithm

We begin this section by giving an alternative description of Klein’s algorithm using an
alignment graph. However, as opposed to the alignment graph of [34, 4, 5] our graph is three
dimensional.

Given a tree F and a path decomposition P of F we define a sequence of subforests of F
as follows. F (n) = F , and F (i) for i < n is the forest obtained from F (i+1) by deleting one
node: if the root of leftmost tree in F is not on the main path of P then this root is deleted,
and otherwise the root of the rightmost tree in F is deleted. Let xi be the node which is
deleted from F (i) when creating F (i − 1). Let yi be the node of G that generates the ith
character of the Euler string of G. Let Iright be the set of all indices i such that F (i − 1) is
created from F (i) by deleting the rightmost root of F (i), and Ileft = {1, . . . , n} \ Iright.

The alignment graph BF,G of trees F and G is defined as follows. The vertices of BF,G are
(i, j, k) for 0 ≤ i ≤ n, 1 ≤ j ≤ 2m, and j ≤ k ≤ 2m. Intuitively, vertex (i, j, k) corresponds
to LCS(F (i), G[j..k]). For a vertex (i, j, k) with i ∈ Iright the following edges enter the vertex.

1. If i ≥ 1, an edge (i−1, j, k) → (i, j, k) with weight 0. This edge corresponds to deletion
of the rightmost root of F (i). This does not increase the LCS hence the zero weight.

2. If j ≤ k − 1, an edge (i, j, k − 1) → (i, j, k) with weight 0. This edge either connects
vertices which represent the same pair of forests, or represent deletion of the rightmost
root in G[j..k]. Both cases do not change the LCS, hence the zero weight.

3. If xi, yk is a match pair, j ≤ eG(k) < k, and xi is not on the main path of F , an
edge (i− |Fxi

|, j, eG(k)) → (i, j, k) with weight LCS(Fxi
, Gyk

). This edge correspond to
matching the rightmost tree in F (i) to the rightmost tree of G[j..k].

4. If xi, yk is a match pair, j ≤ eG(k) < k, and xi is on the main path of F , an edge
(i−1, eG(k), k−1) → (i, j, k) with weight 1. This edge corresponds to matching xi (the
root of F (i) = Fxi

) to yk (the rightmost root of G[j..k]). If we match these nodes then
only descendants of yk can be matched to the nodes of F (i− 1) (since F (i) is a tree).
To ensure this, we set the second coordinate of the tail of the edge to eG(k) (instead of
j as in the previous case), since nodes with indices j′ < eG(k) are not descendants of
yk.

Similarly, for i ∈ Ileft the edges that enter (i, j, k) are

1. If i ≥ 1, an edge (i− 1, j, k) → (i, j, k) with weight 0.
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2. If j ≤ k − 1, an edge (i, j + 1, k) → (i, j, k) with weight 0.

3. If xi, yj is a match pair, j < eG(j) ≤ k, and xi is not on the main path of F , an edge
(i− |Fxi

|, eG(j), k) → (i, j, k) with weight LCS(Fxi
, Gyj

).

4. If xi, yj is a match pair, j < eG(j) ≤ k, and xi is on the main path of F , an edge
(i− 1, j + 1, eG(j)) → (i, j, k) with weight 1.

The set of all edges in BF,G with nonzero weights is denoted by EF,G. In order to build
BF,G one needs to know the values of LCS(F ′, G′) for some pairs of subforests F ′, G′ of F,G.
These values are obtained by making recursive calls to Klein’s algorithm on the appropriate
subforests of F and G.

Lemma 3.4. The maximum weight of a path in BF,G from some vertex (0, l, l) to vertex
(i, j, k) is equal to LCS(F (i), G[j..k]).

Proof. We prove the lemma by induction on i+(k−j). The base on the induction (i−j+k =
0) is trivially true. Consider some i, j, and k, and suppose that i ∈ Iright (the proof for i ∈ Ileft

is similar).
The proof of the lemma is similar to the proof of Lemma 3.2. We first show that for a

path p from some vertex (0, l, l) to (i, j, k) of maximum weight, there is an LCS matching
between F (i) and G[j..k] of size at least weight(p). This is done by considering the prefix of
p up to but not including e, where e = (i′, j′, k′) → (i, j, k) is the last edge on p. As before,
we can use the inductive hypothesis on p′ (since we have by the construction of the graph
that i′ − j′ + k′ < i − j + k) to obtain an LCS mapping M ′ between F (i′) and G[j′..k′] of
weight weight(p′). We then extend M ′ into the desired matching M according to the type of
the edge e. The arguments are similar to those used in the proof of Lemma 3.2. Note that
in the case when e is an edge of the fourth type, all the vertices in F that are matched in
M ′ are proper descendants of xi (as F (i) is a tree and i′ = i − 1), and all the vertices in G
that are matched in M ′ are proper descendants of yk (as G[j′..k′] = Gyk

− yk). Therefore,
M = M ′ ∪ {(xi, yk)} is the desired LCS mapping for that case.

We next prove the opposite direction. We show that for an LCS mapping M between
F (i) and G[j..k] of maximum size, there is path p from some vertex (0, l, l) to (i, j, k) with
weight at least |M |. We consider several cases according to whether xi and yk are matched in
M . If both xi and yk are matched in M then we consider two cases according to whether xi

is on the main path of F . In each case we choose M ′ ⊆ M such that there is a path of weight
at least |M ′| from some vertex (0, l, l) to some vertex (i′, j′, k′), and from the construction of
the graph there is an edge (i′, j′, k′) → (i, j, k) of weight at least |M | − |M ′|.

Klein’s algorithm computes the maximum weight path that ends at each vertex in BF,G us-
ing dynamic programming, and returns the maximum weight of a path that ends at (n, 1, 2m),
which is equal to LCS(F, G). The path decomposition P is selected in order to minimize the
total size of the alignment graph BF,G and the alignment graphs created by the recursive
calls of the algorithm. Using heavy path decomposition [17], the time complexity of Klein’s
algorithm is O(n lg n ·m2).

Now, we present an algorithm for computing the LCS based on the sparsity of EF,G.
Recall that the score of an edge e ∈ EF,G is the maximum weight of a path in BF,G that ends
at head(e) and passes through e.
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Lemma 3.5. Let e be an edge in EF,G and denote head(e) = (i, j, k). If i ∈ Iright then
score(e) = LCSR(F (i), G[j..k]), and otherwise score(e) = LCSL(F (i), G[j..k]).

We omit the proof of Lemma 3.5 as it is similar to the proof of Lemma 3.3.
Knowing the scores of the edges gives us LCS(F, G) as LCS(F, G) = score((n− 1, 1, 2m−

1) → (n, 1, 2m)). In fact, additional LCS values can be obtained from the scores:

Lemma 3.6. For every match pair x ∈ F, y ∈ G such that x is on the main path of F there
is an edge e ∈ EF,G such that LCS(Fx, Gy) = score(e).

Proof. Let i be the index such that x = xi, and let eG(k) < k be the indices of the two
characters in the Euler string of G that correspond to y. Suppose that i ∈ Iright. Then,
e = (i − 1, eG(k), k − 1) → (i, eG(k), k) is an edge in EF,G. By Lemma 3.5, score(e) =
LCSR(F (i), G[eG(k)..k]). Both F (i) = Fx and G[eG(k)..k] = Gy are trees, so from Lemma 3.1
we have that score(e) = LCS(Fx, Gy). The case of i ∈ Ileft is similar.

A high-level description of the algorithm for computing the LCS of F and G is:

1: Build a path decomposition P of F .
2: for every node x in F in postorder do
3: if x is the first node on some path P ∈ P then
4: Build the set EFx,G.
5: Compute the scores of the edges in EFx,G.
6: Output score((n− 1, 1, 2m− 1) → (n, 1, 2m)).

We will explain how to construct the path decomposition P in step 1 later. For now note
just that P is used when building each of the sets EFx,G in step 4. In order to build EFx,G one
needs to know the values of LCS(Fx′ , Gy) for pairs of nodes x′ and y, where x′ is a node of
Fx that is not on the main path of Fx w.r.t. P . By Lemma 3.6, the value of LCS(Fx′ , Gy) is
equal to the score of an edge from EFx′′ ,G where x′′ is the first vertex on the path P ∈ P that
contains x′ (x′′ can equal x′). Since the nodes of F are processed in postorder, the scores of
the edges in EFx′′ ,G are known when building EFx,G.

The scores of the edges have the following monotonicity property.

Lemma 3.7. Let e be an edge in EF,G and denote head(e) = (i, j, k).

1. If i ∈ Iright then for every j′ ≤ j there is an edge e′ ∈ EF,G such that head(e′) = (i, j′, k)
and score(e′) ≥ score(e).

2. If i ∈ Ileft then for every k′ ≥ k there is an edge e′ ∈ EF,G such that head(e′) = (i, j, k′)
and score(e′) ≥ score(e).

Proof. The existence of e′ with head(e′) = (i, j′, k) follows from the construction of EF,G.
Suppose that i ∈ Iright (the case i ∈ Ileft is similar). From Lemma 3.5 we know that score(e) =
LCSR(F (i), G[j..k]) and score(e′) = LCSR(F (i), G[j′..k]). Since G[j..k] is a subgraph of
G[j′..k] it follows that LCSR(F (i), G[j′..k]) ≥ LCSR(F (i), G[j..k]).

It remains to show how to compute the scores of the edges in EF,G. The computation of
the scores is based on the following lemma.
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Lemma 3.8. For an edge e ∈ EF,G, score(e) = weight(e) +
max ({score(e′) e′ ∈ E1 ∪ E2} ∪ {0}), where

E1 =

{
e′ ∈ EF,G

head(e′)1 ∈ Iright, head(e′)1 ≤ tail(e)1, head(e′)2 = tail(e)2,

head(e′)3 ≤ tail(e)3

}
,

E2 =

{
e′ ∈ EF,G

head(e′)1 ∈ Ileft, head(e′)1 ≤ tail(e)1, head(e′)2 ≥ tail(e)2,

head(e′)3 = tail(e)3

}
.

Proof. Fix an edge e ∈ EF,G. Let e′ be some edge from E1 ∪ E2. In BF,G there is
a path from head(e′) to tail(e). It follows that there is a path of weight weight(e) +
score(e′) that ends at head(e) and passes through e. Therefore, score(e) ≥ weight(e) +
max ({score(e′) e′ ∈ E1 ∪ E2} ∪ {0}).

To prove the other direction, consider some path P of maximum weight that ends at
head(e) and passes through e. If P does not pass through other edges in EF,G then we are
done as score(e) = weight(e) ≤ weight(e)+max ({score(e′) e′ ∈ E1 ∪ E2} ∪ {0}). Otherwise,
let e2 = (i2, j2, k2) → (i, j, k) be the last edge P passes through not including e. Since there
is a path from (i, j, k) to tail(e), we have that i ≤ tail(e)1, j ≥ tail(e)2, and k ≤ tail(e)3.

If i ∈ Iright then by Lemma 3.7, there is an edge e3 ∈ EF,G with head(e3) = (i, tail(e)2, k)
and score(e3) ≥ score(e2). Since i ≤ tail(e)1 and k ≤ tail(e)3, the edge e3 is in E1. If
i2 ∈ Ileft then again by Lemma 3.7 we have that there is an edge e3 ∈ E2 such that
score(e3) ≥ score(e2). In both cases, score(e) = weight(e)+score(e2) ≤ weight(e)+score(e3),
so score(e) ≤ weight(e) + max ({score(e′) e′ ∈ E1 ∪ E2} ∪ {0}).

Define the boundary of the alignment graph BF,G as the set of points (0, `, `) for some `.
We call an edge e with head(e)1 ∈ Iright a right edge. The algorithm for computing the scores

of the edges in EF,G uses 4m successor data-structures S left
1 , . . . , S left

2m and Sright
1 , . . . , Sright

2m .
Each of these structures stores a subset of EF,G. The key of an edge e in some structure

Sright
i is head(e)3, and the key of an edge e in some structure S left

i is head(e)2. The algorithm
handles the edges in EF,G by increasing order of the first coordinate i. The important

invariant is that when handling index i, for all j, k, pred(Sright
j , k) stores the last edge from

EF,G in a maximal weight path that starts anywhere on the boundary of BF,G and ends
at (i, j, k), among all the paths whose nonzero weight edges were already considered by
the algorithm and whose last nonzero weight edge is a right edge. An analogue invariant
holds for the S left

k ’s, namely that when handling row i, for all j, k, succ(S left
k , j) stores the

last edge from EF,G in a maximal weight path that starts anywhere on the boundary of
BF,G, and ends at (i, j, k) among all the paths whose nonzero weight edges were already
considered by the algorithm and whose last nonzero weight edge is a left edge . Assume
that in the current iteration, i ∈ Iright. We first handle all edges e with head(e)1 = i. Since
i ∈ Iright, all of these edges are right edges. When considering an edge e whose head is
(i, j, k), the invariant for S left

k trivially holds for any k since e is a right edge, so it does not
affect S left

k which only stores left edges. To maintain the invariant for Sright
j , if score(e) >

score(pred(Sright
j , k)), then e is a better way to reach (i, j, k) than pred(Sright

j , k). Hence,

we insert e into Sright
j . In this case we also check if score(succ(Sright

j , k + 1)) ≤ score(e). If

so, e is also better than succ(Sright
j , k + 1) so we delete succ(Sright

j , k + 1) from Sright
j . After
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handling all edges whose head is i, by the invariant, LCS(F (i), G[i..j]) is exactly the maximum
between score(pred(Sright

j , k)) (the maximal path that reaches (i, j, k) and ends with a right

edge) and score(succ(S left
k , j)) (the maximal path that reaches (i, j, k) and ends with a left

edge). Therefore, we can now update the scores of all the edges e with tail(e) = (i, j, k) by
weight(e)+max(score(pred((Sright

j , k))), score(succ(S left
k , j))). The pseudocode for computing

the scores is given below (recall that score(NULL) = 0).

1: for i = 1, . . . , n do
2: for every e ∈ EF,G with head(e)1 = i do
3: j ← head(e)2, k ← head(e)3

4: if i ∈ Iright and score(e) > score(pred(Sright
j , k)) then

5: insert(Sright
j , e)

6: while succ(Sright
j , k + 1) 6= NULL and score(succ(Sright

j , k + 1)) ≤ score(e) do

7: delete(Sright
j , succ(Sright

j , k + 1))

8: if i ∈ Ileft and score(e) > score(succ(S left
k , j)) then

9: insert(S left
k , e)

10: while pred(S left
k , j − 1) 6= NULL and score(pred(S left

k , j − 1)) ≤ score(e) do
11: delete(S left

k , pred(S left
k , j − 1))

12: for every e ∈ EF,G with tail(e)1 = i do
13: j ← tail(e)2, k ← tail(e)3

14: score(e) ← weight(e) + max(score(pred(Sright
j , k)), score(succ(S left

k , j)))

Just as in the previous section, using the successor data-structure of van Emde Boas [36]
we have that computing the scores of the edges in EF,G takes O(|EF,G| lg lg m) time. The
time for computing the LCS between F and G is therefore O(

∑
x∈LP |EFx,G| lg lg m), where

LP is the set of the first nodes of the paths in P . In order to minimize
∑

x∈LP |EFx,G|, we
build P similar to a heavy path decomposition but where heavy is determined by number of
matches and not by size. This is done as follows. We begin building the main path. We start
at the root of F and then we repeatedly extend the path by moving to a child w of the current
node that maximizes the number of matches between Fw and G (ties are broken arbitrarily).
After obtaining the main path, we remove its nodes from F and then recursively build a path
decomposition of each of the remaining trees. The decomposition P that is obtained has the
property that for each node x ∈ F , the number of nodes in LP that are ancestors of x is at
most lg r + 1.

Lemma 3.9.
∑

x∈LP |EFx,G| ≤ 2mr(lg r + 1).

Proof. Every edge in EF,G corresponds to a match pair x ∈ F, y ∈ G. A fixed match
pair x ∈ F, y ∈ G generates edges in the sets EFx′ ,G for every node x′ ∈ LP that is an
ancestor of x. In each set EFx′ ,G the match pair x, y generates at most 2m edges. Therefore∑

x∈LP |EFx,G| ≤
∑

match pairs 2m(lg r + 1) ≤ 2mr(lg r + 1).

We have therefore shown an algorithm that computes the LCS of two trees in O(mr lg r ·
lg lg m) time.
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3.4 An O(Lr lg r · lg lg m) algorithm

In this section we improve the algorithm of the previous section. Notice that in the alignment
graph of the previous section each match pair generates up to O(m) edges (while in the
alignment graph of Section 3.2, each match pair generates exactly one edge). Therefore, the
time of processing a match pair is O(m lg lg m). We will show how to process each group of
edges of a match pair in O(L lg lg m) time by exploiting additional sparsity properties of the
problem.

Formally, we partition the edges of EF,G into groups, where each group is the edges that
correspond to some match pair: For i ∈ Iright let EF,G,i,a = {e ∈ EF,G head(e)1 = i, head(e)3 =
a}, and for i ∈ Ileft let EF,G,i,a = {e ∈ EF,G head(e)1 = i, head(e)2 = a}. The total number of
groups EF ′,G,i,a for all the alignment graphs BF ′,G that are built by the algorithm is at most
r(lg r + 1).

Consider some group EF,G,i,k for i ∈ Iright. Let s = eG(k). We have that EF,G,i,k =
{e1, . . . , es} where head(ej) = (i, j, k). Denote l1 = score(es) and l2 = score(e1). By
Lemma 3.7, score(e1) ≥ score(e2) ≥ · · · ≥ score(es). By Lemma 3.5, score(ej) ∈ {0, . . . , L}
and score(ej) − score(ej+1) ∈ {0, 1} for all j. Therefore, there are indices jl1 , jl1+1, . . . , jl2

such that score(ejl
) = l and score(ejl+1

) = l − 1 (if l 6= l1) for all l. These indices are called
the compact representation of the scores of EF,G,i,k.

To improve the algorithm of the previous section, instead of processing individual edges,
we will process groups. For each group, we will compute the compact representation of its
scores. The time to process each group will be O(L lg lg m) so the total time complexity will
be O(Lr lg r · lg lg m).

Following Lemma 3.8, we define for i ≤ n a two dimensional array Aright
i by

Aright
i [j, k] = max

{
score(e)

e ∈ EF,G, head(e)1 ∈ Iright, head(e)1 ≤ i,

head(e)2 = j, head(e′)3 ≤ k

}
.

Intuitively, Aright
i [j, k] is the score of a maximal weight path that starts anywhere on the

boundary of BF,G and ends at (i, j, k), among all the paths whose last nonzero weight edge

is a right edge. The array Aright
i has the following properties.

1. Each row of Aright
i is monotonically increasing (by definition).

2. Each column of Aright
i is monotonically decreasing (by Lemma 3.7).

3. The difference between two adjacent cells in Aright
i is either 0 or 1 (by Lemma 3.5).

4. Each cell of Aright
i is an integer from {0, . . . , L} (by Lemma 3.5).

The properties above are same as the properties of the dynamic programming table for string
LCS. Following the approach of [19], we define the l-contour of Ai (for 1 ≤ l ≤ L) to be
the set of all pairs (j, k) such that Aright

i [j, k] = l, Aright
i [j + 1, k] < l (or j = 2m), and

Aright
i [j, k − 1] < l (or k = 1). By properties (1) and (2) of Aright

i we have that for two pairs
(j, k) and (j′, k′) in the l-contour of Aright

i we have either j < j′ and k < k′, or j > j′ and
k > k′.
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Similarly, define a two dimensional array Aleft
i by

Aleft
i [j, k] = max

{
score(e)

e ∈ EF,G, head(e)1 ∈ Ileft, head(e)1 ≤ i,

head(e)2 ≥ j, head(e′)3 = k

}
.

The array Aleft
i also satisfies properties 1–4 above.

The algorithm for computing the compact representations of the scores processes each i
from 1 to n. For each i, the algorithm computes the l-contours of Aright

i and Aleft
i for all l

by updating the l-contours of Aright
i−1 and Aleft

i−1 that were computed in the previous iteration.

The l-contour of Aright
i for the current value of i is kept using two successor data-structure

Sright
l,1 and Sright

l,2 . The key of a pair (j, k) in Sright
l,1 is j, while the key of (j, k) in Sright

l,2 is k. The

l-contour of Aleft
i is kept in similar structures S left

l,1 and S left
l,2 . As in the previous algorithm,

iteration i consists of two stages: (1) updating the l-contours according to the groups EF,G,i,a

for all a (2) computing the compact representation of the scores for each group EF,G,i′,a such
that the edges e ∈ EF,G,i′,a satisfy tail(e)1 = i.

Suppose that i ∈ Iright (handling i ∈ Ileft is similar). Then, the contours of Aleft
i are

identical to the contours of Aleft
i−1. In order to compute the l-contours of Aright

i , we process
the groups EF,G,i,k for all k. Consider some fixed EF,G,i,k, and let jl1 , jl1+1, . . . , jl2 be the
compact representation of the scores of EF,G,i,k (which was computed in a previous iteration
of the algorithm). Updating the l-contours according to the scores of the edges in EF,G,i,k is
straightforward:

1: for l = l1, . . . , l2 do
2: if pred(Sright

l,2 , k) = NULL or pred(Sright
l,2 , k)1 < jl then

3: insert(Sright
l,1 , (jl, k))

4: insert(Sright
l,2 , (jl, k))

5: while succ(Sright
l,2 , k + 1) 6= NULL and succ(Sright

l,2 , k + 1)1 ≤ jl do

6: p ← succ(Sright
l,2 , k + 1)

7: delete(Sright
l,1 , p)

8: delete(Sright
l,2 , p)

We now describe how to compute the compact representation of the scores of some group
EF,G,i′,k′ such that the edges e ∈ EF,G,i′,k′ satisfy tail(e)1 = i. Suppose that i′ ∈ Iright

and denote EF,G,i′,k′ = {e1, . . . , es} where head(ej) = (i′, j, k′). Let k = tail(e1)3. All the
edges in EF,G,i′,k′ have the same weight w. Suppose that xi′ is not on the main path of F . By

Lemma 3.8, score(ej) = w+max(Aright
i [j, k], Aleft

i [j, k]). Therefore the compact representation

of the scores of EF,G,i′,k′ can be computed using Sright
1,2 , . . . , Sright

L,2 and S left
1,2 , . . . , S left

L,2:

1: jw ← s
2: for l = 1, . . . , L do
3: a ← 0
4: if pred(Sright

l,2 , k) 6= NULL then a ← pred(Sright
l,2 , k)1

5: if pred(S left
l,2 , k) 6= NULL then a ← max(a, pred(S left

l,2 , k)1)
6: if a 6= 0 then jl+w ← a

If xi′ is on the main path of F then score(e1) = · · · = score(es) = 1 +
max(Aright

i [s, k], Aleft
i [s, k]), and computing the compact representation of the scores is done
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similarly. The computation of the compact representation of the scores of a group EF,G,i′,k′

with i ∈ Ileft is done similarly using the structures Sright
1,1 , . . . , Sright

L,1 and S left
1,1 , . . . , S left

L,1.
We obtain the following theorem.

Theorem 3.10. The tree LCS problem can be solved in time O(Lr lg r · lg lg m).

34



Conclusions

We presented a new O(n3)-time and O(n2)-space algorithm for computing the tree edit
distance between two rooted ordered trees. This algorithm is both symmetric in its two
inputs as well as adaptively dependent on them. These features make it faster than all
previous algorithms in the worst case. Furthermore, we proved that our algorithm is optimal
within the broad class of decomposition strategy algorithms, by improving the previous lower
bound for this class. As a consequence, any future improvements in terms of worst-case time
complexity would have to rely on a new approach.

Alternatively, as we showed in Chapter 3, we can use our understanding of the structure
of the problem to find more efficient algorithms for special cases, such as the largest common
subtree. For this problem, we gave in section 3.3 an O(Lr lg r lg lg m) algorithm, which indeed
violates our lower bounds for the general tree edit distance problem in the (common) case
of sparse matchings. It is worth noting that in the worst (i.e., dense) case, this algorithm
is asymptotically slower than our optimal algorithm for the general case by a factor of lg r ·
lg lg m. The source for the lg lg m factor is the use of the successor data structure. The lg r
factor originates in the choice of path decomposition, which is similar to the choice made by
Klein’s algorithm. While in the algorithm of Chapter 2 we managed to eliminate this factor
by adapting the recursion according to the larger of the two trees in specific subproblems,
in the case of the LCS algorithm a similar solution does not seem to work. The difference
between the two cases is that for heavy path decomposition, the dependency is clearly on just
one of the input trees. In contrast, when choosing a decomposition according to the number
of match pairs, as in the algorithm of Section 3.3, the dependency is on both input trees. It
is possible to change the roles of the two input trees as one of them becomes smaller than the
other in this algorithm as well. However, our choice of decomposition only guarantees that
the number of match pairs decreases sufficiently with each recursive call of the algorithm.
We have no guarantee that the actual size of either tree decreases substantially. It is, in
fact, possible to construct examples for which it does not. It therefore seems that changing
the roles of the two trees along the execution of the algorithm does not change the worst
case running time, even when considering sparse LCS instances. It would be interesting to
find a way to overcome this difficulty, or to prove a lower bound which applies to the largest
common subtree problem.

There are many other useful tree similarity measures which are variants of the tree edit
distance and the largest common subtree problems. While some of these variants (e.g.,
unordered trees) are known to be NP-complete, it is plausible that our techniques may be
applicable to other variants.
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