
The performance of select STAMP

benchmarks with transactional cache hardware

configurations

Andy Bartholomew

December 19, 2008

1 Introduction

I have adapted STAMP benchmarks [1] for use with the MPARM simulator
in order to evaluate the performance of transactional cache configurations.
We are primarily interested in evaluating energy consumption in multi-core
mobile devices.

There are two main hardware configurations being evaluated: a simple
transactional cache (“vanilla TM”), and a victim cache configuration. In
the vanilla configuration all transactional data is stored in the transactional
cache. In the victim cache configuration, transactional data is kept in lo-
cal caches, but evicted transactional cache lines are stored in this victim
cache. In general, this allows for larger read/write sets without overflowing,
but increases the chance of aborts. There are several policy variations on
these models that control the shutting down of the extra cache when not in
use. However, The benchmarks I focused on spend almost all of their time
executing transactions, so these models were not considered.

I had previously adapted the kmeans benchmark, but concluded that
the read/write set was too small and the transaction length too short to
demonstrate the utility of a transactional cache. For this reason I next chose
the two benchmarks in the STAMP suite that have medium-sized read/write
sets, vacation and genome. In general, these benchmarks frequently overflow
the simple transactional cache, and make consistent use of the victim cache.

1



In the following sections I detail the non-trivial methods used to adapt
the STAMP benchmarks, discuss the structure of the two benchmarks, and
outline some results.

2 Methods

This section serves primarily as documentation for future project members.

2.1 Initialization

In the original benchmarks, initialization was done before a special par-
allel function call with a single pointer to all allocated data structures.
In our simulations, any work done before threads are spawned is done by
the primary thread while the others wait for initialization. Pointers to
all the structures allocated during this initialization phase may be passed
using the make global point and get global point functions provided in
appsupport.h

2.2 init multi

The original benchmarks made use of system calls not available in the MPARM
simulator. In particular, MPARM does not provide printf, malloc, or pthread
support. While there is an analogous printing function, and various proces-
sor synchronization mechanisms, we had to implement our own version of
malloc for the simulator.

The original shared memory allocation implementation proved to be too
contentious, so I implemented a version that partitions the shared memory
space and uses separate metadata structures for each core. However, because
the primary core is reponsible for making the vast majority of allocations dur-
ing the initialization phase, it is best to partition the remaining memory and
initialize all metadata at the end of initialization. This is done by calling
init multi. Note that this is only necessary of the benchmark makes allo-
cations after the initialization phase. In the future it may be beneficial to
make the call to init multi automatic.

Once init multi has been called, each core allocates memory from its
own partition. A call to sfree multi, however, may point to a block in any
partition. In this case we logically mark the block as free without moving it

2



from the metadata list, which is owned by another core. Functions for lazy
cleanup have been implemented, but have not yet been integrated into the
system, as they have not proven necessary.

2.3 Generating parameters and input

Because MPARM does not provide file input or command line arguments,
I have created python scripts that generate header files with the parame-
ters or input defined by macros. These scripts are called geninput.py or
genparams.py, and their arguments reflect the arguments of the original
benchmarks.

2.4 stamp suite.py

I have converted launch suite from bash to python, which I find easier to
read and maintain. This script is specific to the stamp benchmarks, which
all have a run[name] script contained in their application folders and take the
same parameters. I have also converted the data collection scripts to python.

3 Benchmarks

Vacation is essentially a set of red-black tree databases. The user specifies
some number of tasks to be performed on these databases, with a speci-
fied number of tasks per transaction. These tasks consist of reservations
(look-ups), customer removal (deletes), and insertions. The user specifies
the proportion of look-ups to be performed, with higher proportions caus-
ing less contention. We have found that even one lookup on a fairly small
database causes an overflow for the vanilla configuration.

Genome is primarily a hashmap, followed by a parallelized Rabin-Karp
string search algorithm. There are two phases: in the first phase, elements
are added to the hashmap, six per transaction. In the second phase, we make
matching attempts on the sequence inside a transaction.

3



4 Results

4.1 Vacation

With minimal contention, the victim cache configuration scales much better
than the vanilla configuration. In fact, it is surprising that the vanilla con-
figuration has any speedup at all, considering it has a 100% overflow rate.
Also of interest is that as cores are added, the victim cache configuration uses
more energy than the vanilla configuration. The majority of this difference
comes from the CPUs, possibly because the VC takes more energy waiting
to use the bus.

With a small amount of contention things really aren’t making much
sense. Neither configuration gets any speedup from increasing the number of
cores. This indicates that aborts are particularly bad with this benchmark,
to an extent beyond what we should expect.

4.2 Genome

The vanilla configuration performs the fastest for genome, although it does
not gain much speedup as cores increase. Meanwhile the VC configuration
performs very badly with one core, but quickly improves as we increase to
4 cores. Between 2 and 4 cores it has almost the same performance as the
vanilla TM configurations with aggressive shutdown.

Aborts do not seem to be much of an issue with the genome benchmark,
although it is suprising that the vanilla configuration performs so well despite
a 34% overflow rate. Simulations limited to the first phase of the benchmark
show that nearly all transactions overflow, seemingly indicating that all over-
flows in the full benchmark come from the first phase.

The most likely explanation for the worse performance by the VC config-
uration is the bus traffic: the bus is nearly saturated for the VC configuration
with only 4 cores. Waiting for the bus requires more energy and slows down

A simulation suite with varying cache sizes showed that doubling the
cache size halves the overflow rate, making the vanilla configuration more ef-
ficient. Meanwhile varying the cache size does not affect the VC configuration
to any noticeable extent.

4



5 Future benchmarks

It may be useful to implement another benchmark, although none have all
the traits we want. We would like a benchmark that allows us control and
decouple overflows and aborts while still using the transactional caches. Pos-
sibilities include intruder, which has a medium sized read/write set and short
transactions, but high contention, and yada, which has large and long trans-
actions with medium contention.

References

[1] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,
Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun.
An effective hybrid transactional memory system with strong isolation
guarantees. In Proceedings of the 34th Annual International Symposium

on Computer Architecture. Jun 2007.

5


