
Operating System Protection Domains, a New Approach
Aaron Myers

atm@cs.brown.edu
Computer Science Department

Brown University
May 12, 2008

1 Introduction

Secure computing has been an issue of high concern since the beginning of shared com-
puters. As computers became more prevalent, so did resources shared between different
users of computer systems, and naturally, users came to want to limit the access of other
users to their own resources. To this end, many access control mechanisms have been
devised whose general purpose are to allow access to system resources only to authorized
entities. Though these methods have served us well for decades, their evolution has been
overall slow.

Butler W. Lampson first formalized the general notion of access control within operating
systems in 1972, with his introduction of the “matrix of access attributes”[2]. Though
this foundational system is robust and general, it cannot scale to today’s computer
systems which potentially contain hundreds or thousands of subjects and objects. Fur-
thermore, in the interest of simplicity, most actual access control mechanisms in the real
world limit to some small set the type of actions which can be controlled.

Perhaps the most pervasive general security model found in modern operating systems
are those implemented by Unix-like operating systems for protecting files. This scheme
represents a pseudo role-based, discretionary access control mechanism, combined with
very limited access control lists (ACLs). Under this system, files are the objects and
users are the subjects. A file has a set of permission classes: one for the “owner” of a
file, one for the “group” of the file, and one for all other users. The owner and group
classes act as single-subject ACLs, and each can be set to a single user or a single group.
The owner of a file is capable of changing the group class setting, as well as any of the
permissions of an object. It is this aspect that makes this system “discretionary.” Here,
a group is defined as being a set of users of arbitrary size. The actual permissions can
be set individually for each of these permission classes. The use of the group class is
what makes this system pseudo role-based; an arbitrary collection of users can have a
single group, all of whom have a set of rights based on the files whose group class is set
to that group. This having been said, the use of groups does not in fact constitute full
role-based access control. In a fully general role-based access control scheme, an object
should be able to have multiple different policies for different roles assigned to them.
Furthermore, full roll-based access control mechanisms usually allow for hierarchies of

1

roles, which Unix does not allow in general, though this is somewhat available through
the use of the Unix super user, or “root.”

Another common feature of Unix-like operating systems is what is referred to as the
“effective user ID” system. Under this system, the user who is the owner of a file which
is executable has the discretion to set the permissions of this file to be “set UID” or
“set GID”. If a file is set UID, then when it is executed, it will take on the user ID of
the owner of the file, rather than the user executing the program represented by the
file. Similarly, when a set GID file is executed, the program represented by this file will
take on the group ID of the group class of the file, in addition to the groups of the user
who is executing the program represented by this file. This facility is most often used to
allow users to temporarily elevate their own privileges to perform some specific task or
set of tasks. This is another role-based mechanism which is capable of providing great
flexibility to the policies which can be enforced on a system.

To facilitate system administration and other tasks requiring privileges, Unix-like oper-
ating systems generally provide for a super user called “root.” This user is capable of
performing any and all actions on every object in the system. Furthermore, this user
has complete discretionary control over all objects, and may obtain the role of any user
in the system. When combined with the set UID/GID facility describe earlier, the ca-
pabilities of the super user can be arbitrarily passed on to other users by setting specific
executables to be set UID/GID, and having the files owned by the root user.

One well-known mechanism common on Unix-like operating systems which leverages
the privileges of the root user as well as the set UID/GID facilities is a program called
“sudo.” This program is owned by the user root and is set UID. When executed, this
program interprets the settings contained in the file /etc/sudoers. This file allows one
to specify that specific users, groups or all users be able to execute specific commands
as another user, usually the super user.

Though Unix-style access control is rather inflexible on the whole, it has proven suffi-
ciently robust as to have been successfully used for literally decades, and can still be
seen in relatively recently-created operating systems such as Apple’s OS X. However,
there are many limitations to this system which prevent it from being robust enough
to fully express certain security policies which could potentially reduce the ability of
attackers to cause harm. As such, there has been some work done previously to extend
and complement the Unix security capabilities.

Perhaps the most full-featured security extension available to a Unix-like operating sys-
tem is that of SELinux[3]. This work, developed by and for the NSA, provides a series of
hooks into many of the operating system facilities which have to do with resource control.
SELinux provides a policy system which is capable of enforcing DoD-style mandatory
access control, in which a central policy administrator is responsible for setting all ac-

2

cess control permissions for all objects in the system. Furthermore, SELinux allows for
policies to apply to user-level programs in addition to a user as a whole. As we will
see, it is this feature which is required to provide truly tight security in an environment
where programs may access and be accessed by external, potentially malicious entities.

The work in this paper builds upon the work of Peng[4]. In this work, Peng introduced
file system sandboxes as a way to interpose upon all file accesses performed by specific
programs. This is done so as to require that all programs execute with the least level of
privilege required for them to correctly perform their task.

This work is a continuation of the work done in [6]. In this previous work, we ex-
tended the work done by Peng to be implemented in the operating system kernel, and
to interpose upon, specifically, the open(2) system call.

2 Motivation

As mentioned previously, Unix access control is very much user-centric. The vast ma-
jority of all access control decisions are based around what user is attempting to access
a particular resource. Through the effective UID/GID system, per-program privilege
elevation is possible. This is used, for example, to allow users to change their own
password. Though this system has been effectively used for many years, it has serious
drawbacks which must be addressed in order to move beyond the user-centric access
control mechanisms.

The principle hurdle to providing better security for users in a Unix-like environment has
to do with the privileges with which an ordinary program executes. Without considering
programs which are set UID/GID, any program which is executed by a user has the full
set of privileges granted to that user, regardless of what privileges that program actually
requires to function. Thus, the program ’ls’, whose purpose is to list the contents of
directories, in fact executes with the permission to, for example, remove all of the files
in the home directory of the user executing ’ls’. While this simple fact may not seem
like much of a problem for small, self-contained programs like ’ls’, it becomes a very
important issue for any software which communicates with outside entities.

Consider, for example, a web server. Since a web server needs access to write to log files,
read from many possibly disparate parts of the file system, and listen on privileged TCP
ports, web servers often start and run as the root user. While this level of privilege is
certainly sufficient to perform all the tasks a web server might need to perform, it is also
far more privilege than the web server actually needs.

Consider further, the web browser. Web browsers in general need very few privileges to

3

do their basic functions. They need to be able to make network connections, read and
write to some set of files to store settings and other internal data, and they occasionally
need to write a file which the user requests be downloaded to some place in the file
system that the user can write to.

Though in general Unix-style access control is very effective at allowing users to perform
only the actions they are permitted to, there are little or no facilities to allow an individ-
ual user to restrict the privilege of a specific program or process they wish to run. Thus,
a user must fully trust all of the programs he or she executes because there is no way of
preventing a program from performing any and all operations which the user is capable
of doing. Ideally, users should be able to execute arbitrary processes with the minimal
set of privileges necessary for them to perform their legitimate purpose, and nothing
more. In the case of the web browser and web server, these processes should only be
able to access files and perform network communication which is explicitly allowed by
the user executing these programs.

3 Sandbox Model

Ideally, a user should be able to execute programs in such a way as to minimize the
privileges, and therefore minimize the damage, that an errant program could potentially
do.

Perhaps the simplest policy which could be created would be for the program(s) executing
within the sandbox to be denied access to all resources outside of the sandbox. While
this would certainly be effective at preventing damage, it would almost certainly not
be workable from a usability standpoint. Even if we assume that programs are able to
execute at all without access to external resources, users would most likely be dissatisfied
with the disablement of many of the features they are used to in their programs. Thus,
some more complex policy is required.

SELinux[3], mentioned previously, allows for a rather flexible and extensible policy de-
scription. However, SELinux policies must be created statically by a central administra-
tor, and cannot be modified on the fly. Furthermore, the use of Linux Security Modules,
which must be written in C and loaded into the kernel, are a cumbersome way to express
policy. In general, the use of hooks into OS kernel routines which deal with resource
management is difficult to maintain and develop.

In the previous work of Tamura et al[6], we provided a new system call called “restricted
exec.” This system call, modeled after the regular exec(2) system call, execs a program
in the current process which is then marked as being “restricted.” Then, modifications
were made to the kernel of the operating system in the paths of resource-allocating

4

routines which check the restricted attribute of the process. If the process is found to
be restricted, then some extended attributes of the file which represents the program
being executed are examined. These extended attributes contain a simple access control
list which is meant to represent the minimal set of resources (limited to files) that this
program requires to operate fully. If access is attempted on a file which does not appear
in these attributes, then a user-level “guardian” process, which was specified at the time
of the call to restricted exec, will be consulted to get the final determination of whether
access to the given resource should be allowed.

Though this previous work is fully-featured, it is still cumbersome to express policy
in this way. Furthermore, the policy description language is not sufficiently expressive
as to allow completely arbitrary policies. For example, this scheme is very much file-
centric, and it is not at all clear how this method would be adapted to perform access
control on other types of resources. Finally, the implementation of this scheme was
very challenging in that many kernel modifications must be made in many code paths
dealing with resource allocation, all of which could have subtle, but potentially significant
consequences to the behavior of the kernel.

In the current work, we leverage the implicit sandbox provided by an operating system
running within VMware workstation to provide the protection of the host system against
the actions of an individual process. We provide access to the necessary resources of
the host system through different mechanisms of enforcement. For the purpose of this
paper, we are concerned with the protection of files and network connections. Policy
decisions are made by a single, configurable mechanism running on the host operating
system, which communicates with the enforcement processes running on the host system.
Through the use of the existing third-party system known as XACML, the extensible
access control markup language, we support expressive policy description capable of
describing truly arbitrary policy.

4 Design and Architecture Overview

In the previous works of Peng[4] and Tamura et al[6], both focused on implementing a
tightly-knit system to implement subject-based access control in Linux. To that end,
both works focused on making kernel modifications to the Linux kernel and communi-
cating with user-level programs which were to be run on the modified kernel. In the
current work, we attempt to provide a more modular system which together provides
the fine-grained access control which we desire. Furthermore, rather than build the re-
stricted execution environment by modifying all the relevant code paths in the kernel
which have to do with resource allocation, we run the programs we want to sandbox
within a virtual machine running in VMware workstation 6, and provide access to the
required resources of the host machine through custom mechanisms.

5

To allow users to access files on the host system from within the VM, we use the built-in
NFS client facilities of Linux. These allow a directory hosted on another machine to
be mounted onto some directory within the local file system of the virtual machine. In
the case of the web browser, we mount the directory contained within the user’s home
directory which stores the user settings of the browser, as well as a cache and whatever
other files the web browser needs to run. In order for this to work, both the host system
and the VM must be running the same version of the operating system, and in most
cases, the same version of the relevant program.

On the host machine, we run a modified user-level NFS server. It is this program
which serves the requests from the VM for access to files contained within the mounted
directory structure. Thus, the protocol between the VM and the host for file accesses is
simply that of NFS version 3. This server is modified to do additional enforcement upon
file accesses. In XACML terminology, it is this program running on the host system
which acts as the PEP, or policy enforcement point.

From here, the NFS file server program contacts another user-level program to perform
the actual policy interpretation. In XACML terms, it is this program which acts as the
PDP, or policy decision point. It is this program which compares the request being made
to the user-level NFS server against the policy currently being enforced on the system.
If the action being requested for the given resource is permitted by the policy, then the
PDP signals to the PEP that this is the case. The reverse is also true in the case that
the policy expressly denies the action on the given resource. In the event a conclusion
cannot be drawn from the given policy, then the program acting as the PDP prompts
the user of the system for what the verdict should be on this particular action.

A similar facility is used to observe and make decisions on network traffic into and out
of the virtual machine. The concept is identical to the design of the file access protocol:
the virtual machine talks to some user-level program running on the host system which
acts as the PEP. This program communicates with the PDP in the same manner as the
NFS server, and the verdict from this communication is used to determine the action of
the PEP; either to allow or deny the requested action on the given resource.

This design, of having the guest OS resource managers communicate with various PEPs
on the host OS, which in turn use a common protocol to communicate with the PDP
running on the host can be seen in Figure 1. In the implementation described in this
paper, the resource managers are, respectively, the NFS client implemented by the Linux
kernel, and the IP stack implemented by the Linux kernel. The implementation of the
PEPs, PDPs, and required kernel modifications is described in detail in the next section.

6

Figure 1: Architectural Overview

5 Implementation

This section details the implementation of the system so far described. For the rest of
this paper, the version of Linux running on both the host and guest systems is Debian
etch running a 2.6.18 kernel.

5.1 Modifying NFS Client Code

There are two problems with the current implementation of the NFS client in the Linux
kernel which prevent the implementation from being usable as-is. While these problems
do not necessarily cause incorrect behavior per se, they certainly limit the usefulness of
the system if they are not addressed.

The first problem is that the Linux NFS client code uses an attribute cache to cache
responses to NFS ACCESS calls. Most NFS clients, before opening a remote file, perform
an ACCESS NFS request to obtain the permissions which are present on the file[1]. The
NFS client may subsequently perform many operations based on these permissions. This
causes difficulty for us because we’d like every file access to be run through our access
checks, not just on the first time a particular request is made. The solution to this is
to simply disable caching on the client side. This is done by modifying the function
nfs do access in the file fs/nfs/dir.c of the Linux kernel. In this function, there is a
check which short circuits the function call in the event an entry is found in the cache.

The second problem is that the NFS client code, before attempting to access a file, always

7

asks for the full set of permissions of a file, regardless of what permissions the subsequent
access actually needs. e.g., even if the client just needs to read a file, it also asks if it
has permission to write the file. This is done for performance reasons, as the response
is cached, as previously noted. The solution to this is to make the client request only
the permissions it actually requires for a particular request. This is again accomplished
by modifying the function nfs do access in the file fs/nfs/dir.c of the Linux kernel to
only request information about the permissions which are actually necessary.

5.2 Modifying NFS Server Code

In order to create the NFS server which runs on the host system, I chose to modify the
user-level NFS server implementation unfsd 3-0.9.19. User-level NFS servers are rarely
used on a large scale, mostly for performance reasons, but doing this in our case allows
the startup and configuration of the whole system to be much simpler. Furthermore, in
an environment such as the Brown CS department, where users by and large do not have
local root access to their own machines, users may still run the system without special
privileges.

The NFS version 2 protocol assumed that permissions on a file could be entirely deter-
mined by inspecting the Unix-style permission bits and UID/GID of the file. This allowed
clients to attempt to deduce file access rights without necessarily explicitly talking to
the server. This is a problem in our case since there is additional policy being enforced
on file accesses beyond the simple Unix-style permissions. NFS version 3 corrects this
issue by adding an ACCESS procedure, which is an explicit over-the-wire permissions
check. It is here that we place the code to interpose on NFS traffic to and from the VM.
In the code for unfsd, the relevant code is in the function nfsproc3 access 3 svc, in
the file nfs.c. The permissions the NFS client is checking are accessible in this function
via the argument argp->access. It is in this function that we place the code which
communicates with the PDP to perform the additional access checks required for our
system.

5.3 Running NFS Server on Host

Using the unfsd package described in the previous section, running the NFS server is
basically trivial. unfsd implements both the MOUNT and NFS version 3 protocols,
so you only need to run the one program to get both services. unfsd can be made to
read from an arbitrary file to get its export information by using the -e option. Since
NFS/MOUNT servers usually listen on privileged ports, we use the -u option to unfsd
to have it listen on unprivileged ports. unfsd still registers with the port mapper, and
thus mount and NFS requests will be directed to it. In order to prevent the program

8

from detaching, it should be run with the -d flag, which causes unfsd to not fork into
the background at startup. This is useful so we can see debugging output as file accesses
are made and verdicts are returned from the PDP.

5.4 PEP, PDP Communication

In order to implement the actual access control decisions, I opted to use the XACML pol-
icy description language. Unfortunately, since this technology is somewhat immature, I
could not find an open source C or C++ implementation of a XACML policy interpreter.
Thus, for simplicity, I decided to go with Sun’s implementation which is written in Java.
To make this work, I run the PDP as a stand-alone Java application which communi-
cates with the NFS server over a plain old TCP socket. This decision and the relatively
inefficient non-binary protocol is probably the main bottleneck in the performance of
the overall system. The protocol I devised is a simple text-based protocol in which the
PEP first sends the action being attempted to the PDP as a newline-terminated string,
and then it sends the resource being accessed as another newline-terminated string. The
PDP responds by sending a string containing the response (allow or deny) as a numeric
code as a new line-terminated string.

5.5 Running the PDP

I wrote the PDP to start listening on port 4500 when it starts up and to accept any
connection attempt made to that port. When a connection is made, the PDP spawns
off a thread to handle all subsequent requests from the PEP which has connected. The
NFS server lazily connects to this port at the localhost when it first needs to serve a
request. Thus, one must start the PDP any time before the first request for a resource
is handled by a PEP.

I designed the PDP such that the XACML policy interpreter is first consulted. If this
returns a verdict of either PERMIT or DENY, then this is used as the final verdict from
the PDP. Otherwise, if the XACML interpreter returns INDETERMINATE, the user
is consulted via a prompt from the PDP running on the host operating system. This
verdict is then used as the access decision. The default is DENY.

In Figure 2 we see a screenshot of Firefox running in VMware. All accesses to the
˜/.mozilla directory are being performed using the NFS protocol to a PEP NFS server
running on the host. The output of the PEP can be seen in the top terminal to the left
in Figure 2. The PEP is then communicating with the PDP which is running in the
lower terminal on the left.

9

Figure 2: Screenshot of guest communicating with PEP communicating with PDP

5.6 Policy for Firefox, Thunderbird

As a first approximation, I created a XACML policy which is rather coarse-grained. My
scheme is to mount three directories from within the guest OS: the standard ˜/.mozilla
and ˜/.mozilla-thunderbird directories, and a special ˜/insecure directory. The
.mozilla and .mozilla-thunderbird directories are the standard locations where Fire-
fox and Thunderbird store all of their settings and user profile data. The policy I initially
implemented allows full access by the guest OS to these directories. The “insecure” di-
rectory is insecure from the point of view of the host operating system. This is intended
to be the sole location where files should be saved by the guest OS which need to be
accessed by the host OS. File paths are matched to resources specified in the policy using
regular expression matching. The operations which are allowed on a resource are identi-
fied in the policy using exact string matching. This policy can be seen in its entirety in
Appendix A. Though this policy is somewhat coarse, it is effective at restricting access
by the guest OS to only these files and directories, and at restricting the operations
which can be performed to those specified in the policy.

Browser vulnerabilities and web pages which exploit these vulnerabilities are relatively
commonplace today[5]. These vulnerabilities vary from a web page being able to read
browser settings that it shouldn’t, to severe vulnerabilities that could allow for arbitrary
code execution. The latter type of vulnerability is increasingly being found in browser
plugins, some of which are required if a user wishes to visit certain sites[5]. The enforce-

10

ment of this policy is capable of greatly limiting the damage that a vulnerable browser
could potentially do. Though the vulnerable browser is still just as vulnerable, what
actions it can perform on the host operating system is restricted to only being able to
access the files in the shared directories.

A more restrictive policy would most likely identify some files within the relevant direc-
tory which could be marked as read only. Or, perhaps, to limit the outbound network
communication to reduce or eliminate the possibility of sensitive user information from
being obtained by malicious third parties.

5.7 Setting Up VMware Workstation to Allow for Filtering via iptables

There are several options one can use to get network access to a VM using VMware
workstation. These include bridging, NATing, and host-only networking.

The simplest way to get network access is usually to use NATing, which VMware con-
figures nearly automatically for you. Unfortunately, there is no way to get iptables to
filter packets using this configuration. The problem is that this system uses the vmnet8
virtual network interface to communicate with a VMware-written NAT software dae-
mon (vmnet-natd) running on the host. Despite being able to snoop this traffic using
tcpdump, this communication is done completely at the MAC layer, and thus never gets
touched by the IP stack where iptables lives.

Bridging is not really appropriate in this scenario because it breaks the desired encap-
sulation of having the VM only able to route traffic through the host.

This leaves only host-only networking as an option, and this is indeed what we want to
do. Using this scheme, the guest will only be able to communicate with the host and
with other VMs on the local virtual network. To enable access to the outside world for
the guest, we can use iptables to setup a traditional NAT gateway for the guest, which
can also allow us to do arbitrary filtering of this traffic using nfqueue and iptables. To
configure this, the following steps were performed:

1. Configure support for host-only networking for VMware. Set the networking type
to be host-only in the VMware workstation settings for the relevant virtual ma-
chine.

2. Edit /etc/network/options on the host and set ’ip forward’ to ’yes’.

3. Add the script provided in Appendix B to ’/etc/network/if-up.d/’. Make sure
it’s executable. This will setup appropriate iptables rules to make the host machine
a NAT gateway for the guest VM(s).

11

4. Make sure that your guest VM is configured to use host-only networking on vmnet1
(vmnet1 is the default.)

5. Edit ’/etc/dhcp3/dhclient.conf’ to contain the following two lines:

supersede domain-name-servers [dns1], [dns2];
supersede routers [private network gateway];

Where ’[dns1]’ and ’[dns2]’ should be replaced by your default DNS servers,
and where ’[private network gateway]’ is the IP address of the virtual network
interface on the host (vmnet1 by default.) Adding the ’routers’ line will cause the
guest OS to contact the host as it’s gateway instead of VMware’s software gateway.
Adding the ’domain-name-servers’ line will cause the guest OS to contact those
name servers instead of VMware’s software gateway.

6. To actually interpose on the traffic going through the VM, run the following as
root on the host:

iptables -I FORWARD 1 -j NFQUEUE

This will prepend a rule in the FORWARD iptables chain to make all packets
go through the netfilter queue 0. With this rule in place, no packets will be
forwarded into or out of the VM unless they are received by a user-level program
reading packets from queue 0, and reinjecting them with an ACCEPT verdict.
The netfilter source package includes a sample program which does exactly this.
We extend this program, similarly to what was previously described for unfsd,
to communicate with the PDP program, which will make policy decisions on all
network packets. Though this is fully functional, the data received at the raw
IP level does not provide sufficient semantic information to allow for meaningful
policy to be expressed. The details of this are discussed in the next section.

6 Future Work

Though this system is fully functional, having been used by the author for day-to-day
use for two months, there is certainly room for further extension of the work described
here.

6.1 Extract Better Semantics from Network Communication

As described previously, a system was developed to interpose upon all network commu-
nication performed into and out of the guest OS. This was done by routing all traffic at

12

the IP level into and out of the VM through a NAT system configured using Linux ipta-
bles. Though this is very effective at snooping network traffic and potentially performing
policy decisions on the traffic, doing so is challenging.

Ideally we would be able to make policy decisions based on the highest level protocol
used by the sandboxed program. For example, if we wished to sandbox a browser, we’d
like to be able to create policy based on HTTP requests, or at the very least TCP
connections. If we want to sandbox a P2P application, we would ideally be able to make
policy decisions based on the protocol being used by that application.

Because the data received is received as raw network packets at the IP layer, the seman-
tics of the higher level protocols are not immediately available for policy enforcement to
the PDP. This severely limits the usefulness of the network traffic interposition system.

6.2 More Fine-grained Identification of Sandboxed Subjects

Though the goal of providing more fine-grained access control beyond merely the user
has been achieved by this work, the access control mechanism is still not as fine-grained
as it could be. Because the system is only able to execute policy on the communication
into and out of the virtual machine, the subject granularity is at the level of the entire
guest OS. Ideally we would be able to express policy based upon the individual program
or process running within the guest OS.

6.3 Automatically Create Good Policy Files

Though the policy description language of this system is relatively straightforward to
use, creating policy files which express the truly minimal set of privileges required for a
program to function is slow and tedious. Ideally we would be able to somehow generate
policy files which describe the minimal or close to minimal set of resources and privileges
required for a program to operate.

One idea for this might be to implement some sort of “record mode” in the PDP which,
rather than attempt to restrict access to resources, just records the requests to access
them. Then, the program whose minimal policy we are attempting to generate could be
put through a sample run manually monitored by the user for malicious behavior. Ideally,
commonality in the accessed resources, such as the base path of many file accesses, could
be detected and refactored to produce condensed policy files. But, even in the absence
of this feature, such a system should be capable of providing a good start to producing
a minimal policy file.

13

7 Conclusion

Today’s operating systems provide generally good access control policies which have
proven to be sufficiently flexible as to have been used, basically unmodified, for literally
decades. However, the security policies which we are able to express using these systems
have not changed to meet the current needs of today’s highly exposed systems.

We have presented here a system for effectively sandboxing individual applications such
that the damage which they can do to the host system is minimized. This was done
while still providing sufficient access to the resources of the host system as allow the
sandboxed applications to be usable by ordinary users. The use of common and proven
technologies in VMware and XACML allow this work to build on top of technology which
is becoming increasingly common.

Though current OS access control systems are very good at controlling user access to
shared system resources, we believe that providing access control that is more fine-
grained than this has the potential to greatly increase the security of our systems. In
general, the user of a computer system should be able to run arbitrary programs which
cannot perform all of the actions of the user, but rather are capable of performing only
the most limited set of actions the program actually requires. The work presented here
makes this a reality.

8 Acknowledgments

First and foremost I would like to thank my advisor Tom W. Doeppner, without whom
this work would not have been possible. I would also like to thank my parents, Dr.
Alice Twining and Dr. Donald Myers, for their lifelong support of my academic career.
Finally, I would like to thank my ever-supportive girlfriend Sarah Filman, who was
understanding enough to let me work on this project at whatever hours I felt like.

14

References

[1] Brent Callaghan. NFS Illustrated. Addison-Wesley Professional Computing Series.
Addison-Wesley, 2000.

[2] B. Lampson. “Protection and Access Control in Operating Systems”. In Operating
Systems, Infotech State of the Art Report 14, pages 309–326. Infotech, 1972.

[3] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies
into the linux operating system. Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference (FREENIX ’01), 2001.

[4] Luke Peng. “The Sandbox: Improving File Access Security in the Internet Age”.
2006.

[5] Symantec. Symantec global internet security threat report. 2008.

[6] Eric Tamura, Joel Weinberger, and Aaron Myers. “Operating Systems Protection
Domains”. 2007.

APPENDIX

A Firefox/Thunderbird XACML Policy

<Policy PolicyId="MozillaPolicy"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">

<Target>

<Subjects>

<AnySubject/>

</Subjects>

<Resources>

<AnyResource/>

</Resources>

<Actions>

<AnyAction/>

</Actions>

</Target>

<Rule RuleId="DotMozillaRule" Effect="Permit">

<Target>

<Subjects>

<AnySubject/>

</Subjects>

<Resources>

<Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/home/atm/\.mozilla.*</AttributeValue>

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>

</Resource>

15

<Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/home/atm/\.thunderbird.*</AttributeValue>

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>

</Resource>

<Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/home/atm/\.mozilla-thunderbird.*</AttributeValue>

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>

</Resource>

</Resources>

<Actions>

<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">read</AttributeValue>

<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>

</Action>

<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">write</AttributeValue>

<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>

</Action>

<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">lookup</AttributeValue>

<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>

</Action>

<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">delete</AttributeValue>

<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>

</Action>

<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">execute</AttributeValue>

<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>

</Action>

</Actions>

</Target>

</Rule>

</Policy>

16

B Script to configure Linux iptables Rules to Perform NAT

#!/bin/bash

PATH=/usr/sbin:/sbin:/bin:/usr/bin

#

delete all existing rules.

#

iptables -F

iptables -t nat -F

iptables -t mangle -F

iptables -X

Always accept loopback traffic

iptables -A INPUT -i lo -j ACCEPT

Allow established connections, and those not coming from the outside

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -m state --state NEW -i ! eth0 -j ACCEPT

iptables -A FORWARD -i eth0 -o vmnet1 -m state --state ESTABLISHED,RELATED -j ACCEPT

Allow outgoing connections from the LAN side.

iptables -A FORWARD -i vmnet1 -o eth0 -j ACCEPT

Masquerade.

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Don’t forward from the outside to the inside.

iptables -A FORWARD -i eth0 -o eth0 -j REJECT

17

