WiiRobot: Controlling Robots with Wii Gestures

Aysun Bagcetingelik
Department of Computer Science
Brown University
Providence, RI, 02906
aysun@cs.brown.edu

May 15, 2009

Abstract

In this project, we introduce WiiRobot, a sim-
ple and reproducable gesture based robot con-
troller. Our proposed system uses the Nintendo
Wii Remote Controller to interact with a robot.
The user first trains the system using Wii Re-
mote in order to recognize future gestures. For
the recognition process, we implemented two
simple algorithms; K-Nearest Neighbour and
sum of square differences. Our results show
that using only a few number of repetitions per
gesture is enough for recognition.

1 Introduction

Finding a natural and effective way of communication
with robots is important in order to enhance their
contribution in our daily lives. For this purpose, there
have been various developments in the area of Human-
Robot Interaction. It is known that using a computer,
a gamepad or a keyboard can be teleoperative but it
is still unnatural and difficult to control. Hence, it is
still one of the major research directions to design ease-
of-use and intuitive modes of communication with robots.

Another form of communication is gestures. Currently,
gestures are not just limited to face, hand and body
gestures. Gesture controlled applications are becoming
more common and we are able to create gestures with

Figure 1: User controlling the robot with Wii Remote

our fingers or with a mouse. We use gestures while we
are doing work with our laptops and phones. Moreoever,
after the introduction of Nintendo Wii Console, we were
introduced to a new hardware, Wii Remote Controller,
which has the capability of creating gestures and using it
for a different intuitive control of video games.

For this project, we aimed to create a simple gesture-

based controller for a mobile robot using Wii Remote.
Our method holds promise for applicability as it only re-
quires simple algorithms like K-Nearest Neighbour to in-
teract with the mobile robot whereas the construction of
such a robot is not expensive and even within the limits of
personal use.

1.1 Related Work

Gesture recognition is an active research area in robotics,
as well as in Human-Computer Interaction (HCI) com-
munity. Most of the work in HCI focuses on vision
based gestures such as hand and face gestures [9], [4].
In another work in robotics, they focus on the whole
body gestures recognized by a service robot [6]. Most of
these gesture based recognizers are designed to work in
indoors; however, research done in [7], which also uses
body gesture and speech recognition, is able to work both
indoors and outdoors.

Apart from the vision based gesture recognizers, there
are a few applications made especially for Wii Remote
controllers for gesture recognition. One of these appli-
cations is Wii Based Gesture Learning Environment (Wi-
iGLE) [10], which is a Windows application that lets you
choose the right features and classifiers for a better recog-
nizer. There are also libraries such as WiiYourself [3] and
WiiGee [11] both of which use Hidden Markov Models
to recognize gestures. These libraries help the program-
mer to make his/her own application that uses Wii Remote
controller.

2 Background and Platform

We first introduce some definitions and platforms used in
this report.

2.1 Wiimote

As previously mentioned, in this project we used the
Wii remote controller by Nintendo to get gestures. Wii
remote controller (Wiimote), as shown in Figure 2, which
has motion sensing capabilities, is the main controller for
Nintendo’s Wii console. Since its launch in November
2006, people have been exploring ways of using the

Wiimote with different applications. Currently, there
exist several third-party applications; moreover, open
source libraries are provided on different platforms
to use Wiimote. Although there are not any official
specifications, much information about the hardware and
usage can be found online [2], [1].

Figure 2: Wiimote controller with axes shown

As explained in [5], inside Wiimote, there are 3
accelerometers, an IR camera with a resolution of
1,024 x768 pixels and a 100 Hz refresh rate, a 4 KHz
speaker, a vibration motor, wireless Bluetooth connectiv-
ity, 5.5 Kbytes on board memory, 2 AA batteries and an
expansion port. Also, the controller has 12 buttons each
of which can be used to get input from the user. These
buttons can be listed as 4 direction buttons (up, down,
left, right), plus, minus, home, 1, 2, A and B buttons. In-
side Wiimote, each accelerometer uses an unsigned byte
to represent the acceleration and it has a +/-3G sensitivity
range. Wiimote sends at most 100 points with the infor-
mation of three accelerometers per second. The informa-
tion sent from Wiimote also includes the status of buttons,
battery, expansion port, IR camera, LEDs and the vibra-
tion motor.

2.2 Wii Gesture

A gesture is defined as a non-verbal communication using
body motions. In our project, a Wii Gesture is a type of
gesture done by using Wiimote. To be more specific, Wii

Gesture consists of accelerometer data points recorded
during the time between a button is pressed and released
on the Wiimote. These gestures are collected through the
Bluetooth connectivity of Wiimote and does not depend
on time. Only sequential unique data points are stored
as the Wii Gesture. The reasons for this definition are to
make gestures independent of the time value and it is hard
to get the same data point values sequentially since the
accelerometers are very sensitive.

2.3 Robot platform

Our robot is an Asus eeePC on an iRobot Create [8].
These robots are easy to construct and run. A cheap
model of Asus eeePC costs around $250 and a simple
iRobot Create base costs $130, so these robots can cost
less than $500 depending on the additional hardware like
webcams, cables, Bluetooth USB dongle.

Figure 3: Robot platform with Asus eeePC on iRobot Cre-
ate Base

The eeePCs have Intel Celeron M CPUs with 1.2 GHz
clock speed and 512MB/1GB memory. For the operat-
ing system, they come with a version of Xandros Linux.
However, since they were incompatible with the robot
control server Player 2.1.1, we reinstalled the operating
system with Ubuntu Eee which is configured specially for
Asus eeePCs. For the camera, we did not use the one on
board and used a Logitech USB webcam compatible with
Video 4 Linux 2. Asus eeePC Surf models have small hard
drives so we had to remove most of the applications to in-

stall the necessary libraries. For Player to work, you can
check the dependencies from the website. In addition to
those libraries, to run WiiRobot we needed to install the
CWiid library (libcwiidl) and Bluetooth (bluez-gnome) li-
brary. Since eeePCs do not have Bluetooth on board, we
used a USB dongle. The robot platform we used during
this project is shown in Figure 3 without the camera.

WIIMOTE

Accelerometer Data

1terpolatio

Time Normalized
Accelerometer Data

Training Mode Control Mode

Recognized
! Gesture

l Command

ROBOT

Figure 4: WiiRobot application process

3 Approach

As shown in Figure 4, the process begins with getting the
accelerometer data from the Wiimote controller. After
receiving this data, a cubic spline interpolation method
converts it into the gesture data we used in our program.
Then, depending on the current mode of the program,
which can be either training or control, the data is stored
in memory as the training data or sent to the recognizer to
understand which gesture it represents. Recognizer clas-
sifies the gesture data using previous training with a clas-
sification algorithm. At any point, user can still switch
to training if she/he thinks the training data may not be
enough. As soon as the gesture is recognized, associated

command is found and sent to the robot for execution.

3.1 Accelerometer data

As we have already discussed above, we collect data from
the Wiimote through Bluetooth. For this purpose, we are
using a library called CWiid which helps us to connect
to the Wiimote and get the status of the buttons and ac-
celerometers. The accelerometers give us a data point
consisting of three values. These values range from O to
255, each representing a different axis shown in Figure 2.
Depending on the gesture, the number of data points we
get from Wiimote can change dramatically. This data is
collected during the time button A is pressed and stored
as one continues data till it is released.

3.2 Normalized data

After we get the data from the Wiimote, we process them
to add to our training set or recognize the gesture. Since
each gesture can take different amount of time, we have to
normalize them and have a fixed size independent of their
duration. For this purpose, we used spline interpolation
in GNU Scientific Library. We fixed the number of points
per axis for this data to 250. So, time normalized data for
a gesture consists of three 250 length arrays which store
interpolated values of the accelerometer data.

3.3 Training

There are four available motions to train using the Wi-
iRobot application. To start training, first the training op-
tion should be chosen by pressing button 1 on the Wi-
imote. Then, the move command should be chosen by
using any four of the direction buttons. The latest pressed
button will be the move command to train. To record the
gesture in the training set, one should press the button A
while making the gesture and then release it. This way, the
data points sent to the program will be stored in memory
as one gesture. In our training data, for the recognizer we
grouped the data first, according to their time step value
(0 to 249) and second, according to their direction.

3.4 Control

Getting the data for control is same as training. The only
difference is button 2 should be pressed first to switch to
the control mode. After the normalized data is received,
it is sent to the recognizer to find the correct gesture.

3.4.1 Recognizer

For the recognizer, we implemented two basic classifiers:
K-Nearest Neighbour (KNN) algorithm and sum of
square differences method.

For the KNN, we group our data according to their
time step value from O to 249. In each time step, data
is split into four different groups associated with four
buttons. For example, if we train Up button five times,
we will have five Up button data points at each time step.
Then, to recognize the gesture, for each time step, we
apply KNN to the point we want to classify among those
four groups. We do this process for all 250 points. At
the end, we choose the most common group among these
points as the recognized gesture.

L, h(g)argminy[a’ (t) —) (t)]?
0, otherwise

v(t,g) = {

250
y' = argmaz, Z v(t, g)
t:1
h(g) : hash function
a'(t) : gesture point at time step t that we are trying to
recognize
xi(t) : k-nearest neighbour point at time step t

For the sum of square differences, we iterate over all
gestures that we train and calculate their sum of square
differences point by point between the gesture and our
trained gesture we want to recognize. As a result, we re-
turn the closest gesture in our training data.

250

y = h(i)argminZ[m’(t) —x;(1))?

h(2) : hash function
x; : trained gesture

Figure 5: Photos from an experiment video, showing that after the gesture robot moves forward

| COTEN/

1 2 3
Successful Recognition/Total
Test Gestures
K-Nearest Neighbour Sum of Squares Differences
Buttons | Up |Down | Right | Left Up |Down | Right | Left Up |Down | Right | Left
Testl 1 2 10/10|10/10 10/10|10/10
Test2 3 4 10/10|10/10 10/10|10/10
Test3 1 2 3 4 8/10 | 7/10 | 9/10 | 9/10 |10/10| 6/10 [10/10 |10/10
Testd 1 2 6 9/10 |10/10| 9/10 | 8/10 |10/10|10/10| 9/10 |10/10
Test5 7 8 10/10| 9/10 10/10|10/10
Test6 7 8 5 6 8/10 | 8/10 |10/10| 9/10 | 6/10 | 9/10 |10/10| 9/10
Test7 1 2 9 10 | 9/10 | 9/10 | 8/10 | 8/10 | 5/10 |10/10| 7/10 | 6/10
Figure 6: Gestures used in tests and the results
3.4.2 Robot Control speeds can be set before starting the application through

command prompt. For the current application, we associ-
After the recognition phase, a command associated with ated these four motions as following:
the recognized gesture is sent to the robot. Robot con-
troller is implemented using the libplayerc++ library. ® Up - go forward (angular speed is 0)
Each of the four direction buttons are associated with e Down - go backward (angular speed is 0)
a different speed for the robot and calling the Se- o Right - turn right (straight speed is 0)
Speed(straightSpeed, angularSpeed) function. These two e Left - turn left (straight speed is 0)

In the control mode of the application, each time the
user makes a gesture, if this gesture is recognized, the
robot does the associated movement. By pressing button
B, user can stop the robot temporarily. To end the appli-
cation and stop the robot, Home button should be pressed.

4 Experiments

Our experiments were done mainly in two parts. In the
first part, we tested the recognizer separately from the
robot and tested the success of recognition; then we
tested the complete application with the robot.

For the first part, we used Athlon 64 Dual Core
Processor 3800 with 2GB RAM computer to run the
application for gesture recognition. Results of these
experiments are shown in Figure 6. For each test, we
trained the gestures associated with each button five
times. The drawings over the table show which gestures
are associated with which numbers used in tests. For
example, for Testl, we trained gesture 1 for the Up direc-
tion button and gesture 2 for the Down direction button
on the Wiimote. Out of 10 tries, both of them were easily
recognizable. We ran same tests for each of the classifiers.

An interesting test is Test3; in this test, we trained
gesture 1 for up, 2 for down, 3 for right and 4 for left
buttons and tried to recognize each gesture 10 times. In
both classifiers gesture 2 is the least recognized one. This
shows that if a gesture is partly inside another gesture
it is harder to be recognized. Also in Test6, the wrong
recognitions were done mostly between 6 and 7; and in
Test7, recognizer had hard time differentiating gestures
1,9 and 10.

For the second part of experiments, we ran the applica-
tion on the robot. First, we tried to score a goal and then
we took it outside the lab and controlled it in the various
floors of the department. For these experiments, we also
used other users for controlling the robot. We have ob-
served that people learned how to control the robot very
easily and they were excited about using a Wiimote. We
also observed an interesting thing that we did not think
during our implementation. Gestures change depending
on whether a user is right or left handed, and if a right

handed user trains the controller, the gesture made by a
left handed user may not be recognized. Although they
are both doing the same movements, gestures are slightly
different. Videos of some of the experiments with robots
can be found at http://www.youtube.com/group/wiirobot.
An example of controlling the robot with a gesture is
shown in the photographs taken from a video in Figure
5.

5 Conclusion and Future Work

In this project, we showed that it is possible to create
a gesture based robot controller with Wiimote using
simple algorithms like KNN and sum of squares dif-
ferences. Both of these methods had similar results in
the recognizer. We showed that using cheap hardware
and easy-to-implement algorithms, interaction between
humans and robots can be improved. Our interactions
with users showed that using gestures for controlling
robots is very intuitive especially when users are able to
define their specific gestures. We hope that this project
will evolve and further increase the interaction between
robots and humans.

For the future work, although all main controls for the
application can be done through the Wiimote, a user in-
terface can greatly increase the easiness of usage. Cur-
rently, the controller is limited to previously defined five
moves, a user interface may be used to change the asso-
ciated moves with these five buttons. Apart from the user
interface, for the recognizer, implementing other classifi-
cation algorithms may increase the chances of recogniz-
ing harder gestures better.

References
[1] Wii brew. http://wiibrew.org/.
[2] Wii li. http://www.wiili.org/index.php/.
[3] Wii yourself, 2008. http://wiiyourself.gl.tter.org/.

[4] M. Hasanuzzaman, T. Zhang, V. Ampornaramveth,
H. Gotoda, Y. Shirai, and H. Ueno. Adaptive visual

(5]

(6]

(7]

(8]

(9]

[10]

[11]

gesture recognition for human-robot interaction us-
ing a knowledge-based software platform. Robot.
Auton. Syst., 55(8):643-657, 2007.

J. C. Lee. Hacking the nintendo wii remote. Perva-
sive Computing, IEEE, 7(3):39-45, 2008.

S.-W. Lee. Automatic gesture recognition for intel-
ligent human-robot interaction. In FGR ’06: Pro-
ceedings of the 7th International Conference on Au-
tomatic Face and Gesture Recognition, pages 645—
650, Washington, DC, USA, 2006. IEEE Computer
Society.

M. M. Loper, N. P. Koenig, S. H. Chernova, C. V.
Jones, and O. C. Jenkins. Mobile human-robot team-
ing with environmental tolerance. In HRI "09: Pro-
ceedings of the 4th ACM/IEEE international confer-
ence on Human robot interaction, pages 157-164,
New York, NY, USA, 2009. ACM.

L. Miller, A. Bascetincelik, and O. C.
Jenkins. Setting up player 2.1.1:
Asus eeepc and icreate robot, 2009.
http://robotics.cs.brown.edu/projects/player_icreate/.

H. S. Park, E. Y. Kim, S. S. Jang, S. H. Park, M. H.
Park, and H. J. Kim. Hmm-based gesture recogni-
tion for robot control. Pattern Recognition and Im-
age Analysis, pages 607-614, 2005.

M. Rehm, N. Bee, and E. André. Wave like an
egyptian accelerometer based gesture recognition
for culture specific interactions. In Procedings of
HCI 2008 Culture, Creativity, Interaction, 2008.

T. Schlomer, B. Poppinga, N. Henze, and S. Boll.
Gesture recognition with a wii controller. In TEI
’08: Proceedings of the 2nd international confer-
ence on Tangible and embedded interaction, pages
11-14, New York, NY, USA, 2008. ACM.

