
A Fine-Grained, Dynamic Load Distribution Model for
Parallel Stream Processing

Nathan Backman
Brown University

ABSTRACT
Our goal is to address the unique characteristics and limi-
tations of emerging large-scale commodity clusters to lever-
age their potential for the parallel processing of multidi-
mensional data streams. To this end, we describe a new
distributed stream processing model that integrates data
and task parallelism by partitioning workloads into self-
describing chunks that are dynamically assigned to avail-
able computing resources. We adapt the degree and means
of processing parallelism using simulation-driven heuristic
search algorithms with underlying incremental bin-packing
techniques to direct chunk assignments, facilitating adapta-
tion to fluctuating resource availability and workloads char-
acteristics. Our experimental study quantifies the potential
yields of our approach under a variety of workload and com-
puting configurations.

Keywords
distributed stream processing, multidimensional data, chunk-
ing

1. MOTIVATION
Dynamic load balancing, in the context of stream process-
ing environments, has been the subject of study for several
years. Approaches that have been taken to withstand fluc-
tuations in processing requirements and variances in com-
puting node speeds have included defining static operator-
to-node assignments[6] that are meant to be resilient to
workload fluctuations[11], transporting entire query oper-
ator workloads from one computing node to another [12][1],
and interposing load-balancing operators in the query plan
to migrate portions of an operator’s workload between the
nodes that have been assigned to the operation[9][2].

While these strategies have shown to be effective at with-
standing fluctuations in workloads and resource availability,
we believe that just half of the battle is being fought by
only moving statically defined workloads between comput-
ing nodes. The other half of the battle concerns how we
define the degree of parallelism for a parallelizable opera-
tor. It must be determined, for each parallelizable operator,
how its data will be subdivided and to which computing
nodes its chunks will be sent to. The previously mentioned
approaches to dynamic load balancing establish this plan
before execution whereas the number of nodes that can con-
tribute to an operator is restricted to a subset of the avail-
able nodes and the subdivision of data is defined once.

Such previous attempts at exploiting parallelism in stream
processing environments have resulted in the use of isolated
and autonomous solutions. Operators within a query plan
that can be parallelized are identified and then each be-
comes the recipient of its own dedicated set of computing
nodes[4]. The workload of each parallelized operation is
then distributed across its personal set of computing nodes.
A downside of this strategy is that computing resources are
not shared between these groups. If a parallelized opera-
tor faces a surge in increased workload, that operator’s set
of computing nodes will face the brunt of the impact alone
while free processing cycles on nodes associated with other
operators will be wasted.

We can illustrate the need for flexible computing nodes (those
that aren’t restricted to working for a single operator) with
an even more simple example that eliminates any fluctua-
tions in data complexity or computing node potential. Sup-
pose we have the query plan depicted in Figure 1 along with
two identical computing nodes. Now lets suppose that op-
erator A, in the query plan, is twice as computationally de-
manding as operator B. To force the assignment of a com-
puting node to only a single operator, in this case, would
create a great imbalance in workloads which would have a
detrimental effect on latency.

(a)

(b)

Figure 1: Fixed vs. Flexible computing nodes

If we simplify the example even further and suppose that the
operators have an identical computational demand, we face
yet another problem by pinning nodes to only a single oper-
ator. This time, although workloads are balanced, we sacri-
fice latency. However, if both nodes equally participated at
both operators, the latency for each multidimensional data-

item would be cut in half, since we can consistently focus
the efforts of both nodes on the same item at the same time.

As the processing requirements of each parallelized operator
in a query plan change with time and when processing po-
tential of the computing nodes contributing to them vary, it
can be beneficial to balance load not only by moving work-
loads between nodes but also by redefining an operator’s
computing node-set and by modifying the granularity of the
subdivisions of data. Our work is focused on the use of both
of these areas, reformulation of partitioning strategies as well
as workload migration, in order to withstand fluctuations in
the processing environment.

We focus on the domain of video image processing in which
input stream rates are fixed and the frames of the video
streams are all of identical size. Streaming video image pro-
cessing applications differ from traditional streaming appli-
cations in that user-defined operators are the norm. These
user-defined operators tend to be computationally expen-
sive and their run-times may not necessarily be derived as
a function of the number of pixels in each image. For in-
stance, operations may employ feature detection and there-
fore search the space of an image to find these features.
Heuristics can be used to quickly overlook background or
non-descriptive regions while drilling down into regions that
show characteristics indicative of a feature and worthy of
further inspection. Therefore it is possible for the run-time
of an operation to be derived as a function of the number of
potential features contained within an image.

In the domain of streaming video, we can expect the compu-
tational complexity of sequential frames to change over time.
Thanks to a general understanding of video streams, how-
ever, we can use the assumption that the feature-dependent
complexity of images will not change too erratically from
frame to frame as we know that visual features in video
sequences tend to move gradually rather than erratically.
Therefore we can be reasonably sure that the number of fea-
tures from one frame to the next, in a video sequence, will
be similar when video capture devices operate at standard
frame-rates. Understanding and keeping track of complex-
ity within images will play an important role in balancing
workloads between computing nodes.

We should also note that, recently, it has been impossible to
miss the rising trend of the use of large commodity clusters
of computers which have been leveraged to get affordable
boosts in processing potential. When deploying query work-
loads to systems such as these, it is important to be aware
of the processing capabilities of each node. The computing
nodes may be heterogeneous or they may be non-dedicated
computers processing varying quantities of external work-
loads.

With environments such as these, in which data can be ho-
mogeneous in its physical nature (in terms of stream rate
and data size) but can vary in complexity due to its contents
and when we cannot count on the homogeneity of our com-
puting nodes, we must make extra considerations to balance
workloads while efficiently using the computing resources.

Determining how to create a good plan achieving parallelism

while making efficient use of computing resources requires
answering the following questions:

1) How many chunks do we break the data into?

Even if we presume the simple case of homogeneous com-
puting nodes and homogeneous data complexity, a naive de-
cision may be to deliver a single, equal-sized chunk to each
computing node contributing to an operation, but this can
cause nodes to wait unnecessarily long for them to receive
their chunk before they can begin processing data. At the
cost of the additional overhead to create and send extra
chunks, nodes can begin processing data sooner than later
which can reduce underutilization time of the nodes.

1) How do we assign an operators chunks to nodes?

We must keep in mind that some computing nodes may have
external workloads or even different processor speeds, both
resulting in heterogeneous processing potentials. Addition-
ally nodes may have already been assigned workloads from
other operators in the query plan who may contend for the
node’s processing efforts at varying points in time.

2. SYSTEM MODEL
2.1 Data Parallelism Model
The concept of data parallelism, in regard to the chunking
of multidimensional data, is slightly different than data par-
allelism applied to a stream of non-multidimensional data
items. When dividing streams of non-multidimensional data
items, many previous approaches have relied upon content-
based partitioning such as hash-based or range-based parti-
tioning. This content based chunking of workloads is limited
by the domain of the data in regard to the degree to which
it can be parallelized. When we partition multi-dimensional
frames, the content is less important, in terms of defining
strict chunk bounds, and instead we focus on the context of
the data, which corresponds to a chunks location in multidi-
mensional space. We can find this contextual information in
the meta-data of each chunk. In this way, the chunk’s data
has absolutely no bearing on how the boundaries on that
chunk are defined. However, while the contents of the data
can be analyzed to help define a chunking strategy, the phys-
ical description of each chunk is not directly related to the
content of the chunk but is instead related to the meta-data
of the chunk. Our creation of regular-shaped chunks can
be likened to the content-based partitioning of the ranges of
the dimension-space of a chunk.

The model we use to achieve data-parallel processing con-
tains the following three components outlined below and
depicted in Figure 2:

2.1.1 Scatter
When a multidimensional array in the query plan arrives
at a parallelized operation, the array will be broken down
into sub-arrays (chunks) and distributed to the computing
nodes that will process them. This happens at a scatter
point specific to each parallelized operator. A scheduler,
which will be discussed in more depth in sections 3 and 4,
will inform the scatter point how many chunks to physically
partition the image into and will assign each of these chunks
to a computing node. These chunks will then be distributed
by the scatter point to the computing nodes they have been
assigned to.

�����������������������	��

�������������������

Figure 2: Data Parallelism Model

2.1.2 Processing Self-Describing Chunks
This stage occurs strictly at the computing nodes. The
nodes will asynchronously receive data from any of poten-
tially many scatter points (each associated with different
parallelized operations). As these chunks arrive, they will
be placed in a queue that prioritizes them with respect to
their system timestamps to ensure that the data that has
been in the query plan the longest is processed first. As a
node takes a chunk from its queue, it will determine the par-
allelized operation it is associated with by conferring with
an indicator in the header of the chunk. This will tell the
node exactly which operation to perform on the chunk. The
node will then begin to process the chunk with respect to
the correct operation and then forward the result on to the
gather point associated with that operation (the location of
which can also be extracted from the chunk header).

2.1.3 Gather
Like the scatter point, there is one gather point for each
parallelized operation. These will wait to receive processed
chunks from the computing nodes. Once it has been es-
tablished that all chunks of a multidimensional array have
arrived, the chunks will be recombined. The array can then
be propagated along the query plan in the usual manner.

This can easily be integrated into existing query plans. Is-
sues of fault tolerance can be addressed in ways similar to [3]
and [7] for node failures, and [5] for gather or scatter point
failures.

Lets consider an existing query plan, depicted in Figure 3a.
Suppose that this plan contains two operations that both
take advantage of data parallelism. To insert our model to
take advantage of data parallelism, we replace each opera-
tor we wish to parallelize with its own scatter and gather
operators which will interface with a network of computing
nodes as seen in Figure 3b.

2.2 Statistics Managing
In order to make educated decisions as to how to pick good
partitioning strategies for data=parallel operations, we must
have an understanding of the processing speeds of the com-
puting nodes as well as the complexity of the chunks within
each multidimensional array. This is done via regular statis-
tics collection from the computing nodes.

As was mentioned earlier, the domain of video image pro-

(a)

�

�

�������	�
	���
�����	�����

�

�

(b)

Figure 3: Integration into query plans

cessing is interesting in that we can infer, to some degree,
what a frame in a video sequence will look like by observing
the previous frame. We use this same concept to estimate
the complexity of sequential frames and chunks in a video
stream.

With the knowledge of the speed of a node’s processor and
its current external workload, we can make a judgement
about the complexity of a chunk that the node has just
processed. By simply using the wall-clock time that it took
to process the frame and comparing it to the speed and load
of the processor, then we will have an estimate of the number
of CPU cycles that it took to process the chunk.

Having collected the per-chunk complexities as well as CPU
load measurements of each computing node, we pass this
information off to be used to pick partitioning strategies
and create corresponding chunk-to-node assignments.

3. BALANCING WORKLOADS
Generally, when we think of balancing workloads, the goal is
to make sure that all computing nodes in a set are allocated
the same amount of work as the others. When we are deal-
ing with heterogeneous nodes, however, such an allocation
does not result in nodes spending an equal amount of time
processing which can have negative effects on our goal of
minimizing latency. Another way to state our goal is to say
that we have x CPU cycles that must be run and we would
like to distribute them to the available nodes in a way that
minimizes the time it takes to finish all cycles. If we realize
that our CPU cycles are lumped into chunks which, given
the stream rate, can represent CPU cycles per unit of time,
we can begin to visualize this as a bin-packing problem. Our
available set of computing nodes are likened to bins and the
oddly shaped chunks are what needs to be packed into those
bins. What makes this problem difficult to visualize, in the
sense of bins and chunks, is that the nodes may be running
at differing speeds, and even fluctuating, which calls to ques-
tion how we perceive chunks fitting into these bins. Since we
would like to minimize the latency of processing all chunks,
the height of the bins corresponds with time, however, we
can imagine the width of the bins changing in real-time to

reflect the external workload of the computing nodes.

If we attempt to tackle the entire problem all at once, we will
see that there are multiple sets of chunks (one set for each
operator) and all available nodes. Standard bin-packing al-
gorithms are meant to balance workloads, not latency, there-
fore we must look at the case of balancing work belonging to
operators in a different light in order to minimize latency.
This is because bin-packing algorithms do not encourage
data parallelism when workloads for multiple operators are
present.

To understand this, lets consider a scenario with four iden-
tical computing nodes and four identical parallelized opera-
tors that each produce four chunks, all of which are identi-
cal in complexity. Figure 4a and 4b both depict “optimal”
assignments for this scenario with regard to balancing the
workloads (colors denote chunks derived from a particular
operator). Notice that Figure 4a does not truly utilize data
parallelism, since each operator’s workload of chunks has
been allocated to a single node, and therefore the latency
of processing a single image through any of the operators
may be quadrupled in comparison to the allocation seen in
Figure 4b.

�����

�����

�����

�����

(a)

�����

�����

�����

�����

(b)

Figure 4: Two allocations of perfectly balanced

workloads

However, it is important to realize that, by analyzing these
allocations, we cannot determine the true latency of pro-
cessing all of an operators chunks due to the fact that we do
not know when chunks will arrive at the node. In 4b we see
four operators contending for resources of all 4 nodes. If we
assume that all chunks arrive simultaneously at each node
and prioritize chunks so that nodes perform the operations
in the same order, the first frame of chunks processed will
have a latency four times lower than that of the last frame
processed. However, the average latency of processing all
chunks would still be half of that latency of the non-data-
parallel processing that occurs in 4a. For this reason we
must realize that we are not actually looking to minimize
the actual latency of processing the chunks of an operation,
but instead we are attempting to minimize the lower-bound
latency.

There is no different assignment of chunks to nodes that
will results in a more even distribution of work than either
of these examples, but each comes at very different expenses.

Therefore it cannot be our priority to only balance the global
workload of all chunks across all nodes.

3.1 Chunk-to-Node Assignments
We illustrate how to make latency an optimization goal by
highlighting three different ways to apply a traditional in-
cremental bin-packing algorithm.

Global Bin-Packing: The objective of this heuristic is to
re-position the chunks of individual operators while consid-
ering the workloads of all other operators. For each oper-
ator, we follow the incremental bin-packing heuristic used
in [9] and [12] which first sorts the set of computing nodes
by the amount of time required by each node to process
all chunks that have been allocated to that node (regard-
less of which operator those chunks come from). We then
try to move as large of a chunk as possible, belonging to
the current operator, from the most burdened node to the
least burdened node such that the resulting change lowers
the maximum time spent processing of the two nodes. Sim-
ilarly we attempt to move a chunk from the second most
burdened node to the second least burdened node and so
on. Thus no more than a single chunk is moved for each
pair, per operator, during this bin-packing phase. Since this
Global method considers, as its scope, all workloads, this
strategy effectively balances the global set of workloads –
not end-to-end latency as we find that data parallelism is
not encouraged by the global balancing of many workloads.

Local Bin-Packing: This strategy is similar to Global Bin-
Packing in that we apply the same heuristic to each individ-
ual operator, but it is different in that while sorting the set
of computing nodes from most burdened to least burdened,
we consider only the workload of the current operation. By
changing the scope to only balance the workload of an indi-
vidual operator we benefit from the fact that this will also
optimize for the latency of individual operators. This la-
tency, however is only a lower-bound latency because, since
we ignore other workloads, we do not consider the fact that
other operators may be contending for the same computing
nodes that the current operator is using.

Tiered Bin-Packing: This strategy is actually quite dif-
ferent from the Local and Global strategies because it ap-
plies the bin-packing heuristic not necessarily just to indi-
vidual operators but to non-overlapping subsets of operators
in the query plan. We try this strategy because Local does
not consider contention for computing nodes between dif-
ferent operators (since it disregards their workloads) while
Global tends to do the opposite by considering more that it
should. This method creates subsets by walking down the
query plan, starting from the outputs, and creating subsets
composed of the operators of each successive level of the op-
erator tree. Thus, if the query plan tree has a depth of k,
there would be k subsets of operators to apply our heuristic
to. The incremental bin-packing heuristics are applied to
each of these subsets since those in the set are free to ac-
tively contend with each other, whereas any previous subset
that have already been balanced in the round, those closer
to the output, will not contend over computing nodes. We
can say this because when computing nodes asynchronously
receive chunks from the scatter points of operators, those
chunks will be deposited into that nodes input queue which

is implemented as a priority queue. The priority queue gives
precedence to chunks that are being processed at operators
closest to the outputs as they have been in the query plan
the longest and for the sake of minimizing latency we wish
to largely focus our efforts on the oldest items in our sys-
tem. Therefore, this tiered method tries to schedule together
those operators that have the same priority and compete
with one another for computing resources.

We found, in our simulations of these algorithms, that the
cost of applying workload balancing for small query plans
was usually less than a quarter of a millisecond, whereas
complex query plans with upwards of 20 operators would
take on average 1 millisecond.

3.2 Algorithm Comparisons
While all three of the workload balancing algorithms uti-
lize the same incremental bin-packing heuristic, each has a
slightly different objective function corresponding to their
scope. The effect of those objective functions are evident as
we compare the three algorithms.

The Global algorithm is best suited for simple query plans
that have little or no operator dependencies. In such sce-
narios, when there is simply a set of completely independent
operators and we would like to minimize the latency of pro-
cessing all chunks, then Global is an ideal strategy. This
configuration of operators prevents computing nodes from
congesting pipelines and preventing other nodes from do-
ing work because operators are not dependent on the out-
put of other operators. Therefore the situation will never
arise in which computing nodes must wait on another node
to produce the last necessary chunk of a frame before that
frame can be redistributed to the waiting nodes. A simple
and pure workload balancing algorithm, that considers the
workloads on all computing nodes, will therefore produce
better results than those that only consider workloads of
subsets of nodes. This arrangement of operators in a query
plan, however, is highly unrealistic since even the most sim-
ple real-world plans usually have some degree of operator
dependencies. Therefore, as plans become more complex,
we see that Global falls behind Local and Tiered since it
is not able to adequately promote data-parallel processing,
causing computing nodes to congest operators in the query
plan.

Global
Local
Tiered

 86

 88

 90

 92

 94

 96

 98

 100

Simple Complex

D
iff

er
en

ce
 in

 L
at

en
cy

 (
%

)

Query Plan

Low−Level Heuristic Comparisons

Figure 5: Algorithm Comparisons

In figure 5 we show a comparison of the algorithms from

testing two query plans in which the data has been scaled
to show latency relative to the worst performer in each test.
The ‘Simple’ plan consists of three parallelized operators
with two receiving data from inputs while a third joins the
output of the previous two. The ‘Complex’ plan is a large
asymmetrical plan consisting of 20 operators (6 of which
are joins, and 7 of which are fed from input streams). Both
of these query plans are already complex enough that the
Global algorithm falls short compared to Local and Tiered
which have an advantage in that they both promote data
parallelism across subsets of operators. We also see that
Tiered performs better than Local in both tests, with the
gap slightly increasing as more operator dependencies are
introduced in the Complex query plan. Since the Local al-
gorithm only considers the workload of a single operator at
a time, it is unable to capture operator dependencies in the
query plan. It is therefore common for the Local strategy to
over-utilize nodes by forcing them to heavily contribute to
areas of contention instead of distributing a node’s comput-
ing resources evenly across a query plan. For instance, in the
Small query plan it would be more advantageous for a com-
puting node to participate at an operator at an input and
the join operator instead of at both inputs. To participate
at both inputs can cause those operators to simultaneously
contend for the computing node causing it to become a bot-
tleneck. The tiered algorithm is able to mitigate this affect
to some degree by grouping together tiers of operators in
the operator tree that directly contend with each other for
processing time. This ensures that a single computing node
will not be overly utilized by any one tier.

4. PICKING PARTITIONING STRATEGIES
As previously stated, for each parallelized operator we must
determine the number of chunks to break the data into and
then assign those chunks to nodes. To determine the domain
of possible numbers of chunks the frame could be broken
into, we find all possible ways to subdivide the frame into
regular chunks and make a set consisting of the number of
chunks in each valid partitioning.

With a domain for set of possible partitioning strategies, we
can search over the space of partitions for all operators with
the aid of a few search heuristics and a simulator. The sim-
ulator provides us with the benefit of being able to replicate
the layout of the query plan, processing mechanisms, chunk
distribution strategies, workload balancing strategies, and
provide us with end-to-end latency measurements all with-
out the cost of actually processing or transmitting data. We
sidestep this cost by regularly capturing statistics, as men-
tioned earlier, that inform us of current node speeds and
chunk complexities that we can use to estimate processing
times in our simulation environment.

Another benefit that we receive from the simulation is that
it can provide us with the chunk-to-node assignments that
correspond with the best set of partitioning strategies found
by the search heuristic. Due to the nature of trying new con-
figurations with a fresh snapshot of statistics for node speeds
and chunk complexities, it is beneficial to run the incremen-
tal balancing algorithms multiple times to allow for enough
iterations to find good workload balances. If we were to
find a better plan from the simulation and pass off just that
plan to the actual processing environment, the incremental

load balancing heuristics will not have the luxury of having
a starting point to increment from and could come to a poor
allocation with a potentially very good plan. Since the sim-
ulation performs multiple iterations on its own, however, we
can pass off the final chunk-to-node allocations associated
with the best configuration to allow the balancing heuristics
to continue to progress incrementally.

Likewise, we can apply the same strategy to seed the heuris-
tics searching the space of partitioning strategies. The most
recently used set of partitioning strategies can seed the heuris-
tics in order to reduce the time it takes to find additional
good configurations.

Cyclical Optimization: The first technique we used to
search the space of partitioning strategies involves starting
with a base set of partitioning strategies, one for each opera-
tor, whether randomly picked or seeded with the previously
used set of partitioning strategies. We then cycle through
operators in the query plan and, for each operator, iterate
through all possible partitioning strategies available for that
operator and choose the configuration that, when simulated
with the partitioning strategies associated with the rest of
the operators, provided the lowest latency in simulation. By
doing this we find, for each operator the best partitioning
strategy available given that the rest of the strategies for
other operators are fixed. This process can be looped un-
til no additional benefit can be found, or simply for a pre-
determined amount of time.

Genetic Algorithm: Our second approach utilized a ge-
netic algorithm to quickly generate and compare popula-
tions of candidates [8]. Each candidate, a set of partitioning
strategies – one for each operator, is evaluated in the sim-
ulator to identify the latency of using those configurations.
We then follow the steps outlined below:

1. Rank all candidates by their latencies.

2. Eliminate the poorest performers in the popu-
lation, leaving only the “winners”. In our tests, we
eliminated the poorest performing 75% of the popula-
tion.

3. Breed pairs of winners to increase the population
size. To do this we randomly select two candidates
and then create a new candidate whose partitioning
strategy for each operator has an equal chance of be-
ing derived from either parent. This allows us to try
to inherit good attributes from candidates who have
proven themselves to perform well in the simulation.
In our tests we restore 25% of the original population’s
size by breeding.

4. Perform mutations on individual winners to increase
the population size. This is done by picking candidates
randomly from the winners, cloning their partitioning
strategies onto a new candidate and then randomly
modifying a percentage of those strategies. This allows
us to explore extra options that are “near” existing and
well performing candidates in the search space. In our
tests we restore 25% of the original population’s size
with mutations.

5. Add random candidates to increase the population
size. The logic for this step is to continually search out
new and unforeseen candidates. This helps us in main-
taining breadth in our search to reduce the chances of
getting stuck in local minima in our search for low-
latency candidates. In our tests we restore 25% of the
original population size with these random additions.

The genetic algorithm is then simply looped, ranking popu-
lations, culling, and repopulating to exploit good features of
the winners while maintaining a level of randomness. The
algorithm can continue until a stopping criteria has been
reached, which can be defined in one of many ways. For
instance, the algorithm can simply stop iterating after a
time limit has been reached and return the best performing
candidate, the algorithm can proceed for a set number of it-
erations, the algorithm can be stopped if the latency of the
best performing candidate has been the same for the last x

iterations, the algorithm can be stopped once the difference
in latency between the best candidates in subsequent iter-
ations is less than a desired threshold, or a combination of
these methods or other methods can be used.

4.1 Algorithm Comparison
To compare the search heuristics, we used the same Complex
query plan used in the previous tests to provide us with a
search space. We then fed that plan to both algorithms and
allowed them each to run for one minute in order to see
the quality of the partitioning sets each would produce over
time. We re-ran the tests multiple times to find the average
quality of plans produced over time for both algorithms.

We can also improve on this quick decent into low latencies
by seeding the input, as mentioned previously. We con-
ducted another test in which we ran both algorithm seeded
with a set of previous partitioning strategies. The seed was
derived from a processing environment that had computing
nodes that were 30% faster than the current environment
to illustrate rerunning the parallelism picker after a sud-
den degradation in processing potential whereas each node
degraded to a different degree. The results of both algo-
rithms, over time, with and without seeds can be seen in
Figure 6. Even starting with a configuration for parallelism
derived from a processing environment with a 30% differ-
ence in computing potential allows for an improved entry
into regions of the search space that provide good plans for
parallelism configurations.

We notice that both algorithms are able to quickly find bet-
ter configurations and that seeds help improve the decent
into better configurations. We see, in this case, that the
cyclical algorithm outperforms the genetic algorithm. The
cyclical algorithm, we have found, is good at optimizing por-
tions of the query plan (for instance, chains of dependant op-
erations), whereas improving a single operator in the chain
will improve the entire chain. However, the cyclical algo-
rithm is only able to improve on one operator at a time and
is therefore unable to modify sub-trees of the query plan
at once which has difficulties in optimizing two bottleneck
inputs to a join in a timely manner. While the genetic algo-
rithm, in this instance, is beaten out by the seeded cyclical
algorithm it is able to consistently provide good plans for

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 0 10 20 30 40 50 60

La
te

nc
y

(s
ec

on
ds

)

Time Spent Searching (seconds)

GA From Seed
GA From Scratch

Cyclical From Seed
Cyclical From Scratch

Figure 6: Quality of Search Heuristic Results Over

Time

parallelism configurations regardless of the organization of
the query plan.

Additionally, genetic algorithms can be run with varying
population sizes and, with additional tests, we saw some-
what predictable results. Given larger population sizes, a
genetic algorithm is likely to find better results since it is
able to cover a large portion of the search space and keep
some degree of breadth in order to avoid falling victim to
local minima. However, due to the size of these large popula-
tions, iterations take longer than they would with a smaller
population and therefore we are slower to come to those bet-
ter configurations. With a small population size of 16, we
are able to iterate very fast and can quickly take advantage
of the genetic algorithm’s ability to capitalize on exploiting
good performing traits found in the top-performing candi-
dates of the population which can lead to a steeper initial
decent to low latencies.

One downside to using heuristics to search this very large
space is that it is difficult to know exactly how close to op-
timal the results are. For this reason, we contrived a query
plan for which it was easy to identify the optimal set of par-
titioning strategies in order to see how closely the genetic al-
gorithm could approximate the optimal configuration. The
query plan simply consisted of a singe long chain of 10 identi-
cal operators. The solution for the entire query plan, there-
fore was to replicate the optimal partitioning strategy for
a single and isolated instance of any of the operators and
to apply that partitioning strategy to all of the operators.
While this plan is conceptually extremely simple, the ge-
netic algorithm is completely agnostic to the structure of a
query plan or the similarity of operators. We fed this plan
to the genetic algorithm, starting with randomized inputs,
and averaged the results found over time from many tests.
Those results are depicted in Figure 7. We can see that, even
without the advantage of having a useful seed, the genetic
algorithm was able to come very close to matching the opti-
mal configuration. Even though, out of all of the tests, none
of the attempts by the genetic algorithm perfectly matched

the latency of the optimal configuration, the average of best
latencies of all tests was within 2.5 milliseconds of the opti-
mal.

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100

La
te

nc
y

(s
ec

on
ds

)

Time Spent Searching (seconds)

Genetic Algorithm
Optimal

Figure 7: Genetic Algorithm vs. Optimal Configu-

ration

5. SIMULATION AND ANALYSIS
We developed a discrete event simulator to evaluate the
joint efforts of our partitioning strategy picker and work-
load balancer. This allows us to simulate the processing of
diverse query plans on large clusters of non-dedicated het-
erogeneous computing nodes whose different processing po-
tentials (defined by cycles per second) are all capable of
fluctuating in order to express the effects of external work-
loads on the computing nodes. The multidimensional data
that are propagated through the query plans can also be
defined in terms of their complexity (CPU cycles required)
in relation to each operator in the query plan. This gives us
the ability to change chunk complexities between sequential
frames in the data stream in order to represent complexity
migration throughout a multidimensional frame or to simply
increases and decreases operator workloads. Network trans-
mission of data between computing nodes is also included
in our simulation with all nodes presumed to be connected
to a 100Mb switch. The processing performed by the oper-
ator is simulated as a wait-time which are derived from the
complexity of the chunk and the processing potential of the
computing node assigned to that chunk.

5.1 Adapting to Dynamic Environments
To demonstrate how the partitioning strategy picker and
the workload balancer work together to suggest new con-
figurations of resource utilization, we conducted a series of
experiments that involved manipulating the processing envi-
ronment to cause previous configurations to perform poorly,
thus enforcing the need for adaptation. To do this, we used
the Simple query plan, mentioned previously, and modified
the cost of processing the multidimensional data at each of
the operations. This update in chunk complexity statistics
was then passed to the search heuristic which would, in turn,
update its internal simulator so that its own instance of the
workload balancer would have a more up-to-date view of the

processing environment. As the search heuristic then inves-
tigate the search space of all partitioning strategies, it will
discover that the current configuration (which the algorithm
was seeded with) may be less optimal than some of the new
configurations it may discover (potentially with the help of
the seed).

While modifications were made to the cost of producing
output for each operator, the cost of the entire query plan
was maintained. To do this, we mimicked a migration of
cost throughout the query plan. Initially all operators were
treated identical in processing complexity. We then mi-
grated a large portion of the costs of one of the input oper-
ators to the other input operators. This would result in a
large bottleneck if the workload distribution had stayed fixed
with the configuration developed for operators with homo-
geneous costs. The cost of the join operator actually stayed
the same, however, complexity was migrated within its mul-
tidimensional data. Instead of complexity being evenly dis-
tributed through the array, as was the previous case, we
moved a large amount of the complexity to one half of the ar-
ray. This causes half of the output chunks to be much more
costly to produce than the other half. In this way, the total
processing demand for the operator has stayed the same, but
the chunks have now been unevenly altered in complexity.
In addition to this migration of complexity within the query
plan, we made available 6 computing nodes, three of which
were twice as fast as the other three.

 0%

 20%

 40%

 60%

 80%

 100%

Flux Shared Nodes Heuristic Search

D
iff

er
en

ce
 in

 L
at

en
cy

Figure 8: Genetic Algorithm vs. Optimal Configu-

ration

In this experiment we compared 3 different load distribu-
tion strategies as seen in Figure 8. The first is an imitation
of Flux[9] and is based upon the initial assumption of ho-
mogeneous operators with heterogeneous computing nodes.
Each operator was a distinct set of computing nodes there
dedicated to that operator, with a Local Bin-Packing strat-
egy applied. This allows workload to be migrated between
the computing nodes in an operator’s private node set, but
does not allow the sharing of resources. Therefore, we see
in the test that this strategy results in the computing nodes
which have been assigned to the less burdened input opera-
tor become very much under-utilized, while the other input
operator’s node are over-utilized. This strategy is able to
well balance the migration in complexity associated with
the join operator. However, we see that since the operator

node-sets are distinct, that latency has the possibility of suf-
fering due to the fact that the efforts of computing nodes are
not able to be combined to concurrently progress the oldest
data in the system. For instance, if the join operator has
nothing to process while the input operators due, the com-
puting nodes at the join operator are not being effectively
used to minimize latency as they would sit idle.

The second strategy, labeled “Shared Nodes”, allowed for
operators to now have non-distinct node-sets, however they
were still fixed node-setts without the ability to change nodes
over time. Each of the slower nodes was now shared by two
operators so that each operator had, in its node-set, one
fast and two slow nodes. Here we employed the Tiered bin-
packing strategy which was able to alleviate many of the
underutilization problems we saw in the previous strategy
while minimizing contention between the concurrently run-
ning input operations.

The third strategy includes our heuristic search to find good
partitioning strategies for each of the operators. Now, we
allow the number of chunks each operator produces to be
modified since we have noticed the complexity migrations
between operators in the query plan and within the join op-
erator. This gives the bin-packing algorithms finer grained
control as to how well they are able to pack chunks onto
heterogeneous nodes. For instance, it could be beneficial to
further partition the more complex input operator in order
to provide a more fine-grained distribution of the workload
across the computing nodes so that it fits in well with other
concurrently running workloads.

5.2 When to Reevaluate
There is obviously a cost to running the search heuristic
invoking multiple simulations of partitioning configurations
and the corresponding workload balancing. The question
of how often to run the search heuristic is primarily af-
fected by how dynamic the processing environment. If a
processing environment is completely static, such that frame
complexities and computing node processing potentials may
be heterogeneous but never change, then we can simply
run the search heuristic once and stick with that configu-
ration indefinitely. If a processing environment is mildly
dynamic we may only have to call the search heuristic once
every couple of minutes or hours. Likewise, if the environ-
ment is extremely dynamic it would be required to run the
search heuristic more frequently to adapt to changes. It is
not straightforward to simply suggest a time line for which
a streaming application should rerun the search heuristic,
since time, for each application comes with different amounts
of environmental fluctuations. Instead we suggest running
the search heuristic in the background when idle cycles are
available. The nature of these search heuristic is that they
are able to work with whatever time they are given, whether
small or large. Additionally heuristic and corresponding
simulation are easy to increment and update to reflect the
changing environment. Search heuristics can be seeded with
recent partitioning configurations to reflect the recent-history,
while the statistics in the simulator can be updated to bet-
ter reflect the external workloads on individual computing
nodes as well as newly observed chunk complexities.

6. OPERATOR PARALLELISM
Not all operators can benefit from, or even take advantage
of, data-parallel processing. Many operator are inherently
not parallel, however, they still have a place within our sys-
tem. To represent such an operator, the partitioning strat-
egy going into the workload balancing heuristics would sim-
ply denote that the operator had 1 chunk to deliver. The
workload balancing heuristic would still be able to move
that single chunk from node-to-node if it could improve the
latency of that operator to do so.

Sometimes achieving data parallelism for certain classes or
operators is not as clean-cut as simply breaking an array
into distinct pieces and sending them on their way. While
there are many classes of data-parallel operations, most that
process multidimensional data seem to fall largely into these
three categories [10]:

• Cell-to-Cell Mappings: This category is the most
straightforward and simple whereas each cell in the do-
main array is transformed and mapped directly onto
an individual cell on the array in the co-domain. In
this case, frames simply can be subdivided into distinct
chunks without the need for any inter-chunk process-
ing.

• Region-to-Cell Mappings: This category relates to
much of the image processing domain including any
operation that has a sliding window that iterates over
an image to apply a transformation. We now, clearly,
have the case in which such a region can overlap mul-
tiple chunks thus giving rise to the inter-chunk pro-
cessing problem. There could be multiple locations in
co-domains associated with differing chunks that rely
on similar regions in the domain. In order to perform
these operations in a data-parallel manner, it is nec-
essary to transmit extra information with each chunk.
The amount of extra information would generally be
defined by the size of the region or sliding window
that pans across the original array in order to produce
border-cells of chunks in the co-domain. This buffer
would allow such sliding windows to span across, what
were previously chunk boundaries.

We now face a trade-off. It must be established if
the cost of transmitting extra data is worth the price
of data-parallel processing. If it is believed that data-
parallel processing is still advantageous, then the extra
information can be packaged into each chunk with def-
initions in the chunk header as to coordinate bound-
aries of the co-domain chunk so that the computing
nodes will produce the appropriate chunks as output.
Not only is the question raised as to whether or not
chunking should be done in the first place, but also as
to what granularity of chunking should be performed.
With additional chunks comes the potential for in-
creased degrees of data-parallel processing while po-
tentially reducing underutilization of computing nodes,
but each additional chunks comes with the increased
transmission cost of sending additional data.

• Global-to-Cell Mappings: This can be considered
an extreme case of region-to-cell mappings in which the
“region” is defined as the entire input array for each

cell in the co-domain. In such circumstances, each
chunk would consist of the entire array with the spe-
cific coordinate boundaries of the co-domain’s output
chunk in the header. Obviously, there must now be
a substantial benefit to data-parallel processing in or-
der for the trade-off of broadcasting an entire array to
all computing nodes in the operator’s node-set to be
worthwhile.

In our work we assume that operators have already been
classified into the previous categories and that the costs of
redundant data transmission and computations is captured
in our chunk sizes and complexities.

7. FUTURE WORK
One of the next logical steps is to implement the system
we have defined. This would require measures to establish
a network communication protocol which allows all com-
puting nodes, whether on separate physical computers or
multiple cores on a single CPU, to communicate with the
scheduler in order to deliver statistics and to receive up-
dates to chunk routing tables. It would also be necessary to
implement a scheme for chunk headers to carry information
relative to processing the data in the chunk (which should
include information on how to reconstruct the array data),
an indicator as to which operation to perform on the data,
a definition of the output chunk to produce (should the do-
main of the operation differ from the co-domain), and an
address used to send a chunk to its operation’s gather point
for aggregation.

Another direction we can take with this research is to al-
low for more fine grained control of the amount of complex-
ity contained within each chunk by allowing for irregularly
shaped chunks. Even if such a non-trivial problem is solved
a variety of new questions would be available to explore. For
instance, how do we process irregular and non-rectangular
chunks without requiring a large degree of extra and re-
dundant information for operations involving region-to-cell
mappings?

With the proliferation of multi-core processors there are
many additional optimizations we can make for these ar-
chitectures. Each core would not necessarily have to act as
an individual and isolated computing node, but simply as
a collection of processors all working for the same comput-
ing node. In this way, all chunks that would previously have
been destined for these cores can just be deposited at a queue
in the main memory of the computer housing these cores.
The cores can then simply pull chunks from that queue to
process (whether they would have previously been destined
for that core or another core on the same computer). This
strategy would reduce time that cores spend waiting while
their queues would previously have been empty and those
of other cores potentially not empty. As long as a chunk is
resident on memory accessible by all cores, it does not mat-
ter which core actually does the processing work. An extra
feature to explore would be in trying to benefit from the lo-
cality of cores with respect to where chunks are located. For
instance, if a computer houses a scatter point for an operator
and cores on the computer are currently available to process
data, it could be beneficial to not transfer those chunks over

a network to cores on other computers. It would be inter-
esting to find out when it would be advantageous to keep
data locally and when it is not. Yet another benefit from
memory locality in multi-core computers is that redundant
data need not be sent to these cores. For operations involv-
ing global-to-cell mappings (or even region-to-cell), an entire
array could be sent once allowing all cores to read the same
data while processing chunks of differing co-domains.

Ideally, a user of the system should be able to create a query
plan and just let it run without having to previously spec-
ify by hand the classifications of data-parallel operators in
the query plan and valid partitioning strategies. It should be
transparent to the user how and what kind of internal chunk-
ing we perform on data for each operator and how much
extra and redundant information must accompany chunks.
It would be interesting to explore strategies of black-box
analysis to discover access patterns on the input frame and
observe how data is written to the output frame in order to
infer how data-parallel each operator is automatically.

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.
Zdonik. The design of the borealis stream processing
engine. In CIDR, pages 277–289, 2005.

[2] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft,
D. E. Culler, J. M. Hellerstein, D. Patterson, and
K. Yelick. Cluster I/O with River: Making the fast
case common. In Proceedings of the Sixth Workshop
on Input/Output in Parallel and Distributed Systems,
pages 10–22, Atlanta, GA, 1999. ACM Press.

[3] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[4] A. Gounaris, R. Sakellariou, N. Paton, and
A. Fernandes. Resource scheduling for parallel query
processing on grids, 2004.

[5] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-Availability
Algorithms for Distributed Stream Processing. In The
21st International Conference on Data Engineering
(ICDE 2005), Tokyo, Japan, April 2005.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In European Conference on
Computer Systems (EuroSys), pages 59–72, Lisbon,
Portugal, March 21-23 2007. also as
MSR-TR-2006-140.

[7] V. Raman, W. Han, and I. Narang. Parallel querying
with non-dedicated computers. In VLDB ’05:
Proceedings of the 31st international conference on
Very large data bases, pages 61–72. VLDB
Endowment, 2005.

[8] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach, pages 116–119. Prentice-Hall,
Englewood Cliffs, NJ, 2nd edition, 2003.

[9] M. Shah, J. Hellerstein, S. Chandrasekaran, and
M. Franklin. Flux: An adaptive partitioning operator
for continuous query systems. Technical Report
UCB/CSD-2-1205, U.C. Berkeley, 2002.

[10] C. Soviany. Embedding Data and Task Parallelism in
Image Processing Applications. PhD thesis, Technische
Univ. Delft, 2003.

[11] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. Zdonik.
Providing resiliency to load variations in distributed
stream processing. In VLDB ’06: Proceedings of the
32nd international conference on Very Large Data
Bases, pages 775–786. VLDB Endowment, 2006.

[12] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load
distribution in the borealis stream processor. In ICDE
’05: Proceedings of the 21st International Conference
on Data Engineering, pages 791–802. IEEE Computer
Society, 2005.

