
Contributions on Lineogrammer

Chu-Chi Liu

Master’s Project Report 2008

Department of Computer Science

Brown University

There are two parts in this master’s

project report. Part 1 describes the

features implemented in Lineogrammer

paper submitted in April 2008. Part 2

introduces the features implemented

since then.

Part 1:

1. Polygon Recognizer

Initially, the underlying geometrical

structure of the lineogrammer only has

lines. In order to manipulate polygons

more conveniently, the need to

recognize polygons becomes essential.

Once a polygon is recognized, it will

be filled with the color according to

its type of symmetry.

Figure 1.1: Polygons with colors that

correspond to their types of symmetry

We use three types of symmetry:

horizontal, vertical and rotational to

determine the default color of a

polygon.

Polygons that contain all three

symmetries are color coded light blue.

In Figure 1.1, the circle positioned on

the top left hand corner fits this

description.

The parallelogram on the right hand

side of the circle is rotationally

symmetrical and therefore is coded by

the color yellow.

The bottom row of figure 1.1 contains

two triangles, one with a vertical

symmetry and one with a horizontal

symmetry. The one with vertical

symmetry is color coded pink whereas

the one with horizontal symmetry is

color coded green.

Shapes like the quadrilateral on the

bottom left hand corner of figure 1.1

that contains no symmetry whatsoever

are assigned the color gray.

The line segments above the

quadrilateral do not form a cycle and,

therefore, they will not be recognized

as a polygon.

Scribbling on to, therefore deleting

any segments from a polygon will result

in the incompleteness of a cycle.

Since an acyclic shape is not

recognized as a polygon, the modifying

options that polygons allow are not

applicable.

Basically, the polygon recognizer is

trying to check whether there is a

cycle generated after each line stroke

or not. If this is the case, a polygon

will be created in the underlying

geometrical structure of lineogrammer

and, according to its type of symmetry,

a corresponding color will fill in its

fill-area. However, if no cyle is

generated, nothing will occur.

2. Select/Deselect

After a polygon is recognized, it is

easy to tell whether the stylus is

located inside or outside the polygon.

Since the fill area of a polygon

presents a relatively large surface

area for the stylus to tap, tapping the

fill area is perhaps one of the easier

methods of selecting.

Re-tapping a selected polygon will

deselect it. In situations where there

are multiple objects, such as other

polygons, lines, or labels enclosed

within a polygon’s fill-area, selecting

the polygon will also select the

objects enclosed by this polygon.

Deselecting a polygon works in the same

fashion.

However, the tapping of overlapped

areas of multiple polygons creates

several problems. After testing several

beta versions, we finally came up with

the methodology below.

In Figure 2.1, the black dot indicates

the tapping point. A polygon is tapped

if the tapping point is within its fill

area. Subsequently, all the polygons in

the enclosed space are tapped.

Of the tapped polygons, the algorithm

will select the smallest polygon and

any polygons that intersect with it.

This implies that our black dot will

select the polygons outlined in red.

Figure 2.1: The position of the tapping

point and the polygons selected

Re-tapping the black dot again will

only affect the previously selected

polygons. This follows the same

algorithm described above.

3. Movement

To move polygons, selecting them first

is required. Once a polygon is

selected, dragging its fill area with

the stylus essentially moves the

polygon around.

4. Stretch/Shrink

To stretch polygons, selecting them

first is required. Once the polygon is

selected, dragging the edge of the

polygon with the stylus essentially

stretches/shrinks the polygon. Thus

the control of the shrinking and

stretching of the polygon is easier.

5. Rotation

Imagine a card is pinned on the table

with a nail. Then, the card can be

easily rotated. The rotation movement

in our design is inspired by this idea.

Similarly, selecting the object first

before rotation is essential. After

the polygon is selected, flicking the

stylus will create a “nail” on the

drawing canvas.

Notice that the “nail” acts as a

pivot/rotation point of the shape.

Once a nail is created, dragging the

fill area will rotate the polygon

rather than move it (Figure 5.1). It

is vital that the distance between the

rotation point and stylus is kept

constant for the reason that the

polygon may enlarge or compress

otherwise.

Moreover, the nail can be dragged

around as well. This adds flexible

maneuverability to the relocating of

the rotation point.

Figure 5.1: An arrowhead is rotated

clockwise by 168 degrees

6. Stretch with Nail

If a nail already exists while a

polygon is being stretched, then the

polygon is stretched according to the

location of the nail (stretching

center). If multiple polygons are

being stretched, the nail location will

act as their common stretching center.

Meanwhile the nail is still draggable.

7. Curve

Curves can be selected, moved, and

rotated, like regular line segments. A

complex curve can be formed by joining

together multiple simple curves. The

curve can be adjusted with the movement

of the polygon it’s connected to.

Figure 7.1 and 7.2 shows the

position/locus of the curves before and

after the movement.

Figure 7.1: How the curves look before

moving the polygon in red

Figure 7.2: How the curves look after

moving the polygon in red

8. Polygonized Label

A label can be selected by lassoing it

(or by tapping it if it’s in edit

mode). After being selected, it can

then be moved, rotated, or stretched

similar to a polygon. Its property,

such as color, can also be changed

likewise. Hence, labels can be edited

just like polygons. This is illustrated

in Figure 8.1.

Figure 8.1: A selected label with its

marking menu being shown

9. Changing Properties of

Polygons/Lines/Labels

After selecting multiple objects such

as polygons, lines, or labels, the

properties of the selected, for example

color, can be edited simultaneously

through the “Properties” option in the

marking menu (Figure 9.1).

Figure 9.1: Changing Properties via the

marking menu

10. Fill an Image for a Polygon

For the selected polygon, its fill area

can be filled with an image instead of

a color through the “Image” option in

the marking menu as shown in Figure

10.1.

Figure 10.1: Filling the polygon with

an image

11. Grouping

When multiple objects such as polygons,

lines, and labels are selected, the

grouping operation within the marking

menu can mark the selected objects as

belonging to the same group. After

grouping them, selecting any one

element in the group will select the

other elements in the group too.

Figure 11.1: Polygons in red are

grouped via the grouping option in the

marking menu.

12. Connecting Lines

In the previous design, in order to

connect two polygons through a line,

the endpoints of the connecting line

must remain fixed on each side of its

connected polygons.

Therefore, any movement of the

connected polygons may result in the

line dissecting them.

In our new design, the endpoints of the

connecting line are fixed inside the

polygons rather than at the edge.

Moreover, the parts of the connecting

line that are inside polygons are made

invisible for a neater visual effect.

The connecting line looks more natural

by not cutting through the polygons as

it moves around.

Figure 12.1 and 12.2 shows what the

line looks like before and after the

polygon movement.

Figure 12.1: A connecting line with its

connected polygon before movement

Figure 12.2: A connecting line with its

connected polygon after movement

The endpoints inside the polygon can

also be relocated for further

adjustments as shown in Figure 12.3 and

12.4.

Figure 12.3: Before relocating the

right endpoint of the connecting line

Figure 12.4: After relocating the right

endpoint of the conncecting line

13. Alignment Indicator

When the bounding boxes of two polygons

are aligned to each other, a line will

be shown as the visual feedback

indicating the occurrence of the

alignment. This feature is commented

out presently.

Figure 13.1: Alignmennt indicator

showing the occurrence of alignment

between the polygons.

14. Length Indicator

While manipulating polygons and lines,

the lengths of the polygon edges and

the lengths of the lines are shown.

Again, this feature has been commented

out presently and can be turned on for

further accuracy.

Figure 14.1: Length indicator showing

the lengths of the polygon edges

15. Pan

There are two methods that can achieve

the effect of panning.

Method one: Selecting all the objects

on the canvas will in effect allow

movement of the objects as a whole.

Method two: Press the canvas with the

stylus and hold for at least half

second. Movement of the stylus then

will entail movement of every object on

the canvas.

This feature is commented out presently.

16. Zoom In/Out

The zoom-in operation is triggered by

flattened diagonal zigzag gesture from

bottom-left to top-right. This

essentially transitions to the

interactive zoom rectangle as shown in

Figure 16.1. Moreover, the interactive

zoom rectangle is controlled by the

current position of the stylus.

In order to let the users preview the

location of the zoomed-in objects with

respect to the screen size after

zooming in, an additional rectangular

box in light red is displayed on the

screen. As a result, users are able to

locate the objects with respect to the

screen after zooming in.

Figure 16.2 corresponds to the result

after zooming in.

Figure 16.1: Interactive zoom rectangle

Figure 16.2: The rectangle after

zooming in

To be memorable, the zoom-out operation

is triggered by performing zoom-in

gesture in a reverse way. Moreover, a

line for visual feedback will be

displayed while the stylus is still on

the screen as shown on Figure 16.3 and

16.5.

If the stylus is released while the

line is green (Figure 16.3), this

restores everything back to the

previous zoom level (Figure 16.4).

On the other hand, as the stylus moves

away from the starting point, the

visual feedback line will turn red

after a certain threshold is passed

(Figure 16.5). This indicates that

interactive zoom-out mode is entered.

The amount of zooming out is reversely

proportional to the distance between

the starting and current position of

the stylus.

Figure 16.3: A green visual feedback

line indicating normal zooming-out.

Figure 16.4: The previous zooming level

(after normal zooming-out)

Figure 16.5: A red visual feedback line

indicating interactive zooming-out.

Part 2:

On the bottom of the drawing canvas,

there are seven operations available:

“I’m feeling lucky”, “align”,

“distribute”, “resize”, “symmetry”,

“beautify”, and “template”. For each

operation, as many as six option

windows are presented to the user

showing how this particular operation

is performed. Users can choose an

operation and then pick the option

window with the most desirable effect.

It is possible to achieve the same

result by manual means but this does

not fit into our objective of allowing

the users to draw with maximum ease and

efficiency.

We want the user to be able to focus on

their design rather than waste energy

exploring the software.

Since only the result, not necessarily

the process, is regarded with the

foremost importance, methods that allow

the same results but require only

minimal efforts are optimal.

The objective of this new UI is to

reduce the amount of user error and

time spent, and avoids unnecessary

physical movements.

User error can be reduced in the case

that results of the intended operations

are always shown to the user pending

further confirmation before they are

carried out.

The time spent will be reduced as

manual manipulations are superseded by

automatic drawings by the software

itself, similar to that of shortcutting

to the final result.

Since all the operations require users

to simply tap the screen, excessive

physical movements such as repetitive

changing of tools can be reduced.

Although as many as six option windows

are introduced for each operation, the

system only displays the options that

are applicable. Therefore, we allow

users the option of further adjusting

the option windows via selecting

polygons on the drawing canvas. For

example, in the “align” operation, the

polygon selected first is always fixed.

All polygons selected later on would be

considered for alignment with the first

polygon selected.

1. Align

Since free hand drawing can be

ambiguous, it is difficult to draw two

polygons that align to each other

precisely. However, the hand-drawn

polygons that are intended to be

aligned probably are still very close

to each other. Therefore, the

algorithm will always try to align the

closest two polygons.

The system has six types of alignments:

“alignment to the top”, “alignment to

the bottom”, “alignment to the left”,

“alignment to the right”, “alignment to

the horizontal central axis”, and

“alignment to the vertical central

axis”. In cases where no polygons are

selected, the closest two polygons are

chosen and the one drawn first is

fixed. If there are more than one

polygons selected, the first one to be

selected is the one fixed.

In Figure 2.1.1, the larger square is

drawn first. Hence the larger square is

fixed. The system will align the

smaller square based on the position of

the larger one.

Figure 2.2.1: Two polygons with all the

alignment options below.

The following figures illustrate how

the six types of alignments are

performed. Here, the green line

corresponds to the alignment axis and

the orange box is the destination.

1. Alignment to the horizontal central

axis

2. Alignment to the vertical central

axis

3. Alignment to the bottom

4. Alignment to the top

5. Alignment to the left

6. Alignment to the right

In the situation where one polygon is

enclosed by another, if neither of them

is selected, the outer polygon will be

fixed where as the inner polygon is

moved. This is shown in Figure 2.1.2.

Figure 2.1.2: The outer polygon is

fixed and the inner one is aligned to

the outer one.

However, if the user wants to keep the

inner polygon fixed, this can be

achieved by selecting the inner one

first followed by the outer one.

Figure 2.1.3 illustrates this.

Figure 2.1.3: The inner polygon is

fixed and the outer one is aligned to

the inner one.

On the other hand, if the outer polygon

is selected first, this will be

equivalent to the situation where none

of the polygons get selected, since the

outer polygon is fixed in both cases

(Figure 2.1.4).

Figure 2.1.4: The outer polygon is

fixed and the inner one is aligned to

the outer one.

2. Resize

The original Lineogrammer already

provides basic resizing operations. To

avoid users switching back and forth,

the old resizing operation is included

in the new design as well. Beside the

basic resizing operations, the new

design also has a number of

enhancements such as making polygons

identical, regular, and square, since

they comes in handy during the design

process.

The algorithm will execute the

following routines individually with

the results presented in option

windows.

Routine 1: The algorithm will pick the

two polygons that are most similar,

regardless of the number of vertices

they have. Then, their bounding boxes

will be made identical (Figure 2.2.1).

Figure 2.2.1: The rectangle on the left

is drawn first, and the circle on the

right is resized according to it

(numbers of vertices are different)

Routine 2: The algorithm will pick the

two polygons that are most similar and

have the same number of vertices. Once

again, their bounding boxes will be

made identical. (Figure 2.2.2)

Figure 2.2.2: The rectangle on the left

is drawn first, and the rectangle on

the right is resized according to it

(numbers of vertices are the same)

Routine 3: The algorithm will pick the

two polygons that are most similar and

have the same number of vertices.

Here, Polygons will be made identical.

(Figure 2.2.3)

Figure 2.2.3: The arrowhead on the left is

drawn first, and the arrowhead on the right

is made identical according to the left one.

Routine 4: The algorithm will make the

convex non-regular polygons regular.

(Figure 2.2.4)

Figure 2.2.4: A pentagon is made

regular.

Routing 5: The algorithm will try to

find all the polygons with non-square

bounding boxes and, then, make their

bounding boxes square. (Figure 2.2.5)

Figure 2.2.5: The bounding box of

circle is made square.

In resizing operation, the first

selected polygon is fixed, and any

further selected polygons will be

adjusted according it just like all

other operations. However, there are

some interesting cases and these are

listed below.

Case 1: For a polygon that encloses

another polygon, the inner one will be

resized according to the outer one if

the outer one is selected first.

However, the outer polygon will be

resized along with the inner one

proportionally. Therefore, both

polygons will be enlarged. Figure

2.2.6 corresponds to the situation

where the outer polygon is selected

first. Figure 2.2.7 shows how the

polygons will be affected after the

resizing operation. Figure 2.2.8 shows

the final result.

Figure 2.2.6: The outer circle is

selected before the inner one

Figure 2.2.7: The inner circle is

enlarged and, the outer one is enlarged

along with the inner one.

Figure 2.2.8: The result after resizing

Case 2: This is similar to case 1

except that the inner polygon is

selected before the outer one.

Consequently, the inner polygon will be

resized along with the outer one

proportionally. In contrast to case 1,

both polygons are shrunk here.

Figure 2.2.9 and Figure 2.2.10

represents the situation where the

inner polygon is selected before the

outer one. Figure 2.2.11 shows how the

polygons will be affected after the

resizing operation. Figure 2.2.12

shows the final result.

Figure 2.2.9: The inner circle is

selected first

Figure 2.2.10: The outer circle is

selected after selecting the inner one.

Figure 2.2.11: The outer circle is

shrunk and, the inner one is shrunk

along with the outer one.

Figure 2.2.12: The result after

resizing

Case 3:

Suppose there are three disjoint

polygons as shown in Figure 2.2.13,

where middle and right polygons have

children, the polygons are selected in

the following order: A1, B2, B1, C1,

C2.

Since A1 is the first polygon selected,

it is always fixed. B2 and C1 are the

first selected within the group B and

C. Therefore, B2 and C1 will be

resized according to A1 such that their

bounding boxes are identical.

Furthermore, both B1 and C2 will be

adjusted with respect to B2 and C1, as

shown in Figure 2.2.14.

Figure 2.2.13: The polygons will be

selected in the order: A1, B2, B1, C1,

and C2, where

A1 is the polygon on the left,

B1 is the outer polygon in the middle,

B2 is the inner polygon in the middle,

C1 is the outer polygon on the right,

and

C2 is the inner polygon on the right.

Figure 2.2.14: The result after

resizing

3. Distribute

Most of the diagramming software

provides distributing feature since

this is frequently used. However, each

has different user interface design.

Actually, there are not so many ways to

distribute. Thus, the distributing

operation should be kept simple. To

achieve this, our approach is to show

the most common result to the user

beforehand.

From the observation, most tasks that

need distributing operation can be

accomplished by 8 basic types of

distribution. Therefore, it is

possible for us to pre-compute the

results for the user. Furthermore, the

distribution operation in the new

design only requires the users to

choose a pre-computed option window by

tapping. Compared with other software,

this new distribution method

significantly reduced the amount of

time user spent in learning how to

perform distribution.

The 8 types of distribution operations

are described as follows.

1. Horizontally distribute the polygons

evenly between the left and right

boundaries of the drawing canvas,

where the intervals between the

polygons are the same.

2. Vertically distribute the polygons

evenly between the top and bottom

boundaries of the drawing canvas,

where the intervals between the

polygons are the same.

3. Horizontally distribute the polygons

evenly between the left most polygon

and the right most polygon, where

the intervals between the polygons

are the same.

4. Vertically distribute the polygons

evenly between the top most polygon

and the bottom most polygon, where

the intervals between the polygons

are the same.

5. Horizontally distribute the polygons

evenly between the left most polygon

and the right most polygon, where

the intervals between the centers of

the polygons are the same.

6. Vertically distribute the polygons

evenly between the top most polygon

and the bottom most polygon, where

the intervals between the centers of

the polygons are the same.

7. Horizontally distribute the polygons

evenly between the left and right

boundary of the drawing canvas,

where the intervals between the

centers of the polygons are the

same.

8. Vertically distribute the polygons

evenly between the top and bottom

boundary of the drawing canvas,

where the intervals between the

centers of the polygons are the same

In addition, “Distribution” allows the

user to have more control by selecting

polygons. After selection, the

algorithm will first try to find the

smallest common parent polygon – a

polygon that encloses all the selected.

If such a polygon exists, the algorithm

will distribute all the selected

polygons within this polygon.

Otherwise, the selected polygon will be

distributed in the entire drawing

canvas.

Figure 2.3.1 gives an example of how

selected polygons are distributed

within the smallest common parent

polygon.

Figure 2.3.1: Distribution within a

polygon

4. I’m Feeling Lucky

It is observed that transforming the

polygons in Figure 2.4.1 to the

polygons in Figure 2.4.2 is very time

consuming. To make the process more

efficient, it would be nice if the

software can simplify some of the

works. This is where “I’m Feeling

Lucky” comes into play.

Figure 2.4.1

Figure 2.4.2

The purpose of “I’m Feeling Lucky” is

to speed up tedious and repetitive

works such as a series of alignment,

resizing and distribution operations.

In short, “I’m Feeling Lucky” executes

a number of operations such as

resizing, distribution, and alignment

in a sophisticated sequence to achieve

the desired result.

There are 10 kinds of “I’m Feeling

Lucky” in the current system but only

six of them will be shown. With high

probability, at least one option window

will match the user’s intention.

Below are the figures that briefly show

how the current scene can be

transformed into the alternative.

Figure 2.4.3 shows what the drawing

canvas originally looks like.

Figures 2.4.3.1 to 2.4.3.6 show how the

current drawing canvas is transformed

after “I’m Feeling Lucky” is applied.

Figure 2.4.3: The original sketch from

the users

Figure 2.4.3.1: The result after

tapping on option window 1

Figure 2.4.3.2: The result after

tapping on option window 2

Figure 2.4.3.3: The result after

tapping on option window 3

Figure 2.4.3.4: The result after

tapping on option window 4

Figure 2.4.3.5: The result after

tapping on option window 5

Figure 2.4.3.6: The result after

tapping on option window 6

Moreover, the “I’m Feeling Lucky”

operation can also be applied to the

polygons that are within another

polygon. Figure 2.4.4 and Figure 2.4.5

show how the enclosed polygons look

before and after the “I’m Feeling

Lucky” is applied.

Figure 2.4.4: How the enclosed polygons

look before “I’m Feeling Lucky”

Figure 2.4.5: How the enclosed polygons

look after “I’m Feeling Lucky”

5. Template

One way or another, Lineogramer is able

to provide most options in the SmartArt

of Microsoft Office. However, cyclic

structures shown in Figure 2.5.1 are

difficult to achieve by Lineogrammer.

Consequently, a new feature “Template”

is added to handle this kind of task.

Figure 2.5.1:

http://office.microsoft.com/en-

us/help/HA100570651033.aspx

First, the algorithm will create a

polygon by connecting all the centers

of the polygons on the scene. Once

this is obtained, we will check if this

polygon is convex and non-regular. If

not, nothing will be done. Otherwise,

the algorithm will make it regular. As

a result, all the polygons on the scene

will be rearranged in such a way that

their centers, now, form a regular

polygon.

Furthermore, the algorithm will execute

the following routines individually and

the result generated by each routine

will be shown in an option window.

For routine 1, the polygons remain

unchanged (Figure 2.5.2).

Figure 2.5.2: Option window 5

corresponding to routine 1

For routine 2, if the sizes of the

bounding boxes of the polygons are

similar, the bounding boxes will be

made identical based on the polygon

drawn first (Figure 2.5.3).

Figure 2.5.3: Option window 4

corresponding to routine 2

http://office.microsoft.com/en-us/help/HA100570651033.aspx
http://office.microsoft.com/en-us/help/HA100570651033.aspx

For routine 3, if the sizes of the

bounding boxes of the polygons are

similar, the polygons will be made

identical based on the polygon drawn

first (Figure 2.5.4).

Figure 2.5.4: Option window 3

corresponding to routine 3

For routine 4, if the sizes of the

bounding boxes of the polygons are

similar, the polygons will be made

regular based on the polygon drawn

first (Figure 2.5.5).

Figure 2.5.5: Option window 2

corresponding to routine 4

For routine 5, if the sizes of the

bounding boxes of the polygons are

similar, the polygons will be made

regular and, then, their bounding boxes

will be made square based on the

polygon drawn first (Figure 2.5.6).

Figure 2.5.6: Option window 1

corresponding to routine 5

6. Beautify

Although sketching a polygon can be

done quickly, the resulting polygon may

not look professional. Hence,

considerable amount of adjustments on

the sketched polygon are probably still

needed.

Here, the purpose of the “Beautify”

operation is to cut down the amount of

manual adjustments performed by the

user. Even though “Beautify” operation

may not always give what the user

expects, it’s likely that it will still

provide the options that are close

enough.

The algorithm of the “Beautify”

operation is described as follows.

1. Make almost vertical/horizontal

lines vertical/horizontal

exactly.

2. Make vertices that have similar

x/y coordinates the same.

3. Make edges that have similar

lengths the same.

Note: When an arrowhead is

recognized, it is processed

separately.

Essentially, the option windows in

“Beautify” show each intermediate step

of the algorithm.

The following figures demonstrate how

“Beautify” works on 3 different types

of drawing. Figures 2.6.1 (stair

shape), 2.6.2 (letter F), and 2.6.3

(double arrowhead) are the quick sketch

made by the user. Figures 2.6.1.1.,

2.6.2.1, and 2.6.3.1 show what Beautify

is about to do. Figures 2.6.1.2,

2.6.2.2, and 2.6.3.2 show the final

result generated.

Figure 2.6.1: The quick sketch of a

stair shape

Figure 2.6.1.1: Showing the intended

beautification of option window 2

Figure 2.6.1.2: The beautified stair

shape

Figure 2.6.2: The quick sketch of a

letter F

Figure 2.6.2.1: Showing the intended

beautification of option window 1

Figure 2.6.2.2: The beautified letter F

Figure 2.6.3: The quick sketch of a

double arrowhead

Figure 2.6.3.1: Showing the intended

beautification of option window 1

Figure 2.6.3.2: The beautified double

arrowhead

7. Symmetry

“Symmetry” is a special kind of

“Beautify”. Both of them try to reduce

the amount of manual manipulations done

by users, but what differentiates

“Symmetry” from “Beautify” is that

“Symmetry” will only explore all kinds

of applicable symmetries.

There are 8 kinds of symmetries in

total. However, only the first six

applicable symmetries will be provided.

The symmetry option windows are ordered

in such a way that the most common type

of symmetry will be presented to the

user first.

Here is a list of symmetries provided:

“symmetry to the right”, “symmetry to

the left”, “symmetry to the top”,

“symmetry to the bottom”, “rotational

symmetry to the right”, “rotational

symmetry to the left”, “rotational

symmetry to the top”, and “rotational

symmetry to the bottom”.

The following figures illustrate how

the eight types of symmetries are

performed. Here, the blue line is the

symmetry axis, the blue solid cross

indicates the side that is fixed, the

blue dashed cross indicates the side

that is modified, and the orange

polygon shows the resulting shape.

1. Symmetry to the left

2. Symmetry to the right

3. Symmetry to the top

4. Symmetry to the bottom

5. Rotational symmetry to the left

6. Rotational symmetry to the right

7. Rotational symmetry to the top

8. Rotational symmetry to the bottom

