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Abstract— Human control of high degree-of-freedom robotic
systems is often difficult due to the overwhelming number of
variables that need to be specified. Instead, we propose the
use of sparse subspaces embedded within the pose space of a
robotic system. Driven by human motion, we addressed this
sparse control problem by uncovering 2D subspaces that allow
cursor control, or eventually decoding of neural activity, to
drive a robotic hand. Considering the problems in previous
work related to noise in pose graph construction and motion
capture, we introduced a method for denoising neighborhood
graphs for embedding hand motion into 2D spaces. Such spaces
allow for control of high-DOF systems using 2D interfaces such
as cursor control via mouse or decoding of neural activity.
We present results demonstrating our approach to interactive
sparse control for successful power grasping and precision
grasping using a 13 DOF robot hand.

I. INTRODUCTION

Developing human interfaces for controlling complex
robotic systems, such as humanoid robots and mechani-
cal prosthetic arms, presents an underdetermined problem.
Specifically, the amount of information a human can rea-
sonably specify within a sufficiently small update interval
is often far less a robot’s degrees-of-freedom (DOFs). Con-
sequently, basic control tasks for humans, such as reaching
and grasping, are often onerous for human teleoperators of
robot systems, requiring either a heavy cognitive burden or
overly slow execution. Such teleoperation problems persist
even for able-bodied human teleoperators given state-of-the-
art sensing and actuation platforms.

The problem of teleoperation become magnified for ap-
plications to biorobotics, particularly in relation to prosthetic
and assistive devices by users with lost physical functionality.
In such applications, feasible sensing technologies, such as
electroencephalogram (EEG) [1], electromyography (EMG)
[2], [3], [4], and cortical neural implants [5], [6], provide
a very limited channel for user input due to the sparsity
and noise of the sensed signals. Specifically for neural
decoding, efforts to decode these user neural activity into
control signals have demonstrated success limited to 2-3
DOFs with bandwidth around 15 bits/sec. With such limited
bandwidth, control applications have focused on low-DOF
systems, such as 2D cursor control [7], planar mobile robots
[1], and discrete control of 4 DOF robot arms [8], [9].
Additionally, Bitzer and van der Smagt [4] have performed
high-DOF robot hand control by reducing the DOFs to a
discrete set of pose that can be indexed by through kernel-
based classification.

Robotic systems geared for general functionality or a
human anthropomorphism will have significantly more than
2-3 DOFs, posing a sparse control problem. For instance, a

Fig. 1. Snapshot of our sparse control system driving a DLR/HIT robot
hand to grasp an object from a user’s 2D curson control.

prosthetic arm and hand could have around 30 DOF. While
this mismatch in input and control dimensionality is prob-
lematic, it is clear that the space of valid human arm/hand
poses does not fully span the space of DOFs. It is likely that
plausible hand configurations exist in a significantly lower di-
mensional subspace arising from biomechanical redundancy
and statistical studies human movement [10], [11], [12]. In
general, uncovering intrinsic dimensionality of this subspace
is crucial for bridging the divide between decoded user input
and the production robot control commands.

In addressing the sparse control problem, our objective
is to discover 2D subspaces of hand poses suitable for
interactive control of a high-DOF robot hand, with the
longer-term goal sparse control with 2D cursor-based neural
decoding systems. We posit viable sparse control subspaces
should be scalable (not specific to certain types of motion),
consistent (two dissimilar poses are not proximal/close in
the subspace), and continuity-preserving (poses near in se-
quence should remain proximal in the subspace). To uncover
control subspaces, we follow a data-driven approach to this
problem through the application of manifold learning (i.e.,
dimension reduction) to hand motion data, motion captured
from real human subjects.

Our previous work [13] identified noise in both in the
motion capture and pose graph construction procedures
as major limiting factors in uncovering subspaces for sparse
control. In this paper, we address both of these limitations
through: 1) graph denoising using probabilistic belief propa-



Fig. 2. Diagram for hand control by the user using human hand motion capture data for training

gation [14] and 2) more careful selection of motion capture
data. We present results from embedding power grasps,
precision grasps, and tapping motions into sparse control
spaces and their use for interactive control of the DLR robot
hand (17 DOFs).

II. THE SPARSE CONTROL PROBLEM

The essence of the sparse control problem is to estimate
a control mapping f : X → Y that maps coordinates in a
2-dimensional control space x ∈ <2 into the space of hand
poses y ∈ <d, where d is the number of DOFs expressing
hand pose. The estimation of the mapping f is founded
upon the assumption that the space of plausible hand poses
for desired motion is intrinsically parameterized by a low-
dimensional manifold subspace. We assume each hand pose
achieved by a human is an example generated within this
manifold subspace. It is given that the true manifold subspace
of hand poses is likely to have dimensionality greater than
two. With an appropriate dimension reduction technique,
however, we can preserve as much of the intrinsic variance
as possible. As improvements in user interfaces (namely for
neural decoding) occur, the dimensionality of the input signal
will increase but we will still leverage the same control
mapping.

Tangenting briefly, the application of sparse control for
interactive control of the DLR/HIT hand is illustrated in
Figure 2. Human hand motion data in high-dimensional pose
space is given as input. Using manifold learning, the hand
pose data is embedded into a 2D space. The embedding space

is presented to a human user through a Matlab graphical
interface. Every time the user clicks on a point in this space,
the 2D input coordinates s translated to a high-dimensional
hand configuration, serving as the target joint angles for
actuating the robot hand. The user can observe the results
of their action and interactively guide the performance of
the robot hand.

We create a control mapping by taking as input a set of
training hand poses yi ∈ <d, embedding this data into control
space coordinates xi ∈ <2, and generalizing to new data.
The configuration of points in control space xi = f−1(yi)
is latent and represents the inverse of the control mapping.
Dimension reduction estimates the latent coordinates y such
that distances between datapairs preserve some criteria of
similarity. Each dimension reduction method has a different
notion of pairwise similarity and, thus, a unique view of
the intrinsic structure of the data. Once embedded, the
pose-subspace pairs (yi, xi) are generalized into a mapping
through interpolation [15] to allow for new (out-of-sample)
points to be mapped between input and control spaces.

Discovery of the sparse control mapping is performed
using Isomap [16]. We focus on Isomap, but have also
explored the use of other dimension reduction techniques
(PCA, Hessian LLE, Spatio-temporal Isomap) [13]. Isomap
is basically a “geodesic” form of multidimensional scaling
(MDS) [17], where shortest-path distances in pose space
represent desired Euclidean distances the control subspace.
Isomap constructs the approximation of geodesic distance
(contained in the matrix D):



Dy,y′ = minp

∑
i

D′(pi, pi+1) (1)

where D′ is a sparse pose graph of local distances between
nearest neighbors and p is a sequence of points through D′

indicating the shortest path between poses y and y′. MDS is
performed on the matrix D to generate subspace coordinates
x based on the distance preserving error E (which can be
optimized efficiently thorugh eigendecomposition):

E =
√∑

x

∑
x′

(
√

(x− x′)2)−Dy,y′)2 (2)

A canonical Isomap example is the “Swiss roll” dataset
(Figure 1), where input data generated by 2D manifold is
contorted into a “roll” in 3D. Given a sufficient density
of samples and proper selections of neighborhoods, Isomap
able to flatten this Swiss roll data into its original 2D
parameterization, within an affine transformation.

In practice, however, noise-free nearest neighborhood con-
struction can be difficult and prohibit the application of
Isomap to noisy datasets, such as motion capture data. In the
Swiss Roll example, the inclusion of a noisy neighborhood
edge between points at the start and end of the manifold
creates a “short circuit” for shortest path computation. Con-
sequently, the approximation geodesic distance is invalid
and the resulting embedding lacks consistency with the
manifolds’ true parameterization.

III. NEIGHBORHOOD DENOISING WITH BELIEF
PROPAGATION

To enable application of Isomap to noisy data, we propose
BP-Isomap a method for denoising a neighborhood graph in
pose space using probabilistic loopy belief propagation. BP-
Isomap consists of three steps: 1) construction of a neighbor-
hood graph between hand poses using k-nearest neighbors,
2) denoising of neighborhood edges and 3) embedding of
the denoised neighborhood graph using Isomap. Step 2,
neighborhood denoising, is the primary focus of this section.
For denoising, BP-Isomap attempts to estimate the true latent
distance of a neighborhood edge xij between two points yi

and yj given the distance of their observed neighborhood
edge yij = D′(yi, yj) = ||yi − yj ||. Once xij has been
estimated for all neighboring pairs (i, j) ∈ D′, edges with
distances greater than an allowed threshold τ are removed
for the denoised neighborhood graph D̂′.

The denoising procedure used by BP-Isomap follows the
formulation of a Markov Random Field (MRF) as described
by Yedidia et. al [14]. This formulation maintains a prob-
ability distribution (or belief) about each latent variable
xij (neighborhood edge distance). The belief bij(xij) is
formed as the product of incoming messages mjm→ij from
other latent variables xmi and a local evidence function
φij(xij , yij):

bij(xij) = kφij(xij , yij)
∏

jm∈adj(ij)

mjm→ij(xij) (3)

where k is a normalization constant and adj(ij) is the
set of edges adjacent to edge ij. In terms of MRFs, each
neighborhood edge is a vertex in the message passing
structure and the connectivity between these vertices are
defined by the adjacency of their neighborhood edges. For
computational simplicity, we assume the belief bij(xij) is a
discrete distribution representing probabilities over a given
set of fixed distances.

The local evidence function φij(xij , yij) inclines the edge
distance xij to preserve the observed Euclidean edge distance
yij . This function weights possible values of xij with a
Gaussian distribution centered at yij with variance σ2:

φ(dij |yij) ∼ N (yij , σ
2) (4)

Messages mjm→ij to ij incoming from adjacent edges
jm are formed using the following message update rule:

mjm→ij(xij) ∝
∑
xjm

φ(xjm, yjm)ψ(xij , xjm)(5)∏
xmk∈adj(jm)−ij

mmk→jm(xjm)

The compatibility function ψ(xij , xjm) outputs scalar
values proportional to the compatibility of a specific edge
distance of xij with another edge distance xjm. This function
considers two cases for the relation between data points yi

and ym (which are adjacent to a common point yj in D′): 1)
vertices yi and ym are adjacent or share a common neighbor
yk 6= yj , or 2) vertices yi and ym are neither adjacent nor
have common neighbors. In both cases, we are concerned
with weighting the compatibility of xij and xjm by the
triangle they form, specifically via the distance of a third
edge dmi:

dmi = ||vmi|| (6)

vmi = −xij
yi − yj

||yi − yj ||
+ xjm

ym − yj

||ym − yj ||
(7)

In the first case, we consider common neighbors to indi-
cate external validation for variable xjm to consider points
yi and yj to be neighbors. Consequently, the compatibility
prefers the triangle to be maintained and dmi to be roughly
equal to the observed Euclidean distance ymi. In the second
case, xjm considers a neighborhood edge between yi and
yj to be noise, preferring the distance dmi to be as far as
possible. We enforce these two cases in the compatibility
function using a Gaussian distribution centered on ymi, in
the common neighbor case, and a logistic sigmoid function,
in the distal case:

ψ(xij , xjm) ∼ (8)
N (ymi, σ

2), if ym ∈ adj(yi)
or ∃ k s.t. yk ∈ adj(yi)
and yk ∈ adj(ym)

logsig(0.2(dmi − 1.8ymi), otherwise



Noisy Swiss Roll Example (1000 points)
Neighborhood graphs

(a) Initial neighborhood graph G with 3 noisy
edges added

(b) Initial and New neighborhood graphs G, G’ (c) Denoised neighborhood graph G”

2-Dimensional embeddings

(d) PCA (e) FastMVU (f) Isomap (g) BP - FastMVU (h) BP - MDS

Fig. 3. Noisy “Swiss Roll” example (1000 points): the data initial noisy neighborhood graph (a), with denoised edges highlighted (b) and then
removed (c). A comparison between 2D embeddings of the original neighborhood graph with (d) PCA, (e) Isomap, (f) FastMVU, (g) BP combined
with Isomap, (h) BP combined with FastMVU. PCA and Isomap are unable to preserve consistency due to graph “short circuiting”. Adding a
denoising step allows for proper embedding into two dimensions.

The constants in these cases were found through informal
experimentation and are considered user parameters.

The denoising procedure begins by considering all be-
lief distributions to be uniform, with all distance values
being equally probable. The procedure works continually
updates the messages by selecting an edge pair at random
and updating it using Equation 5. The procedure continues
until convergence, with convergence properties described by
Yedidia et al.[14].

IV. PRELIMINARY RESULTS

We present preliminary results from neighborhood denois-
ing for manifold learning and interactive sparse 2D control
of the DLR/HIT hand.

A. Swiss Roll Denoising

To evaluate our denoising procedure, we generated 3D
Swiss Roll dataset by transforming data parameterized by
a planar 2D bordered manifold. The ground truth geodesic
distances were known based on the 2D coordinates used to
seed the Swiss Roll generation. The neighborhood graph of
this data was corrupted by adding three non-adjacent noisy
edges between disparate datapairs. Illustrated in Figure II
and quantified in Table IV-A, we compared the embeddings
produced by PCA, FastMVU [18], Isomap [19] and our
neighborhood denoising technique combined with MDS and
FastMVU. Visually, it can be seen that PCA is simply an

affine transform of the data, due to embedding with all edges
both valid and noisy. As a result, unable to preserve the
consistency of the data depth of the Swiss Roll is completely
lost in 2D. The noisy edges also present a problem for
Isomap in that consistency is lost in a similar manner as
PCA. In addition, Isomap brings into closer proximity points
at the edges of the manifold. This circumstance is worse than
the PCA result because it gives the appearance that the edges
of the manifold have continuity in the input space, when in
fact they do not. Our denoising procedure was able to detect
these three noisy edges and produce the proper embedding
of the Swiss Roll.

From our informal experience, FastMVU is the best of the
non-denoising embedding techniques. In this case, however,
we were unable to produce quality results for both the
original and denoised neighborhood graphs. Although these
embeddings are themselves quite noisy, we anticipate in the
long-run that denoising with FastMVU will yield the best
embedding results.

B. Interactive Control of a Robot Hand

Our sparse control and subspace embedding systems were
implemented in Matlab. Mex executables formed the bridge
between our Matlab implementation and the C++ interface
provided by DLR for the control of the robot hand. The
robot hand used in the experiments was the DLR/HIT



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Performances of interactive sparse control for power grasping on a water bottle (top, a-d) and precision grasping of a small eraser (bottom, e-h).

Embedding Error 2D
PCA 1.2580×1012

FastMVU 2.7928×1012

Isomap 8.7271×1011

BP - FastMVU 2.1027×1012

BP - MDS 1.2099× 108

TABLE I
ERROR BETWEEN EUCLIDEAN DISTANCES IN THE NOISY SWISS ROLL

EMBEDDINGS AND GROUND TRUTH DISTANCES.

anthropomorphic robot hand, constructed with 4 fingers, 17
DOFs (with 4 redundant DOFs). This hand has a form
factor of roughly 1.5 times the size of a human hand. The
human hand motion sequence that was used for training was
a concatenation of finger tapping motions (once with each
finger), 2 power grasps, and 3 precision grasps (one with each
finger) captured by a Vicon optical motion capture system.
The performer’s hand was instrumented with 25 reflective
markers, approximately 0.5cm in width, as shown in Figure
2. These markers were placed at critical locations on the top
of the hand: 4 markers for each digit, 2 for the base of the
hand, and 3 on the forearm. The resulting dataset consisted of
approximately 500 frames and intentionally selected to have
at most one missing (occluded) marker at any instant of time.
Each frame of hand motion is considered a point in a high-
dimensional pose space. The pose space is defined as the 3D
endpoints of the fingers in the hand’s local coordinate system,
resulting in a 12-dimensional vector. Because the DLR hand
has only 3 fingers and a thumb, data for the fifth human finger
(pinky) is omitted. Joint angles used for motion control of the
hand were computed using an inverse kinematics procedure
that minimized the distance between each finger’s endpoint
position with respect to the knuckle of the finger.

The 2D space of embeddings is produced by run-
ning our neighborhood denoising technique in combination
with Isomap on a neighborhood defined from the high-
dimensional input poses. Neighborhood graphs are con-
structed by finding the eight nearest neighbors to each
data point (k = 8). While the user is moving on the 2D
space depicted on the screen, the high-dimensional robot
configuration that each 2D point corresponds to is applied
to the robot hand. The desired configuration of the hand
is determined by the nearest neighboring point in the 2D
embedding with respect to the current mouse position. Within
these embeddings, continuity and consistency of the original
poses are preserved (from manual inspection), placing the
different types of grasps in different areas of space and
facilitating user control.

We performed two interactive tasks using our sparse con-
trol system: power grasp of a water bottle and precision grasp
of an eraser between the thumb and index fingers. Figures
4(a-d) show the different phases of the power grasp before,
during and after performing the actual grasp. The phases of
the precision grasp are illustrated in figures 2(e-h). As shown
these figures and accompanying video, control of the robot
hand is performed in a reasonably consistent and “accessible”
manner. The objects are successfully grasped and postures of
the robot hand resemble the postures of a human hand during
grasping. In terms of the quality of the embeddings space,
2D trajectories that correspond to different motions as well
as 2D points that correspond to frames of the same motion
have got only a small overlap. In this way, the performance
of a single desired motion becomes much easier and more
effective.

Despite developing our neighborhood denoising proce-
dure, neighborhood graphs for our grasping trials ended up to
not have noisy edges, and, thus, denoising was not necessary.



Subspace embeddings produced by BP-Isomap and Isomap
were identical. Careful selection of motion capture data
ended up being the largest facilitator of generating suitable
control subspaces. However, the noise-free character of this
data came at the cost of diversity in the set of hand motion.
The motion trials used by Jenkins [13] consisted of 3000
frames and contained much more variety in the style of
grasps, although with upto eight missing markers at any point
in time. In our future work, we plan to further experiment and
extend graph denoising to handle such diverse, but unruly,
datasets.

V. CONCLUSION

In this paper, we have attempted addressed the problem
of sparse control of a high-DOF robot hand. Considering
the problems of noise in pose graph construction and motion
capture, we introduced a method for denoising neighborhood
graphs for embedding hand motion into 2D spaces. Such
spaces allow for control of high-DOF systems using 2D inter-
faces such as cursor control via mouse or decoding of neural
activity. Preliminary results were presented demonstrating
our approach to interactive sparse control for successful
power grasping and precision grasping using a 13 DOF robot
hand.
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