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ABSTRACT

As the demand for cheaper commodity machines 
and large-scale databases rise, organizations 
have turned to cloud computing, or simply "the 
cloud," as the solution. One such service,  
Amazon Web Services, aims to provide large-
scale computing and storage services in a virtual 
fashion by creating a $2 billion infrastructure.  
Over the course of the past year, our research 
group has tested and deployed this technology 
utilizing Amazon's Simple Storage Service (S3),  
Elastic Block Storage (EBS) and Elastic 
Compute cloud (EC2) products. This paper aims 
to provide a road map for deploying MySQL with 
sample data on EC2, as well as initial  
experimental results and findings on how to 
efficiently optimize the selection of Amazon's Web 
Services products for monetary cost. Finally, we 
provide a mechanism for achieving money cost 
performance improvements over a traditional  
query optimizer.

1.INTRODUCTION

The goal of this project is to modify the MySQL 
optimizer to define a cost model for deploying a 
database on the Amazon cloud. We aimed to 
achieve the following:

• Deploying MySQL on Amazon's EC2 and 
EBS services.

• Add a statistics collection mechanism to 
MySQL to trace and monitor the 
interaction of MySQL with Amazon Web 
Services (i.e., EC2 and EBS).

• Use the above statistics collection process 
to gather data for a given workload, 
namely the TPC-C Benchmark.

• Test various optimizations that could 
potentially improve the operational cost of 
MySQL. 

• Create a meta-optimizer based on these 
trials to accurately depict cost for 
transactions and create plans designed to 
pick Amazon cloud instances that 
minimize cost.  

Further, we have conceived the following 
specific optimizations in considering the final 
step of the project:

• IO   
• Database files   - Accessing rows in a 

table. 
• Index files   - Add, read, write, remove a 

new key from the index file.
• Transaction logs   - These files include 

info on the transactions (e.g. updates) 
performed on the RDBMS. They are used 
to recover the RDBMS after a failure of 
the server.

• Temporary tables   - Temporary storage of 
the intermediate query results/table. This 
occurs when a query requires access to a 
large number of rows (or a sub-query 
created large intermediate tables) that 
cannot be stored in memory.  

• CPU usage   - Understanding the percentage of 
CPU usage for a given workload, and how it 
affects the query response latency. 

• Memory usage   - Monitoring usage of the 
buffer pool and other caches and the 
distribution across different types of data.

• Disk usage   - What is the required disk space 
for our workload? This includes the space 



required by indexes, materialized views, 
intermediate query results, or temp tables.

• Compression   - What compression levels 
minimize storage on the cloud and 
simultaneously maximize efficacy for IO.

• Query response latency   - Determining the 
average response latency of our workload for 
various query types.

Overall, we explore all of these goals and their 
results are outlined in more detail below. We 
explore a hands-on understanding of the Amazon 
Web Services infrastructure, as well as the inner 
workings of the popular MySQL database and the 
TPC-C benchmarking suite. We successfully 
deployed 32 and 64-bit EC2 instances with EBS 
from a blank Cent-OS Linux image at a very low 
cost. Total charges for the entirety of the 
experiments were surprisingly cheap, at under 
$1000 for the entire academic year. For IO, we 
created a lightweight statistics collection 
mechanism on top of the monitors built into the 
TPC-C benchmark. We tested basic effects of IO 
and memory modifications to increase 
performance and decrease the cost of operation 
on the cloud. We tackled more advanced database 
constructs such as materialized views and 
compression to provide a robust solution to cost 
reduction. Finally, we began construction of a 
meta-optimizer designed to create query plans 
that minimize monetary cost given a minimum 
quality of service and a sample budget.

2.DEPLOYING MYSQL
The first step in the process was to choose the 
best database to monitor over the cloud. We 
wanted a lightweight, yet robust open-source 
database with ample features that enterprise-level 
databases demand, such as materialized views. A 
database that performs well for transactions and 
has readable code was a must to enable on-the-fly 

modifications. These criteria brought us down to 
two databases, MySQL and H2. While H2 was 
simple and well-documented, it was clear through 
previous experimentation that MySQL was our 
choice because of its popularity, and would 
provide a more appealing experiment to real-
world consumers.

As of the writing of this paper, MySQL 5.1 
Source is the latest stable version used in this 
experiment. Our first step was getting to know 
the inner workings of this database to begin to 
understand how it should be modified for use on 
the cloud. Since IO is among the greatest concern 
in reducing cost for databases on Amazon, the 
first task was to understand the various storage 
engines of MySQL. By default, MySQL uses the 
InnoDB storage engine for transaction 
processing, and MyISAM for analytical data 
mining. We analyzed the documentation to 
determine that InnoDB was the storage engine of 
choice. After understanding and modifying the 
source code, we pushed the database onto the 
blank Cent-OS images to begin testing the 
database on Amazon.

3.BENCHMARKING

Deploying the TPC-C benchmark was the next 
step. The Transaction Processing Council 
produces four benchmarking tools designed to 
stress test relational databases. The default 
benchmarking solution by the Council is TPC-C 
which we finally chose as our sample workload. 
Due to new constraints imposed by the 
Transaction Processing Council, TPC-C is not 
available, but has an open-source equivalent 
known as DBT2. DBT2 provides a similar 
sample schema and data scalable from megabytes 
to several terabytes.

The most difficult challenged faced  was 
deploying TPC-C/DBT2. Unfortunately, the 
documentation on how to successfully deploy 
DBT2 is non-existent. It wasn't until some 
research that we found independent 
documentation[1] outlining the steps to 
successfully deploy the data. From significant 
Linux distribution-based issues to the delicate 



nature of cloud computing, DBT2 refused to 
deploy on any sample image we gave it. 
Subsequently, we drop our original configuration 
on Fedora 9 for Cent-OS. Much of the time was 
spent simply repeating the steps outlined in [1] to 
attempt a working run of TPC-C. Next we 
integrated the benchmark with our custom source 
build.  After weeks of trial and error, we finally 
managed to execute a workload on the schema 
and produce transaction results. We then created 
new images of our changes, and had 32-bit and 
64-bit versions of Cent-OS successfully running 
MySQL with TPC-C on the cloud. Over the 
course of the year, the team added more images 
to accommodate certain facets of MySQL, such 
as compression and materialized views.

4.OPTIMIZATIONS AND RESULTS

4.1Buffer Pool and Indexing

With MySQL deployed on the cloud with data 
from TPC-C, we start with simple optimizations 
of the database. Since the majority of costs on 
EC2 are attributed to puts and gets, reducing IO 
is paramount in reducing overall operational cost. 
Our test plan is initially limited to the 32-bit 
instances of EC2, M1.Small and C1.Medium. 
M1.Small is the smallest machine available from 
Amazon and is designed to be used for memory-
intensive workloads. C1.Medium is the next-
smallest machine and is designed for 
computation-intensive workloads. Exact 
specifications for these machines and their 64-bit 
counterparts are available at 
<http://aws.amazon.com/ec2/#instance>. For 
both sizes, each runs two separate instances: one 
with an EBS volume attached, and one without. 
Besides the obvious benefits of persistent storage 
on EC2, evidence has shown that, when utilizing 
EBS, "IO rates can be multiple times faster than 
ephemeral storage and even local disk IO"[2]. For 
each of these four instances, four tests were 
executed:

1. Naive   - Tests the out-of-the-box version 
of MySQL without IO optimizations. This 
test is designed to see if the location of 
data, log and temporary directories on 
local storage will require more IO than 

mounted on an EBS volume. In addition, 
it tests to see if this reduced IO is more 
significant than the cost of the additional 
overhead of a persistent storage medium.

2. Augmented Buffer Pool Size   - Tests to 
see if an increased buffer pool size 
decreases total read/writes across 
transactions. According to MySQL 
documentation, the buffer pool should be 
set to 75% of main memory, along with a 
log file size of 25% of the buffer pool 
size. M1.Small and C1.Medium have 
1.7GB of memory, so a buffer pool size of 
1.275GB and a log file size of 318MB 
were used. 

3. Data Indexing   - Indexing data is a 
rudimentary procedure for improving the 
speed of operations on a database table by 
creating a copy of part of a table. Though 
creating and storing the index requires 
more space and IO, the hope is to reduce 
total IO over the life of an instance by 
providing faster lookups, thereby reducing 
the IO count of transactions. A simple 
index was used by creating a key on the 
new_order table . 

4. Data Indexing with an Augmented Buffer   
Pool Size - Combining steps 2 and 3.

After personally experimenting with the 
benchmark to find the parameters to properly 
stress the system, we ran these tests with the 
DBT2 dataset of 20 warehouses with 1.4GB of 
data, stressed under 20 threads each running 20 
concurrent transactions with a benchmark 
processing time of 300 seconds. Results are 
based on the performance of the speed of the 
queries, indicated by the number of New-Order 
Transactions Per Minute (NOTPM) and the 
average transaction response times across the 
tables. Only the EBS instances include further IO 
statistics from the iostat system command. 
EBS instances are charged for their IO because of 
their data located on persistent storage, so this 
extra information is included.

The initial results coincide with our hypothesis: 
correct buffer pool modifications and indexes 



provide increased IO performance when coupled 
together. Modifying the buffer pool improves 
performance by two whole orders of magnitude 
alone, while indexes only double performance. 
We believe the reasons for these results are that 
default buffer pool size is more than 150 times 
smaller than the optimal size for the small and 
medium instances. There is a great deal of room 
for improvement by increasing buffer pools, 
however creating an index is two steps forward 
and one step back. Indexes clearly make lookups 
quicker, but require more space as well as more 
IO to create.

Our results also indicate that the Medium 
instance requires 66% of the time on average to 
complete. We expected better results from the 
Medium instance because with the same amount 
of main memory, these units have 5 times the 
number of CPUs. These tests appear to indicate 
that main memory is a more significant factor in 
IO performance than raw CPU power. 

It is questionable whether or not Amazon's claims 
that mounting an EBS volume for persistent 
storage truly increases IO performance. When the 
buffer pool size is properly increased, the EBS 
instances perform worse by an entire order of 
magnitude. In the other cases, EBS performs 5.5 
times better on average. Unfortunately, our EBS 
mounts refused to run TPC-C on the medium 
instances, further proving that the relationship 
between MySQL and the DBT2 dataset is a 
fragile and unpredictable one.

From our results, we can conclude that 
appropriate database optimization prior to 
uploading to the cloud will decrease IO by 
several orders of magnitude and potentially 
remove thousands of PUTS and GETS from 
running (and charging) on the cloud. Our 
preliminary data indicates that the most important 
factor in choosing an instance should be the 
amount of available main memory. If consumers 
can achieve an acceptable quality of service 
response time at a given quantity of memory, the 
cost of running a higher-performing machine 

does not match the increase in price, and should 
be avoided when possible.

4.2Tuning Workload Parameters

Our next task was to tune DBT2s workload 
parameters to properly stress all instances. We 
learned that all instances were returning the same 
level of throughput for each instance, which 
meant we were under-utilizing resources for even 
the smallest instance. We began navigating 
through DBT2 documentation to determine a new 
set of parameters, and through rigorous 
experimentation over the following weeks, 
determined a new standard for testing. To 
properly stress the entire cloud and show 
different results for each instance, we must now 
run 100 threads concurrently and extend the 
processing time to 3600 seconds per workload 
run[3].

4.3Materialized Views and Compression

The third optimization was to determine the 
efficacy of advanced database techniques such as 
compression and materialized views. We 
investigated how to deploy materialized views 
for read-intensive transactions in MySQL. We 
looked into two avenues for materialized view 
implementation in MySQL. The first option is the 
VIEW command, only available in later editions 
of MySQL. This allows for a more traditional 
materialized view, defined by MySQL. 
Unfortunately, after implementing a sample view 
to test on the system, we determined it is only a 
temporary table and gets deleted every time we 
stop the MySQL daemon. Views have very 
limited support for updates, making it hard for us 
to enforce ACID properties. Finally, they have 
limited support for joins and do not understand 
aggregate functions (e.g. MIN, MAX, SUM)[4]. 

Our second option is to simulate materialized 
views. We accomplish this by creating a table 
pre-computing our desired query and creating 
triggers in MySQL to issue updates whenever the 
tables involved change. Instead of triggers, we 
optionally create procedures that update the table 
every n periods. This is an acceptable approach 



because TPC-C has relaxed consistency 
requirements for its read-intensive operations. 

We ran our simulated materialized view stored 
procedures and triggers with a modified TPC-C 
workload. Throughout our experimentation it 
became apparent that the write-intensive TPC-C 
test does not accurately depict the typical 
workload of web applications, which are much 
more read-heavy. Therefore, in continuing with 
the experiments, we included a modified version 
of the TPC-C workload that balanced queries in 
favor of the read-intensive. In the read-intensive 
workload we have an order mix dominated by 
read-heavy transactions (40% each). Ordinarily 
they make up about 8% of the workload. 

Our results showed reduced query latency by an 
average of 45% for the queries we modified. This 
is due to omitting many expensive joins. It 
decreased reads by about 1%, but increased 
writes by 23% because it spent a considerable 
amount of IO issuing updates. 

In parallel with investigating materialized views 
was compression for InnoDB tables. 
Compression in MySQL involves compacting 
data at the table-level. We increase CPU 
utilization to compress and decompress the data 
into user-specified page sizes for the benefit of 
smaller databases and reduced IO to improve 
throughput, our greatest cost on the cloud. Lower 
IO is achieved through fewer reads and writes 
needed to access the user data[5].

Experimentation for compression included 
testing both read-intensive and write-intensive 
TPC-C workloads across all tables of the schema. 
Each run was duplicated for each available 
compression level available in InnoDB, ranging 
from 16k all the way down to 1k page sizes. The 
results can be summarized in the following 
diagrams:

 

Figure 1: Read-Intensive Compression Cost

 

Figure 2: Write-Intensive Compression Cost

As we can see from Figures 1 and 2, the least-
aggressive compression provides the best cost 
savings. Stronger levels of compression create a 
significant burden on the system due to the added 
expense of having to decompress and re-
compress even tighter page files. The trend 
shows that beyond 16k, as we increase the level 
of compression, cost per transaction decreases, 
but never comes close to matching the cost 
savings of the mildest 16k compression setting. 
Preliminary results also show that even the 
modest 16k compression size decreases the 
storage size by 66%. With compression, we get 
the benefits of reduced storage size, reduced IO, 
and overall reduced cost if we use compression in 
moderation.



4.4Modifying the MySQL Query Optimizer

Finally, we observe how a modified MySQL 
query optimizer can reflect money cost to help 
determine the best instances to run on the cloud. 
The query optimizer regards everything as a join, 
even when it contains only one table. It has a few 
ways of searching for the best query execution 
plan. All of these searches revolve around a cost 
function called best_access_path. This 
function, located in the SQL source code of 
MySQL, decides what access methods to use by 
looking at a table's index(es), partitioning and 
allowed cache space. It looks at a proposed table 
to add to the end of a partial query execution plan 
for a join. It determines the best way to access the 
proposed addition using a series of complex 
calculations. At the highest level it is deciding 
whether to use an index or a table scan and how 
to access it. It compares the projected cost of 
using one of these optimizations to  different 
types of page scans, such as range scans. It then 
picks the best access method for a given table, 
based on the context of what is passed in, such as 
how many records or select statements it thinks it 
will execute. It may accept an empty set as input 
if a table is being proposed as the first one in the 
query execution plan.

Within this function, there are two parameters 
that we want to tweak to reflect our costs 
accurately. The first are the IO reads which are 
the base unit of optimization in the system. We 
can modify this by either putting a constant in 
front of all of the optimizer's read assessments in 
best_access_path or just modifying the other 
constants accordingly. The second is the CPU 
cost, contained in the variable 
TIME_FOR_COMPARE. The query optimizer 
estimates that each comparison will take about 
20% of the time of one read. Thus, in order to 
accurately estimate this we need to know both 
how many comparisons per second the instance 
can accomplish and what its read speeds are from 
the first parameter. These two parameters can 
collectively help us decide the performance of 
each instance. Costs from our modified optimizer 
can be calculated using constants determined by 

the performance of these parameters on each 
instance.

To simulate these variables on the instances, we 
obtained a benchmarking tool called 
UNIXBench. UNIXBench is a universal 
benchmarking service designed to stress the 
hardware components of a UNIX-based 
computer. We chose two tests from UNIXBench 
that mimicked the above-mentioned parameters. 
One was an arithmetic test for double comparison 
similar to the comparison operator. The other was 
a file system buffer reader operating with a 256-
byte buffer, exactly the same buffer size used for 
IO operations in MySQL.

Each test was run 50 times on each of the 5 
instances, as well as their EBS counterparts. 
Units were converted accordingly to provide 
comparison between CPU data and IO data. The 
importance of the ratio is to illustrate the number 
of CPU operations per bytes read. The basis of all 
computations in the MySQL cost estimator is 
bytes read. Therefore, this ratio provides a unit 
for deciding the cost performance (in bytes read) 
for each instance.

 Our results from the UNIXBench runs, 
summarized in Figure 3, show on most IO types, 
it is beneficial to go off EBS for cost. In the CPU 
case, CPU is unaffected by CPU on virtually all 
instances. For the most part, EBS is not 
beneficial to performance, and is very similar in 
all cases but C1.XLarge. However, EBS does 
play a significant role in monetary cost, and is 
severely detrimental to cost performance.

Given all of the above, we can begin to construct 
our meta-optimizer to additional compute 
monetary cost. We do this by forking and 
optimizing for each instance based on 
manipulating the TIME_FOR_COMPARE 
variable and evaluating how much it will cost. 
All of these variables are derived from the x cents 
per hour we are using to run a virtual machine on 
AWS. Since latency is the prime decider for the 
standard optimizer, these results will be very 
comparable to traditional query optimization with 
one difference: we need to multiply the projected 



latency by each hourly dollar cost to determine 
the overall value of a query (i.e. for each instance 
i → Ci = latency(workload) * hourly_ratei). The 
cost variables are as follows:

• CPU latency   – We are charged per hour 
per instance. This drives our latency and 
is an important cost. CPU latency varies 
in terms of compute units on AWS, but 
we have quantified them using double 
comparison benchmarks. 

• IO latency   – This also is reflected in the 
amount of time we spend on the cloud 
using EBS or S3. Our latency impacts our 
query latency.

• Buffer Pool Cost   – Buffer pool size varies 
by instance. This is used in the latency 
estimates of the traditional optimizer. 

• IO (EBS)   – Here we are charged $0.10 
per million IO requests. An IO request 
occurs for every block we read/write. We 
are using XFS for our EBS volumes, 
which default to 4096 bytes per block. We 
calculate this is to presume we are byte-
aligned and for each set of reads we can 
calculate CostIO = tuples_read * 

size_per_tuple / 4096. For future work, 
there may be additional reading overhead 
we need to consider such as index 
reading.

• S3 Storage   – We pay a certain amount per 
month to store our images and more if we 
snapshot them for backup. We trade off 
between paying for S3 storage or EBS, 
but some of the benefits are harder to 
quantify such as the persistence of EBS. 

• EBS Storage   – We are charged $0.10 / 
GB / month. It is minuscule in comparison 
to our instance costs, but still bears 
consideration. It also makes a quantitative 
comparison for S3 storage at various 
levels of snapshotting. 

• Cost to transfer data in/out of the cloud   – 
This is a relatively fixed cost for us, but 
one we should consider nonetheless. 

.
With our variables we can determine the cost for 
TIME_FOR_COMPARE. We do this for each 

instance and have best_access_path return the 
cost of access for each instance after having the 
TIME_FOR_COMPARE ratio passed in. 
Best_access_path makes available the number 
of records and IO that it projects the query will 
use.

A modified version of the greedy search 
calculates the projected cost with the following 
formulas:

EBS-Cost = 0.1*(IO_in_bytes/bytes 
per IO operation)/1,000,000 + 
rate_per_hour*((IO_in_bytes*(IO_ra
te) + records * CPU_comparisons / 
sec)/3600 ).

Non-EBS-Cost = 
rate_per_hourinstance*((IO_in_bytes/
(IO_rateinstance) + records / 
(CPU_comparisons / 
sec)instance)/3600 ).

We then compare our results to those of the 
traditional optimizer.

We check to see how often our query plan is 
equivalent to traditional optimizer. We have 
considered the following optimizations explored 
throughout the year to minimize costs: 

• Indexes   - This tool is reflected in terms of 
space paid for. On both S3 and EBS this is 
negligible in comparison to the cost of 
renting an instance or EBS accesses. 
Finding the utility of each index and 
selecting the best ones is the greatest 
challenge. Adding an index does not 
modify our query execution plan in many 
cases. Still, it will save money in latency 
reductions, usually in a manner that 
greatly outweighs the cost of storing it. 

• Materialized Views   - Materialized views 
help pre-compute the most common read-
intensive queries. Well-designed 
materialized views save enough in IO to 
amortize the cost of maintaining a view. 
Consequently this is most beneficial in a 
read-intensive environment. In order to 



determine whether a materialized view is 
a good choice for a given workload we 
calculate a break-even point for the 
projected cost of our query. Materialized 
views may be useful in cases where the 
select statement and predicates only 
access a small percentage of the columns 
in the original tables, saving IO. 

• Compression   - Compression helps save 
IO at the cost of more latency. This trade-
off benefits the clouds, but not traditional 
optimizers where latency is the primary 
concern. More intuitively, it saves space 
and thus money on the cloud. 

Implemented together for a given dataset, our 
preliminary results show that our meta-optimizer 
can predict the same plan or better than the 
traditional optimizer for 60% of the queries. This 
means that our meta-optimizer can choose the 
same or cheaper instance to run a given query 
60% of the time more than the standard MySQL 
optimizer. Of course instance selection is 
workload dependent, so for the future we must 
abstract our meta-optimizer on a higher level to 
evaluate whole workloads for instance allocation 
rather than individual queries.

5.CONCLUSION

Cloud computing is a relatively new and highly 
desirable infrastructure for both businesses and 
researchers. Numerous papers have previously 
explored the cloud, specifically the Amazon Web 
Services, to determine the efficacy of such an 
architecture. As of the writing of this paper, we 
are the first group to not only deploy and fully 
stress a database system on the cloud, but also to 
analyze how to minimize the costs of deploying 
an entire database system, in our case MySQL, 
on Amazon.

We utilized a standard database benchmarking 
tool to stress the various instances available on 
Amazon. Gathering information on the 
bottlenecks of performance, such as IO and CPU, 
we were able to generate a meta-optimizer that 
additionally evaluates monetary cost based on 
Amazon's cloud services pricing structure. The 
uniqueness of our approach lies in our priority for 

cost savings over maximizing performance. 
Given a budget and a minimum quality of 
service, this optimizer has already proven to 
choose the same, if not better, option for instance 
allocation than the standard query optimizer for 
MySQL for more than half of all query plans, 
even at the expense of sacrificing performance 
for cost. 

Going forward, we can continue to make strides 
in tuning the optimizer to continuously provide 
accurate and cost-saving choices for instance 
selection on the Amazon cloud. This contribution 
has a truly monumental impact, with the potential 
of saving businesses hundreds upon thousands of 
dollars over conventional instance acquisition 
and allocation.

6.FUTURE WORK
This project aims to be a stepping-stone for 
future work on cost reduction of any cloud 
computing architecture, such as Windows Azure 
and Google App Engine. We encourage 
continued research to further explore database 
optimizations for CPU, disk and query response 
latency in an aim to achieve optimal 
configurations of databases on all cloud 
interfaces. Specifically, as the next steps we 
would like to find an interface to generalize our 
optimizer to any DBMS. Further, we want to 
explore read-intensive OLAP architectures and 
data warehousing, which more accurately depict 
the workloads of web applications. In addition, 
we hope to explore an intelligent 
advisor/optimizer that can dynamically allocate 
instances to the database as the data changes 
from user input over time.  
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Figure 3: UNIXBench Total System Performance
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