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Abstract

Cells process information by passing signals between interacting proteins in a signaling network.
These interactions are determined in part through patterns, or motifs, in the protein sequence. Recent
technological advances make it possible to simultaneously measure many interactions in the cell, pro-
ducing datasets that are mixtures of several motifs thus obscuring the identity of each motif.

We describe algorithms to discover multiple sequence motifs in such mixtures and to identify proteins
that recognize the motifs. Our motif-finding algorithms derive a minimal set of motifs that distinguish a
collection of measured sequences from a collection of background sequences using the principle of min-
imum description length (MDL) from information theory. For each identified motif, we define a motif
specificity score that quantifies whether or not the sequences with a motif have a significant number of
known interactions. Application of our algorithms to several recently published protein phosphorylation
studies reveals several novel motifs that accurately identify important proteins in signaling networks.

1 Motivation

An organism’s survival depends on the ability of its cells to perform specific tasks. Cells process
information by passing signals between proteins in a signaling network. One processing mech-
anism for signal passing is phosphorylation, a chemical modification of a protein that acts as a
functionality “on-off” switch by altering the protein’s structure. Phosphorylation occurs when a
protein kinase attaches a phosphate to a protein substrate. Conversely, dephosphorylation occurs
when a protein phosphatase removes the phosphate from the protein substrate (Figure 1). Most
knowledge about signaling networks has come from laborious and low-throughput experiments,
where each experiment measures the interaction between a single pair of proteins. Recent techno-
logical advances make it possible to measure many protein phosphorylation states in the cell in a
single experiment. Mass spectromtery, for example, measures the mass (and thus the phosphory-
lation state) of thousands of different proteins in a cell simultaneously.
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Figure 1: Phosphorylation and dephosphorylation affect the functionality of a protein. A kinase adds a phosphate at a
specific location in Protein A’s amino acid sequence (the yellow “Y’). The chemical modification of Protein A (denoted
by the small arrow) changes the protein’s structure, and Protein A now interacts with Protein B to form a protein
complex. A phosphatase removes the phosphate, returning Protein A to its native state. Note that phosphorylation
might inhibit protein function and dephosphorylation might promote protein function, depending on the substrate.

Protein substrates are phosphorylated at specific positions in the protein sequence. Datasets
produced by mass spectrometry experiments provide evidence of those locations, isolating short
sequences (called peptides) of a fixed length L that surround the exact site of phosphorylation.
Phosphorylation sites contain common sequence patterns, or motifs, that a kinase or phosphatase
might recognize. Mass spectrometry datasets measure many kinase and phosphatase interactions,



producing a mixture of motifs present in the phosphorylated peptides. The goal is to identify
phosphorylation motifs that distinguish phosphorylated peptides from unphosphorylated peptides.
Identifying motifs in DNA and protein sequences is well-studied in computational biology, but the
simulatenous measurement of many phosphorylated proteins introduces a new problem, the Mul-
tiple Motif Problem, that we state as follows.

Given: A collection of phosphorylated peptides of a fixed length L that are aligned such that the
center amino acid is the same for all peptides.
Objective: A set of motifs that concisely describes the redundancy in the phosphorylated peptides.

Peptides are aligned on the same center letter because we look for kinases and phosphatases
that target the same amino acid across all the peptides. A solution of the Multiple Motif Problem
requires the definition of a motif and a criterion for comparing different sets of motifs. We adopt a
motif model that consists of wildcard positions denoted by ‘.’ that match any letter and conserved
sequence positions denoted by brackets ‘[ ]’ that match any of a list of letters. If there is more than
one letter in a conserved position, we call it an inexact position. For example, [DE] . .pY.. [IL]
is part of a documented motif [11] that has a phosphorylated tyrosine (denoted by the preceding
lowercase p) and two conserved positions, and the peptide EDALYPRID contains an instance
of the motif. The Multiple Motif Problem is difficult because many motifs must be discovered
simultaneously, and the similar chemical properties of amino acids means that motifs that often
have several inexact positions. Further, the same peptide might contain an instance of more than
one motif.

We frame the Multiple Motif Problem as a data compression problem and use the principle of
minimum description length (MDL) [9] from information theory to solve it. The set of motifs that
most parsimoniously describes the collection of peptides also reduces the amount of information
required to transmit the data. This method allows motifs with arbitrary combinations of letters at
conserved positions while restricting the complexity of the patterns. We developed two heuristics
to find a local minimum of DL. These compare favorably to existing algorithms for the Multiple
Motif Problem.

An important question is whether motifs identified via computational techniques are biolog-
ically relevant, which is hard to determine without biological experiments. We derive a Motif
Specificity Score (MSS) that quantifies the extent to which the presence of a specific motif in a
peptide indicates a known interaction with a kinase or phosphatase. This analysis is important for
kinase/phosphatase interaction prediction.

2 Previous Work

Previous motif-finding approaches have been modified for multiple motif finding, but tend to pro-
duce overly-complicated or overly-simplified motifs. The well-known Expectation-Maximization-
based algorithm MEME [2] finds multiple motifs in unaligned data by using a probabilistic erasing
approach. In MEME, motifs of a fixed width w are represented as a position-weight matrix, where
each position contains a letter distribution over an alphabet ¥; consequently, w * || parameters
are required to specify a motif. Finding many motifs with this representation requires a significant
amount of data to correctly estimate the parameters, and MEME has not been rigorously tested on
proteomic data. Tyrosine-centered mass spectromtery datasets usually have less than 1,000 short
peptides, which is likely too little data for MEME to find multiple motifs.



A recently published method called Motif-X [20] finds multiple motifs by greedily extracting
statistically significant motifs. However, the method only identifies motifs with a single letter at
each conserved position, producing motifs with restricted expressive power. The algorithm finds
the single most surprising letter at a position using the binomial distribution and the frequency of
the amino acid in the background set. Motif-X then uses the letter/position pair to prune the dataset
to find the next most significant letter/position pair and so on until there are no more significant
pairs. This procedure produces a single motif. Once a single motif has been found, the phos-
phorylated peptides are pruned to remove all sequences with an instance of the motif. The motif
discovery stage is repeated until there are no more statistically significant motifs in the dataset.
There are two main limitations of this greedy algorithm. First, a single letter/position pair might
not be significant on its own, but might be significant if considered with another letter in the same
position. Since Motif-X only considers single letter/position pairs, it will not find a motif with in-
exact positions. Second, when peptides with a motif instance are removed from the dataset, there
might be other motifs in the removed peptides that will not be identified by the method. The MDL
approach addresses both of these issues.

Another algorithm called MDL-Pratt [4] greedily finds multiple motifs, but the algorithm’s
objective is fundamentally different than the Multiple Motif Problem. Instead of finding a set of
motifs that best describes the sequences, MDL-Pratt partitions the data X into disjoint subsets
By, ..., By and motifs mq, ..., my such that X = B; U...U Bj and each sequence in B; contains
an instance of the motif m,;. This formulation defines a partitioning problem that does not allow
peptides with an instance of more than one motif. Further, MDL-Pratt has the same limitations as
Motif-X; namely, after finding a motif m,; and a subset of sequences B; that contain instances of
m;, these sequences are removed from further consideration as the algorithm proceeds.

Lastly, the NetworKIN algorithm [14] is a recent attempt to map substrates with motif instances
back to the kinase or phosphatase that targeted them using known protein-protein interaction net-
works. NetworKIN uses a database of known motifs (namely Scansite [16]) and a database of
known protein interactions (namely STRING [22]) to link kinases and substrates. The NetworKIN
algorithm considers each phosphorylation site separately, finding the shortest path in the STRING
network between the phosphorylated and a candidate kinase. In our approach, we aim to find
kinases and phosphatases that interact with many protein substrates in a single dataset.

3 Methods

We formulate the Multiple Motif Problem as the MDL Multiple Motif Problem, whose objective
is to find a set of motifs that minimize the description length, an information-theoretic quantity
that measures the amount of information (bits) required to represent (or encode) a collection of
phosphorylated peptides. We consider the collection of /V aligned peptides of fixed length L as a
matrix X. The alphabet ¥ is the 20 amino acids, and the peptides are sequences from this alphabet.
The goal is to describe X as mixture of sequences, some similar to the background and some with
instances of an unknown number of motifs. We solve this problem by encoding X in terms of a
set M of motifs and a background frequency distribution obtained from amino acid frequencies
at each position in a larger set of unphosphorylated peptides. Since the background distribution is
independent of the motif sets, we do not explicitly encode it. Thus, the number of bits A (X, M)
required to encode X and M is the sum of bits required to encode the motif set and the data
described by the motif set,
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Figure 2: Overview of the Motif Description Length (MoDL) Algorithms. The input is a set of phos-
phorylated peptides and a background distribution representing the amino acid frequencies in a large set of
unphosphorylated peptides. The MoDL algorithms use the description length, a measure of the amount of
information (bits) required to represent the input phosphorylated peptides using a motif set M and the back-
ground distribution. The MoDL algorithms attempt to find the optimal motif set with minimum description
length. For example, with an empty motif set (i.e. no motifs), each sequence must be described explicitly
from the background distribution, yielding high description length (top right). On the opposite extreme, a
single consensus motif succinctly describes all phosphorylated peptides in the input, but the consensus mo-
tif is itself complicated to describe because each amino acid at each position in the motif must be specified
(bottom right). The optimal motif set includes only motifs that match several phosphorylated peptides, and
minimizes the total description length required to represent both the motifs and the phosphorylated peptide
sequences.



A(X, M) = AM) + AX|M). 1)

We now formulate the MDL Multiple Motif Problem as one of minimizing the description length
A(X, M).

Given: An N x L matrix X = [xy, ..., Xx]| of aligned sequences, where z;; denotes a letter from
an alphabet ¥ at position j in sequence x;. A |X| x L matrix P of background distributions, where
pst 18 the frequency of letter s € X at position .

Objective: Find a set of motifs M* = {my, ..., m;} that minimizes the description length:

M* = argmin A(X, M).
M

For the purposes of this paper, X consists of sequences that have a fixed letter o at the center
position, typically a tyrosine (Y), serine (S), or threonine (T), letters of interest in phosphorylation
studies. The sequences used to construct the background frequency matrix P have the same letter
o at the center position, and thus by p,; = 1 for the center position £. We modify X and P to be
matrices of width (L — 1) because the center position does not need to be recorded. Below we
describe how to compute A (X, M) for a given X and M. We then describe two algorithms, Motif
Description Length Greedy (MoDL-Gr) and Motif Description Length Enumerative (MoDL-En),
that find approximate solutions of the MDL Multiple Motif Problem (Figure 2).

3.1 Computing Description Length

We assume that the sequences X1, ..., Xy are independent, and so the description length of X is
the sum of the description length of each sequence,

N
AX, M) = AM) + > AxIM). 2)
i=1
Computing A(M) requires encoding the motif set M = {my, ..., my}, which we do by con-
catenating the encodings of the individual motifs preceded by an encoding of the value of k. Thus,
if K > k is an upper bound on the number of motifs,

k
AM) = [log, K|+ ZA(W)' 3)

Each motif m; is encoded in three parts:

1. z;is an (L —1)-length binary row vector where z;; = 1 indicates that j is a conserved position
in m; and z;; = 0 indicates that j is a wildcard position in m;. z; requires (L — 1) bits to
encode. Let v; = > ; %ij be the number of conserved positions in m;.

2. Each conserved position ¢ has a corresponding list of letters /;; in m;. For each conserved
position, there are two ways to encode l;;: as a |X|-length binary vector (called the vector
method), or as a list of indices into X (called the list method). Encoding a conserved position
with the vector method requires || bits, one bit for each letter in the alphabet. Encoding a
conserved position ¢ with the list method requires [log, |X| | bits to encode the number of



letters in the list and [log, |X| | bits for each of the letters in the list. c; is a row vector of
length ~; that denotes the number of bits required to encode each conserved position ¢ using
the list method, ¢;; = (|| + 1)[log, |X]]. The list method is more efficient at conserved
position ¢ when ¢;; < |3|. When the alphabet is the 20 amino acids, the vector method is
more efficient for a conserved position ¢ when there are more than three letters in the list
(cit = 4).

3. s; is a y;-length binary column vector that specifies the encoding method for each conserved
position, where s;; = 1 if the vector method is more efficient and s;; = 0 if the list method is
more efficient for conserved position ¢ in m;. s; requires -y bits to encode.

Thus, the description length A(m;) of motif m; is
A(mi) = |zi + (|2 x Ds{ + (T —s,)" + [si] 4)
= (1B x Dsi+ (1" =s)) + L+ — 1, )

where 1 is a row vector of ones and T denotes a transpose. For example, Table 1 shows the
encoding of the motif [DKIAS] .Y.E.

Variable Value Representation Description Length
Z; [conserved,wildcard,wildcard,conserved] 1001 4 bits
L1 {D,K,I,A,s} 10100001100000010000 20 bits
vector forD, K, I,A,S
Lo {E} 0000100100 10 bits
N—— —
# letters index of E
S; [vector method, list method] 10 2 bits
Total: 36 bits

Table 1: Computing A([DKIAS].Y.E).

We now turn to the task of computing A(x;|M). We first describe how to use the background
frequency matrix P to encode letters that are not part of a motif instance. For letter x;; at position
J in sequence X;, p,,; is the background frequency of that letter at position j. It has been shown
that for a probability distribution over a set of characters (in our case, x;;s), there exists a prefix
code such that the description length of z;; is (—log, p,,,;) bits [8]." We construct an N x (L —1)
matrix B = [by,...,by]", where b;; = —log, p,,,;. Quantities that are common to all sets of
motifs, such as B and P, are not encoded. Let Z = [zy, . .. ,zk]T be a k x (L — 1) binary matrix
that denotes the conserved positions for the £ motifs. Sequence x; is encoded in three parts:

1. q; is a k-length binary row vector where ¢;; = 1 if x; contains an instance of motif m,
and 0 otherwise. q; is encoded naively using £ bits. However, if x; has no motif instances,
encoding q; = 6, the zero row vector, is redundant. Instead, an extra bit indicates whether x;
contains a motif instance or not; if it does, a k-bit vector encodes the motifs. Thus, encoding
q; requires (1 + l{:)lqﬁa bits, where 1 5 is 1 if x; contains a motif instance and 0 otherwise.

"This value might be a non-integer.



2. If x; contains one or more instances of a motif, the background letters are the letters in posi-
tions not specified by the motifs (the wildcard positions). If x; contains no motif instances,
all letters in the sequence are background letters. The (L — 1)-length vector (1 — q;)Z con-
tains entries that are greater than 0 where x; is a background letter. Define an (L — 1) row
vector a; = [@;1, . . ., G;(—1)] to be

%f:{1ﬁ(@—quh>o. ©

0 otherwise

a; converts (T — q;)Z to a binary vector. b; contains the number of bits required to encode
each letter in x; using the background frequency, so encoding the background letters of x;
requires a;b? bits, where the T denotes the transpose of b;.

3. The remaining letters to encode in x; are the conserved positions. If a sequence x; contains
more than one motif instance, multiple motifs can represent a conserved position. For ex-
ample, the sequence DLYEE contains instances of motifs [DKIAS] .Y.Eand D[IL]Y. .,
and the first position can be encoded using either motif. We choose the motif that requires
the least number of bits to represent each conserved position ¢ (in the example, the second
motif would be chosen to encode the D in the first position). For each conserved position ¢,
we find the length of the shortest letter list c;; for motifs m; that have an instance in x; and
has a conserved position at ¢. Define an (L — 1) row vector d; = [d;1, . . ., dj( L—l)] to be the
shortest length of the letter lists at each position,

dij = min [log, ¢ - (7)
my : quz; = 1,
1<I<k

The conserved positions for x; are the positions where a; = 0, so encoding all the conserved
positions in x; requires (1 — a;)d7 bits.

Thus, the description length to encode x; given a motif set M is

Axi|M) = (1 4 k)'ai# + a;bl + (T — a;)d? (8)

For example, consider a uniform background matrix B where b;; = log, 20for1 <i < N,1 <j <
L. Table 2 shows the encoding of several sequences using the motif set M = { [DKIAS] .Y.E,D[IL]Y..}.

X; q; Bits | Background Letters Bits Conserved Letters Bits
DLYEE | 11 3 {E} log, 20 {D,L,E} [logy 17 4 [logy 2] + [logg 1]
AKYME | 10 3 {k, M} 21og, 20 {D,E} [logy 5] + [logy 1]
SPYAR | 00 1 {s,p,A,R} 4log, 20 {} 0
LRYEM | 00 1 {L,R,E, M} 4logs 20 {} 0

Total: 12 + 11 log, 20

Table 2: Computing A (X, M) given M = { [DKIAS].Y.E,D[IL]Y. .} and the sequences above.



3.2 Algorithms for Minimizing Description Length

The search space of all motif sets M is very large - the number of motifs is exponential in the
alphabet size |Y| and the sequence width L. This search space is reduced by only considering
motifs that appear in the data, but the number is still too large to directly compute. Therefore, we
have developed two heuristics to find a local minimum description length.

Algorithm 1 MoDL-Gr(X,P)
C ={ci,... cp} < setof single-, double-, and triple-letter exact matches found in X;
t <« 0; {iteration counter}
MO — {};
while A(X, M®) has decreased in past [ iterations do
W — (MO \m;),1 <5 < |M®| {operation 1}
UMD U¢),1 <i < R {operation 2}
UMB Uc;\my),1<i<R,1<j<|M®D|{operation 3}
U(MBU Merge(c;mj)\m;), 1 <i < R,1 < j <|M]| {operation 4}
UMD U Merge(cim;)\mj \ mg), 1 <i < R,1<j,k<|MWD| j#k; {operation 5}
M)  argming,cw AX, W);
t—t+1;
end while
M — argminM,e{M(o)w,Mm} A(X, M/);
return M;

Algorithm 2 Merge(m;,m;)

v « 0; {conserved position counter }
fort<— 1toL —1do
if c;; U Cjt = {} then
zt < 0; {t is a wildcard position}
else
z¢ < 1; {t is a conserved position}
Cy — Cjp U cjy; {create the list of letters}
if |c,| > 3 then
sy < 1; {use the vector method to encode ¢}
else
Sy < 05 {use the list method to encode ¢}
end if
v—uv+1;
end if
end for
return m = {z,C = {c1,...,cy_1},s};

The algorithm Motif Description Length Greedy (MoDL-Gr) iteratively builds a motif set
C from a set of simple candidate motifs(Algorithm 1). Candidate motifs are motifs with one,
two, or three conserved positions and one letter per position (no inexact positions). We construct
C = {ci,...,cg} from the data X. We initialize the motif set M) = (). At iteration (¢ 4 1), we
construct a set W of potential motif sets from the motif set M) from the previous iteration by
performing the following operations:

10



Removing a motif m from M®),

Adding a motif ¢ € C to M®.

Adding ¢ € C to M® and removing m from M®.

Merging ¢ € C with m € M®, replacing m with the merged motif.

Merging ¢ € C with m € M®, replacing m with the merged motif and removing another
motif from M®),

A

Merging two motifs m; and m; means taking the union of the list of letters c;; and c;, for each
position ¢ and updating the vector of conserved positions z and the vector of encoding methods
s (Algorithm 2). The motif set W € W that has the lowest description length is chosen, and
the loop proceeds until the description length has not decreased for [ iterations. The purpose of
the different operations used to build W is to try to reduce the chance of getting stuck in a local
minimum.

Algorithm 3 MoDL-En(X,P)
C = {c1...,cr} < motifs with at most 2 conserved positions, where each position is either a single
letter or a list of 2 letters;
C=cy,...,cg| < Cordered such that A(X, {¢;}) < A(X, {c;11});
M — ¢y
Ma — argming . 11<icj<100 MX, {g;, ¢;});
My — argmin{gi,gj,gk}:1§i<j<k§25 A(X, {Qianan})§
M — argmin{ M, My, M;};
return M;

The algorithm Motif Description Length Enumerative (MoDL-En) computes the description
length of all motifs that contain at most two conserved positions and contain at most two letters per
conserved position (Algorithm 3). The motifs with the smallest description length are then used to
compute the description length for different combinations of two and three motifs, and the motif
set M with the smallest description length is output.

We compare the MoDL algorithms to Motif-X [20], an algorithm where motifs are iteratively
discovered by considering the most significant letters in the data according to a binomial model.
Motif-X is available only as a webserver, so we implemented the algorithm in Matlab to run our
own experiments. The published Motif-X algorithm required two modifications to ensure a fair
comparison with the MoDL algorithms. First, the published Motif-X score is calculated as the
negative log of the p-value of the binomial distribution given the pruned dataset, i.e. the dataset
that was used to discover the motif. This score is inaccurate because sequences with the motif
might have been thrown out in prior iterations. Instead, we use the negative log of the p-value
of the complete data as the score to compare Motif-X with the MoDL algorithms. Second, the
Motif-X webserver removes non-unique sequences from the datasets (D. Schwartz, personal com-
munication), which might yield inaccurate motifs because peptides from multiple proteins might
be the same when trimmed to peptides of length .. We remove sequences from the foreground
and background with the same protein name and phosphorylation site. For these experiments, the
minimum number of occurrences for a motif was 5 and the significance threshold was p = 107°.

In order to evaluate the performance of MoDL-Gr and MoDL-En, we tested both algorithms
on synthetic datasets with motifs planted at different frequencies. We randomly extracted 100
mouse peptides of length L = 7 with a Y in the center position. We planted an instance of the
motif [DE]..pY..[IL] at a frequency between O and 75 percent, generating eight different

11
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Figure 3: (Left) Motifs identified in synthetic data with the ITAM-like motif [DE]..pY..[IL] planted
at frequencies from from 0% to 75%. Motif-X does not return any motifs if the frequency of the planted
motif is below 15%. (Right) Compression, defined as the difference between the description length of the
data with no motifs and the description length of the data with the indicated motif set, for each of the
synthetic datasets. At low frequencies the planted motif does not minimize DL because there are too few
motif instances compared to the background.

datasets with varying motif frequencies. This motif is part of the Immunoreceptor Tyrosine-based
Activation Motif (ITAM) [11] and has two possible letters at each of two conserved positions. The
planted motif frequency indicates the percent of of motif instances; for example, at 20% frequency
there are approximately 5% of the sequences in the dataset matching D. .pY..I, D..pY. .E,
E..pY..I,and E. .pY. .E. Motif-X cannot identify this motif because Motif-X only identifies
motifs with a single letter at each conserved position. However, we expected Motif-X to recover
all the conserved positions and the letters at each conserved position as multiple motifs.

The MoDL algorithms identify part of the planted motif at 10% frequency and perfectly re-
cover the planted motif at 20% (Figure 3). By comparison, Motif-X fails to identify all conserved
positions of the planted motif. One likely reason for this failure is that after the first letter of the
motif is identified, all peptides that do not contain that letter are removed from the data before the
next iteration. For example, suppose D. .pY is the first letter found; nearly all of the sequences
with the motif also have an T or an L in the last position. D. .pY..I orD..pY. .L will not be
as significantas D. .pY. . [IL], so Motif-X will not add the T or the L to the motif.

The performance of the algorithms is quantified by computing the compression, defined as the
difference between the description length of the data with no motifs and the description length
with the motif set (Figure 3). We find that the compression of the MoDL algorithms increase as
the frequency of the planted motif increases. At 20% frequency, the compression found by the
MoDL algorithms is identical to the compression of the planted ITAM motif.

3.3 Motif Validation

The existence of a phosphorylation motif suggests that a kinase or a phosphatase has a preference
for the phosphorylated peptides containing instances of the motif. We refer to such a set as a motif
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Figure 4: Computing the Motif Specificity Score (MSS) between a kinase and a motif group, the set of pro-
teins that contain a motif instance. We map each phosphorylated peptide in the dataset to the corresponding
protein in the STRING protein-protein interaction database [22]. The proteins are colored according to the
motif instances they contain at the phosphorylation site. Proteins not containing motif instances are colored
gray. To find the MSS for the blue motif D. . pY. [ SD]P, we consider all proteins in the motif group (blue
plane). Solid lines denote interactions between the kinase and the blue motif group, and the dotted lines
denote interactions between the kinase and proteins not in the blue motif group. A kinase will have a high
MSS if the number of solid lines is significantly greater than the number of dotted lines.

group. For each motif group and each kinase or phosphatase, we compute the Motif Specificity
Score (MSS) that quantifies whether the kinase or phosphatase has more interactions with the motif
group than expected by chance (Figure 4). We compute the MSS for a motif m and a kinase & as
follows. Let N be the number of total proteins in the dataset, M/ be the number of proteins that
contain an instance of the motif m, and J be the number of interactions between the kinase k£ and
the dataset; .J is determined by an independent source and will be described later. The enrichment
of interactions between & and the motif group is given by the hypergeometric p-value:
= (1) (i)

Pr[> [ interactions| = Z Z(T]w)_z

i=l M

(€))

We define the MSS to be

MSS(m, k) = —log,o(Pr[> [ interactions between kinase & and a motif group defined by m]).

(10)

Kinases or phosphatases are considered significant if M S.S > 1.3, corresponding to a p-value

of less than 0.05. A high MSS for a particular kinase/phosphatase indicates that a statistically
significant number of the known interactions between the kinase/phosphatase and proteins in the
dataset are interactions with proteins in the motif group. We use the STRING 7.1 database [22],
a compilation of experimentally measured and predicted (from literature mining or cross-species
comparisons) protein-protein interactions to compute the MSS. Note that STRING records in-
teractions only between proteins, and contains no information about interaction sites on a pro-
tein. Thus we map each phosphorylated peptide in the input onto the corresponding protein. We
use only “high-confidence” (> 0.7) edges between proteins with phosphorylated peptides and ki-
nases/phosphatases in STRING, and some of these may not be interactions of phosphorylation or
dephosphorylation since STRING fails to specify the type of interaction. This process will cause
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some ambiguity for proteins with multiple phosphorylation sites. Moreover, STRING does not
contain any loops in the network, and thus systematically ignores autophosphorylation, a common
feature of signalling pathways. Despite these difficulties we find that a number of motifs give high
MSS.

4 Results

We applied the MoDL algorithms to four phosphoproteomic datasets: mouse mast cell signaling
[5], human HER?2 signaling [23], human HeLLa EGFR signaling [17], and signaling in various
cancer cell lines [19]. In the HER2 signaling experiment [23], two cell lines (parental ‘P’ and
a retrovirally transduced clone ‘24H’) were stimulated with Epidermal Growth Factor (EGF) or
Heregulin (HRG). These four datasets are considered separately and a fifth dataset combines all
phosphoproteins measured from any experiment. The cancer cell lines studied in the last dataset
include Karpas 299, Su-DHL-1, NIH/3T3, and Jurkat. We use all tyrosine-centered peptides of
length L from the proteome of the species as the background set for each experiment. Table 3
presents the results of motif-finding using the MoDL algorithms and using Motif-X. In all cases, at
least one of the MoDL algorithms outperform Motif-X by finding a motif set with lower description
length. Moreover, in nearly every case, MoDL-Gr and MoDL-En produce at least one motif with
a higher score according to Motif-X’s scoring method (the negative logarithm of the binomial
p-value [20]) than the best motif found by Motif-X.

The kinase LYN is known to be a crucial member of the mast cell signaling pathway[12], and

strikingly the MoDL algorithms discover two motifs with high MSSs for LYN in the mast cell
dataset (Table 4). The motif [DE]..pY[ADESTY], identified by MoDL-Gr, appears in eight
proteins that interact with LYN according to STRING, and indeed all eight of these proteins are
known substrates of LYN including the FcIgE receptors [11], SYK [5], Bruton’s Tyrosine Ki-
nase (BTK) [15], DOK1 [13], and a complex of SKAPS55 and FYB/SLAP130 [5]. The motif
[DE] . .pY[ADESTY] resembles the first half of the known ITAM motif [DE]..pY..[IL]
[11] targeted by Src family kinases like LYN. While the discovered motif, [DE] . .pY [ADESTY],
has a lower MSS for LYN than the ITAM motif (1.70 vs. 1.96), the MoDL-Gr motif appears in
twice as many LYN substrates. MoDL-En produces a similar motif D. . pY that has a high MSS
for both FYN (1.4320) and LYN (1.3263), both of which are involved in FcIgE signaling [18].

Interestingly, both the known ITAM motif and the motif [IL]pY [DE] discovered by MoDL-
En produce high MSSs for the Platelet-derived Growth Factor Receptors PDGFRa (2.0762) and
PDGFRD (1.4721). This suggests potential crosstalk between the FcIgE signaling pathway and the
PDGFR signaling pathway.

In the HER?2 dataset (Table 5), we discover several motifs in the different experimental con-
ditions. MoDL-Gr and Motif-X find the motif pY. . P in all conditions, and this motif is part of
the known ABL consensus motif A.VIpYAAP [21]. Notably, ABL has the highest MSS of all
kinases and phosphatases, and MSS for ABL is highest (6.127) in the parental EGF-stimulated ex-
periment. Many of the proteins in the pY . . P motif group are known ABL targets, but not all. In
particular, GRF1 is in the motif group but there is no interaction between ABL and GRF]1 recorded
in STRING. However, GRF1 is phosphorylated by the BCR-ABL fusion protein at the measured
phosphorylation site Y1106 [7], whose peptide sequence matches the motif (NEEENIpYSVPHDS).
Thus, the motif and MSS are useful for predicting new kinase substrates. The motif pY. . [PV]
found in the parental cell line datasets is similar to the ABL consensus and also has a high MSS
for ABL. MoDL-Gr also identifies a motif [DENS] [DNPRS] .pY that has high MSS (2.638)
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MoDL-Gr MoDL-En' Motif-X*
Dataset | Motifs Score || Motifs Score || Motifs Score
Caoet.al. | [DE]..pY[ADESTY] 64.75 | [IL]pY[DE] 4373 | D..pYE 30.31
142 sequences | IpY 21.62 || D..pY 31.60 || IpY 21.62
E..pY 13.64
Compression 159.30 Bits 131.06 Bits 37.92 Bits
W-Y.et. al. | [DE]..pY 31.65 | [DE]..pY 31.65 | D..pY 1945
P_EGF | pY.. [PV] 20.74 || pY.. [PV] 20.74 || pY..P 16.12
229 sequences
Compression 122.92 Bits 122.92 Bits 114.82 Bits
W-Y.et. al. | [DE]..pY 30.18 || [DE]..pY 30.18 | D..pY  16.27
P_HRG | pY.. [PV] 18.78 | [DP] .pY 15.69 || pY..P 15.84
191 sequences
Compression 100.80 Bits 105.90 Bits 92.22 Bits
W-Y. et. al. [ADEN] [ADLP] .pY 47.75 [DE]..pY 35.15 || D..pY 17.41
24H_EGF | pY. .P 18.92 | [DP] .pY 18.96 E..pY 16.71
225 sequences pY..P 18.92
Compression 140.17 Bits 130.17 Bits 83.78 Bits
W-Y.et. al. | [DENS] [DNPRS] .pY 43.65 | [DE]..pY 33.04 | D..pY 1798
24H HRG | pY. .P 16.08 | [DP] .pY 17.66 || pY..P 16.08
209 sequences
Compression 119.09 Bits 120.26 Bits 103.52 Bits
W-Y.et. al. | [DE]..pY 42.26 || pY..P 3195 | D..pY  25.20
All Exp. | pY. [DESV] [LPV] 48.46 | pY[AD] 20.74 || pY..P 31.95
299 sequences E..pY 16.37
pY.VP  34.19
Compression 211.50 Bits 196.21 Bits 33.36 Bits
NPM-ALK | H.G[EV] [KN]PpY.C..[CR]IG 22.06 | pY..V 29.68 | pY..V 29.68
248 sequences [DE]..pY..... [GK] 29.70 | E..pY 2033
[ST]...[IP]pY 28.50 || IpY 18.34
Compression 358.41 Bits 243.03 Bits 144.11 Bits
c-Src | pY [DS] 34.73 || pY [DS] 34.73 || pYS 18.85
185 sequences pYD 14.52
Compression 100.02 Bits 100.02 Bits 82.35 Bits
Jurkat | [DY]...pY 2224 || [DE]..pY 3024 | D...pY 18.05
184 sequences [DY]...pY 2224 || pY..P 16.71
Compression 72.94 Bits 109.60 Bits 95.51 Bits

TThe min. # of occurrences for a motif is 5% of the dataset size.

The threshold parameter is 10~ and the min. # of occurrences is 5% of the dataset size.

Table 3: Motifs identified by each algorithm in each dataset. The first four Wolf-Yadlin et. al. experiments
measure two cell lines (parental ‘P’ and a clone ‘24H’) stimulated under two conditions (‘EGF’ and ‘HRG”).
The last Wolf-Yadlin et. al. experiment (“All Exp.”) consists of phosphorylated peptides measured in any of
the the four experimental conditions. Score is the negative logarithm of the binomial p-value computed using
the percentage of phosphorylated peptides with the motif and the percentage of background peptides with
the motif. Motif-X aims to maximize this score. Compression is the difference between the the description
length of the motif set and the description length of th null model (no motifs). The MoDL algorithms aim
to maximize this value.




Total #
Interactions

# Interactions

Kinase MSS  in Motif Group

Interacting Proteins in Motif Group

Motif: [DE] . .pY[ADESTY] FROM: MoDL-Gr (found in 45 proteins)

LYN 1.7007 8 11

‘ BTK,DOK1 p62,FcIgER g,FcIgER v,FYB,GAB2,SKAP55R,SYK

Motif: [IL]pY [DE] FROM: MoDL-En (found in 24 proteins)

PDGFRb 1.4721 4 7 | PI3p85 P13 p85 3.PLC vy 1,PLC 72
Motif: D. . pY FROM: MoDL-En (found in 32 proteins)
FYN 1.4320 5 8 FcIgE R v,GAB2,PI 3 p85 «,SHC,SKAP55R
LYN 1.3263 6 11 BTK,DOKI1; p62dok,FcIgE R 3,FcIgE R v,GAB2,SKAP55R,
ZAP70 1.3263 6 11 FcIgE R +,Fyn,GAB2,PI 3 p85 «,PI 3 p85 3,SHC
Motif: D. . pYE FROM: Motif-X (found in 12 proteins)
TRKA  1.5463 2 3 PI 3 p85 ,PI3 p85 3
ILK  1.5463 2 3 PI 3 p85 o,PI 3 p85 3
Motif: [DE]..pY..[IL] FROM: ITAM (found in 11 proteins)
FYN  2.5667 4 8 FclgE R ~,FYB,SHC,SKAP55R
PDGFRa 2.0762 2 2 PLC ~ 1,SHC
LYN  1.9626 4 11 FcIgE R 8,FcIgE R ~,FYB,SKAP55R
TRKB 1.6228 2 3 PLC ~ 1,SHC
RET 1.3454 2 4 PLC ~ 1,SHC

Table 4: Motif Specificity Scores for the motifs discovered in the mast cell dataset of Cao et. al. The

ITAM motif [DE] .

.pY..[IL] isfrom the literature [11] and was not recovered by an algorithm. Motif

Specificity scores were computed for the 115 proteins in this dataset appear in the STRING database, and

only ‘high-confidence” interactions in STRING (score
shown.

>0.7) were considered. Kinases with MSS > 1.3 are
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for the phosphatase PTPN11/SHP2, a known member of the EGFR/HER?2 pathway, and a motif
[ADEN] [ADLP] .pY with high MSS for ERBB4 (1.846).

Finally, the NPM-ALK condition from the Rush et. al. dataset produces the specific motif
H.G[EV] [KN]PpY.C. . [CR]G. This motif matches multiple phosphorylated peptides in five
zinc finger proteins (ZFPs): hypothetical protein MGC12466 (also known as zinc finger protein
670 [10]), similar to ZFP 91, TIP20, ZNF24, and ZNF264. Additionally, this motif matches 11
peptides from these five proteins that were not measured as phosphorylated. Each of the 21 motif
hits in the peptide sequences occur exactly after the zinc finger domain indicated by the consensus
sequence C.{2-4}C...F..... L..H...H[6], where the first H in the motif is the last histi-
dine in the zinc finger domain consensus. In the Rush et. al. dataset (Table 6), the common motifs
pY..Pand [DE] . .pY from the Jurkat cell line condition again have a high MSS for ABL; here,
however, [DE] . .pY has the higher score. There is a significant overlap of measured phosphory-
lated peptides between this experiment and the Wolf-Yadlin et. al. data (specifically DOK1, PXN,
ZAP-70, PI34K p85, and PLG-7) that contribute the high ABL MSS score for both datasets.

5 Discussion

We have described an MDL-based formulation of the Multiple Motif Problem and two MoDL-
based algorithms to discover protein phosphorylation motifs. We also defined a motif specificity
score (MSS) to identify a kinase or phosphatase that interacts with a given motif. The MoDL
motif-finding algorithms outperform Motif-X on phosphotyrosine datasets according to several
criteria: reduction in description length, Motif-X’s statistical score, and the motif specificity score
(MSS). Another advantage of the MoDL method is that it does not require a choice of parameters
such as the significance thresholds required by Motif-X. The motifs discovered with the MoDL
algorithms are quite short, which is consistent with earlier studies [20] and various databases of
phosphorylation motifs [1, 3, 16]. Since the sequence specificity of such short motifs will be very
low, de novo prediction of phosphorylation sites using sequence motifs alone will likely yield many
false positives. Nevertheless, we have derived the Motif Specificity Score, which combines motifs
with prior knowledge of protein interactions.

Computing the MSS of each motif we discovered, we identified several kinase/phosphatase-
substrate interactions. Many of these relationships are consistent with known interactions in
the studied pathways, but we also obtain several novel predictions of interactions that were not
recorded in the STRING database (e.g. the ABL-GRFI interaction in the Wolf-Yadlin et. al.
dataset).

We have demonstrated that the combination of phosphoproteomic data, motif-finding and prior
knowledge of protein interactions, as recorded in protein-protein interaction databases, is a power-
ful paradigm for linking kinases/phosphatases to their substrates in an experimentally stimulated
signaling pathway.

6 Future Work

Further improvements to the MoDL algorithms are possible. In particular, in all biological datasets,
we observed that the MoDL algorithms return at most three motifs. Thus, the metric of minimum
description length might be too restrictive for identifying the biologically important qualities of
phosphorylation motifs. Notably, the motif [DE]..pY [ADESTY] identified by MoDL-Gr in
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Kinase/ # Interactions Total #
Phosphatase =~ MSS  in Motif Group Interactions | Interacting Proteins in Motif Group

Dataset: c-Src, Motif: pYD FROM: Motif-X (found in 14 proteins)

PTPRH  1.6908 2 2 | P130Cas,RA70
Dataset: Jurkat, Motif: pY . .P FROM: Motif-X (found in 20 proteins)
LCK 2.0201 5 8 CD28,Dok2,Dok1,PXN,ZAP70
ABL 1.4715 4 7 Dok2,Dok1,PXN,ZAP70
Dataset: Jurkat, Motif: [DE] . .pY FROM: MoDL-En (found in 36 proteins)
ABL 3.1218 7 7 cortactin,Dok2,Dok1,PXN,PLC-v1,PI3K p85-a,ZAP70
RET 2.1867 5 5 Dok2,5 Golgin-84,Dok1,PXN,PLC-v1
MET 1.7328 4 4 cortactin,PLC-v1,PI3K p85-a,Ets-1
PTPN11 1.7328 4 4 Lck,PXN.PLC-v1,PI3K p85-a
SRC 1.4995 8 12 cortactin,Dok2,GIT1,Dok1,PXN,PLC-v1,PI3K p85-a,Ets-1
LCK 1.4987 6 8 Dok2,Dok1,PXN,PLC-v1,PI3K p85-c,ZAP70

Table 6: Motif Specificity Scores for the motifs discovered in the Rush et. al. datasets. Motif Specificity
scores were computed for the proteins in these datasets that appear in the STRING database, and only ‘high-
confidence” interactions in STRING (score >0.7) were considered. Kinases and phosphatases with MSS >
1.3 are shown.

the Cao et al. dataset includes several motifs for c-Src kinase that were identified by Motif-X in
the Rush et. al. dataset [20]; MoDL-Gr either found a more specific motif or combined several
biologically distinct motifs into one. The MoDL algorithms can be modified to return a user-
specified number of motifs, allowing the user to incorporate prior knowledge about the number of
interactions expected in a dataset. Additionally, the same letters tend to appear at multiple positions
in many motifs (for example D,E, and P). While the current motif representation used in MoDL
does not allow gaps with varying length, MDL-Pratt [4] incorporates variable-length gaps in their
description length computation.

Another possibility is to reduce the alphabet of amino acids; the chemical properties of some
amino acids are similar, and an 11-letter alphabet might reduce the motif search space without
loss of motif specificity. Incorporating the MSS score in the motif discovery stage will explicitly
identify motifs with high MSSs in the protein-protein interaction network. Finally, the biological
utility of this method will be improved if it is freely available to researchers; thus, a webserver is
in development that will allow aligned sequences as input and motifs and significant kinases and
phosphatases as output.
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