
Database Economic Cost Optimization for Cloud
Computing

Adam Conrad
Department of Computer Science

Brown University
Providence, RI

adam@cs.brown.edu

ABSTRACT

As the demand for cheaper commodity machines
and large-scale databases rise, organizations
have turned to cloud computing, or simply "the
cloud," as the solution. One such service,
Amazon Web Services, aims to provide large-
scale computing and storage services in a virtual
fashion by creating a $2 billion infrastructure.
Over the course of the past year, our research
group has tested and deployed this technology
utilizing Amazon's Simple Storage Service (S3),
Elastic Block Storage (EBS) and Elastic
Compute cloud (EC2) products. This paper aims
to provide a road map for deploying MySQL with
sample data on EC2, as well as initial
experimental results and findings on how to
efficiently optimize the selection of Amazon's Web
Services products for monetary cost. Finally, we
provide a mechanism for achieving money cost
performance improvements over a traditional
query optimizer.

1.INTRODUCTION

The goal of this project is to modify the MySQL
optimizer to define a cost model for deploying a
database on the Amazon cloud. We aimed to
achieve the following:

• Deploying MySQL on Amazon's EC2 and
EBS services.

• Add a statistics collection mechanism to
MySQL to trace and monitor the
interaction of MySQL with Amazon Web
Services (i.e., EC2 and EBS).

• Use the above statistics collection process
to gather data for a given workload,
namely the TPC-C Benchmark.

• Test various optimizations that could
potentially improve the operational cost of
MySQL.

• Create a meta-optimizer based on these
trials to accurately depict cost for
transactions and create plans designed to
pick Amazon cloud instances that
minimize cost.

Further, we have conceived the following
specific optimizations in considering the final
step of the project:

• IO
• Database files - Accessing rows in a

table.
• Index files - Add, read, write, remove a

new key from the index file.
• Transaction logs - These files include

info on the transactions (e.g. updates)
performed on the RDBMS. They are used
to recover the RDBMS after a failure of
the server.

• Temporary tables - Temporary storage of
the intermediate query results/table. This
occurs when a query requires access to a
large number of rows (or a sub-query
created large intermediate tables) that
cannot be stored in memory.

• CPU usage - Understanding the percentage of
CPU usage for a given workload, and how it
affects the query response latency.

• Memory usage - Monitoring usage of the
buffer pool and other caches and the
distribution across different types of data.

• Disk usage - What is the required disk space
for our workload? This includes the space

required by indexes, materialized views,
intermediate query results, or temp tables.

• Compression - What compression levels
minimize storage on the cloud and
simultaneously maximize efficacy for IO.

• Query response latency - Determining the
average response latency of our workload for
various query types.

Overall, we explore all of these goals and their
results are outlined in more detail below. We
explore a hands-on understanding of the Amazon
Web Services infrastructure, as well as the inner
workings of the popular MySQL database and the
TPC-C benchmarking suite. We successfully
deployed 32 and 64-bit EC2 instances with EBS
from a blank Cent-OS Linux image at a very low
cost. Total charges for the entirety of the
experiments were surprisingly cheap, at under
$1000 for the entire academic year. For IO, we
created a lightweight statistics collection
mechanism on top of the monitors built into the
TPC-C benchmark. We tested basic effects of IO
and memory modifications to increase
performance and decrease the cost of operation
on the cloud. We tackled more advanced database
constructs such as materialized views and
compression to provide a robust solution to cost
reduction. Finally, we began construction of a
meta-optimizer designed to create query plans
that minimize monetary cost given a minimum
quality of service and a sample budget.

2.DEPLOYING MYSQL
The first step in the process was to choose the
best database to monitor over the cloud. We
wanted a lightweight, yet robust open-source
database with ample features that enterprise-level
databases demand, such as materialized views. A
database that performs well for transactions and
has readable code was a must to enable on-the-fly

modifications. These criteria brought us down to
two databases, MySQL and H2. While H2 was
simple and well-documented, it was clear through
previous experimentation that MySQL was our
choice because of its popularity, and would
provide a more appealing experiment to real-
world consumers.

As of the writing of this paper, MySQL 5.1
Source is the latest stable version used in this
experiment. Our first step was getting to know
the inner workings of this database to begin to
understand how it should be modified for use on
the cloud. Since IO is among the greatest concern
in reducing cost for databases on Amazon, the
first task was to understand the various storage
engines of MySQL. By default, MySQL uses the
InnoDB storage engine for transaction
processing, and MyISAM for analytical data
mining. We analyzed the documentation to
determine that InnoDB was the storage engine of
choice. After understanding and modifying the
source code, we pushed the database onto the
blank Cent-OS images to begin testing the
database on Amazon.

3.BENCHMARKING

Deploying the TPC-C benchmark was the next
step. The Transaction Processing Council
produces four benchmarking tools designed to
stress test relational databases. The default
benchmarking solution by the Council is TPC-C
which we finally chose as our sample workload.
Due to new constraints imposed by the
Transaction Processing Council, TPC-C is not
available, but has an open-source equivalent
known as DBT2. DBT2 provides a similar
sample schema and data scalable from megabytes
to several terabytes.

The most difficult challenged faced was
deploying TPC-C/DBT2. Unfortunately, the
documentation on how to successfully deploy
DBT2 is non-existent. It wasn't until some
research that we found independent
documentation[1] outlining the steps to
successfully deploy the data. From significant
Linux distribution-based issues to the delicate

nature of cloud computing, DBT2 refused to
deploy on any sample image we gave it.
Subsequently, we drop our original configuration
on Fedora 9 for Cent-OS. Much of the time was
spent simply repeating the steps outlined in [1] to
attempt a working run of TPC-C. Next we
integrated the benchmark with our custom source
build. After weeks of trial and error, we finally
managed to execute a workload on the schema
and produce transaction results. We then created
new images of our changes, and had 32-bit and
64-bit versions of Cent-OS successfully running
MySQL with TPC-C on the cloud. Over the
course of the year, the team added more images
to accommodate certain facets of MySQL, such
as compression and materialized views.

4.OPTIMIZATIONS AND RESULTS

4.1Buffer Pool and Indexing

With MySQL deployed on the cloud with data
from TPC-C, we start with simple optimizations
of the database. Since the majority of costs on
EC2 are attributed to puts and gets, reducing IO
is paramount in reducing overall operational cost.
Our test plan is initially limited to the 32-bit
instances of EC2, M1.Small and C1.Medium.
M1.Small is the smallest machine available from
Amazon and is designed to be used for memory-
intensive workloads. C1.Medium is the next-
smallest machine and is designed for
computation-intensive workloads. Exact
specifications for these machines and their 64-bit
counterparts are available at
<http://aws.amazon.com/ec2/#instance>. For
both sizes, each runs two separate instances: one
with an EBS volume attached, and one without.
Besides the obvious benefits of persistent storage
on EC2, evidence has shown that, when utilizing
EBS, "IO rates can be multiple times faster than
ephemeral storage and even local disk IO"[2]. For
each of these four instances, four tests were
executed:

1. Naive - Tests the out-of-the-box version
of MySQL without IO optimizations. This
test is designed to see if the location of
data, log and temporary directories on
local storage will require more IO than

mounted on an EBS volume. In addition,
it tests to see if this reduced IO is more
significant than the cost of the additional
overhead of a persistent storage medium.

2. Augmented Buffer Pool Size - Tests to
see if an increased buffer pool size
decreases total read/writes across
transactions. According to MySQL
documentation, the buffer pool should be
set to 75% of main memory, along with a
log file size of 25% of the buffer pool
size. M1.Small and C1.Medium have
1.7GB of memory, so a buffer pool size of
1.275GB and a log file size of 318MB
were used.

3. Data Indexing - Indexing data is a
rudimentary procedure for improving the
speed of operations on a database table by
creating a copy of part of a table. Though
creating and storing the index requires
more space and IO, the hope is to reduce
total IO over the life of an instance by
providing faster lookups, thereby reducing
the IO count of transactions. A simple
index was used by creating a key on the
new_order table .

4. Data Indexing with an Augmented Buffer
Pool Size - Combining steps 2 and 3.

After personally experimenting with the
benchmark to find the parameters to properly
stress the system, we ran these tests with the
DBT2 dataset of 20 warehouses with 1.4GB of
data, stressed under 20 threads each running 20
concurrent transactions with a benchmark
processing time of 300 seconds. Results are
based on the performance of the speed of the
queries, indicated by the number of New-Order
Transactions Per Minute (NOTPM) and the
average transaction response times across the
tables. Only the EBS instances include further IO
statistics from the iostat system command.
EBS instances are charged for their IO because of
their data located on persistent storage, so this
extra information is included.

The initial results coincide with our hypothesis:
correct buffer pool modifications and indexes

provide increased IO performance when coupled
together. Modifying the buffer pool improves
performance by two whole orders of magnitude
alone, while indexes only double performance.
We believe the reasons for these results are that
default buffer pool size is more than 150 times
smaller than the optimal size for the small and
medium instances. There is a great deal of room
for improvement by increasing buffer pools,
however creating an index is two steps forward
and one step back. Indexes clearly make lookups
quicker, but require more space as well as more
IO to create.

Our results also indicate that the Medium
instance requires 66% of the time on average to
complete. We expected better results from the
Medium instance because with the same amount
of main memory, these units have 5 times the
number of CPUs. These tests appear to indicate
that main memory is a more significant factor in
IO performance than raw CPU power.

It is questionable whether or not Amazon's claims
that mounting an EBS volume for persistent
storage truly increases IO performance. When the
buffer pool size is properly increased, the EBS
instances perform worse by an entire order of
magnitude. In the other cases, EBS performs 5.5
times better on average. Unfortunately, our EBS
mounts refused to run TPC-C on the medium
instances, further proving that the relationship
between MySQL and the DBT2 dataset is a
fragile and unpredictable one.

From our results, we can conclude that
appropriate database optimization prior to
uploading to the cloud will decrease IO by
several orders of magnitude and potentially
remove thousands of PUTS and GETS from
running (and charging) on the cloud. Our
preliminary data indicates that the most important
factor in choosing an instance should be the
amount of available main memory. If consumers
can achieve an acceptable quality of service
response time at a given quantity of memory, the
cost of running a higher-performing machine

does not match the increase in price, and should
be avoided when possible.

4.2Tuning Workload Parameters

Our next task was to tune DBT2s workload
parameters to properly stress all instances. We
learned that all instances were returning the same
level of throughput for each instance, which
meant we were under-utilizing resources for even
the smallest instance. We began navigating
through DBT2 documentation to determine a new
set of parameters, and through rigorous
experimentation over the following weeks,
determined a new standard for testing. To
properly stress the entire cloud and show
different results for each instance, we must now
run 100 threads concurrently and extend the
processing time to 3600 seconds per workload
run[3].

4.3Materialized Views and Compression

The third optimization was to determine the
efficacy of advanced database techniques such as
compression and materialized views. We
investigated how to deploy materialized views
for read-intensive transactions in MySQL. We
looked into two avenues for materialized view
implementation in MySQL. The first option is the
VIEW command, only available in later editions
of MySQL. This allows for a more traditional
materialized view, defined by MySQL.
Unfortunately, after implementing a sample view
to test on the system, we determined it is only a
temporary table and gets deleted every time we
stop the MySQL daemon. Views have very
limited support for updates, making it hard for us
to enforce ACID properties. Finally, they have
limited support for joins and do not understand
aggregate functions (e.g. MIN, MAX, SUM)[4].

Our second option is to simulate materialized
views. We accomplish this by creating a table
pre-computing our desired query and creating
triggers in MySQL to issue updates whenever the
tables involved change. Instead of triggers, we
optionally create procedures that update the table
every n periods. This is an acceptable approach

because TPC-C has relaxed consistency
requirements for its read-intensive operations.

We ran our simulated materialized view stored
procedures and triggers with a modified TPC-C
workload. Throughout our experimentation it
became apparent that the write-intensive TPC-C
test does not accurately depict the typical
workload of web applications, which are much
more read-heavy. Therefore, in continuing with
the experiments, we included a modified version
of the TPC-C workload that balanced queries in
favor of the read-intensive. In the read-intensive
workload we have an order mix dominated by
read-heavy transactions (40% each). Ordinarily
they make up about 8% of the workload.

Our results showed reduced query latency by an
average of 45% for the queries we modified. This
is due to omitting many expensive joins. It
decreased reads by about 1%, but increased
writes by 23% because it spent a considerable
amount of IO issuing updates.

In parallel with investigating materialized views
was compression for InnoDB tables.
Compression in MySQL involves compacting
data at the table-level. We increase CPU
utilization to compress and decompress the data
into user-specified page sizes for the benefit of
smaller databases and reduced IO to improve
throughput, our greatest cost on the cloud. Lower
IO is achieved through fewer reads and writes
needed to access the user data[5].

Experimentation for compression included
testing both read-intensive and write-intensive
TPC-C workloads across all tables of the schema.
Each run was duplicated for each available
compression level available in InnoDB, ranging
from 16k all the way down to 1k page sizes. The
results can be summarized in the following
diagrams:

Figure 1: Read-Intensive Compression Cost

Figure 2: Write-Intensive Compression Cost

As we can see from Figures 1 and 2, the least-
aggressive compression provides the best cost
savings. Stronger levels of compression create a
significant burden on the system due to the added
expense of having to decompress and re-
compress even tighter page files. The trend
shows that beyond 16k, as we increase the level
of compression, cost per transaction decreases,
but never comes close to matching the cost
savings of the mildest 16k compression setting.
Preliminary results also show that even the
modest 16k compression size decreases the
storage size by 66%. With compression, we get
the benefits of reduced storage size, reduced IO,
and overall reduced cost if we use compression in
moderation.

4.4Modifying the MySQL Query Optimizer

Finally, we observe how a modified MySQL
query optimizer can reflect money cost to help
determine the best instances to run on the cloud.
The query optimizer regards everything as a join,
even when it contains only one table. It has a few
ways of searching for the best query execution
plan. All of these searches revolve around a cost
function called best_access_path. This
function, located in the SQL source code of
MySQL, decides what access methods to use by
looking at a table's index(es), partitioning and
allowed cache space. It looks at a proposed table
to add to the end of a partial query execution plan
for a join. It determines the best way to access the
proposed addition using a series of complex
calculations. At the highest level it is deciding
whether to use an index or a table scan and how
to access it. It compares the projected cost of
using one of these optimizations to different
types of page scans, such as range scans. It then
picks the best access method for a given table,
based on the context of what is passed in, such as
how many records or select statements it thinks it
will execute. It may accept an empty set as input
if a table is being proposed as the first one in the
query execution plan.

Within this function, there are two parameters
that we want to tweak to reflect our costs
accurately. The first are the IO reads which are
the base unit of optimization in the system. We
can modify this by either putting a constant in
front of all of the optimizer's read assessments in
best_access_path or just modifying the other
constants accordingly. The second is the CPU
cost, contained in the variable
TIME_FOR_COMPARE. The query optimizer
estimates that each comparison will take about
20% of the time of one read. Thus, in order to
accurately estimate this we need to know both
how many comparisons per second the instance
can accomplish and what its read speeds are from
the first parameter. These two parameters can
collectively help us decide the performance of
each instance. Costs from our modified optimizer
can be calculated using constants determined by

the performance of these parameters on each
instance.

To simulate these variables on the instances, we
obtained a benchmarking tool called
UNIXBench. UNIXBench is a universal
benchmarking service designed to stress the
hardware components of a UNIX-based
computer. We chose two tests from UNIXBench
that mimicked the above-mentioned parameters.
One was an arithmetic test for double comparison
similar to the comparison operator. The other was
a file system buffer reader operating with a 256-
byte buffer, exactly the same buffer size used for
IO operations in MySQL.

Each test was run 50 times on each of the 5
instances, as well as their EBS counterparts.
Units were converted accordingly to provide
comparison between CPU data and IO data. The
importance of the ratio is to illustrate the number
of CPU operations per bytes read. The basis of all
computations in the MySQL cost estimator is
bytes read. Therefore, this ratio provides a unit
for deciding the cost performance (in bytes read)
for each instance.

 Our results from the UNIXBench runs,
summarized in Figure 3, show on most IO types,
it is beneficial to go off EBS for cost. In the CPU
case, CPU is unaffected by CPU on virtually all
instances. For the most part, EBS is not
beneficial to performance, and is very similar in
all cases but C1.XLarge. However, EBS does
play a significant role in monetary cost, and is
severely detrimental to cost performance.

Given all of the above, we can begin to construct
our meta-optimizer to additional compute
monetary cost. We do this by forking and
optimizing for each instance based on
manipulating the TIME_FOR_COMPARE
variable and evaluating how much it will cost.
All of these variables are derived from the x cents
per hour we are using to run a virtual machine on
AWS. Since latency is the prime decider for the
standard optimizer, these results will be very
comparable to traditional query optimization with
one difference: we need to multiply the projected

latency by each hourly dollar cost to determine
the overall value of a query (i.e. for each instance
i → Ci = latency(workload) * hourly_ratei). The
cost variables are as follows:

• CPU latency – We are charged per hour
per instance. This drives our latency and
is an important cost. CPU latency varies
in terms of compute units on AWS, but
we have quantified them using double
comparison benchmarks.

• IO latency – This also is reflected in the
amount of time we spend on the cloud
using EBS or S3. Our latency impacts our
query latency.

• Buffer Pool Cost – Buffer pool size varies
by instance. This is used in the latency
estimates of the traditional optimizer.

• IO (EBS) – Here we are charged $0.10
per million IO requests. An IO request
occurs for every block we read/write. We
are using XFS for our EBS volumes,
which default to 4096 bytes per block. We
calculate this is to presume we are byte-
aligned and for each set of reads we can
calculate CostIO = tuples_read *

size_per_tuple / 4096. For future work,
there may be additional reading overhead
we need to consider such as index
reading.

• S3 Storage – We pay a certain amount per
month to store our images and more if we
snapshot them for backup. We trade off
between paying for S3 storage or EBS,
but some of the benefits are harder to
quantify such as the persistence of EBS.

• EBS Storage – We are charged $0.10 /
GB / month. It is minuscule in comparison
to our instance costs, but still bears
consideration. It also makes a quantitative
comparison for S3 storage at various
levels of snapshotting.

• Cost to transfer data in/out of the cloud –
This is a relatively fixed cost for us, but
one we should consider nonetheless.

.
With our variables we can determine the cost for
TIME_FOR_COMPARE. We do this for each

instance and have best_access_path return the
cost of access for each instance after having the
TIME_FOR_COMPARE ratio passed in.
Best_access_path makes available the number
of records and IO that it projects the query will
use.

A modified version of the greedy search
calculates the projected cost with the following
formulas:

EBS-Cost = 0.1*(IO_in_bytes/bytes
per IO operation)/1,000,000 +
rate_per_hour*((IO_in_bytes*(IO_ra
te) + records * CPU_comparisons /
sec)/3600).

Non-EBS-Cost =
rate_per_hourinstance*((IO_in_bytes/
(IO_rateinstance) + records /
(CPU_comparisons /
sec)instance)/3600).

We then compare our results to those of the
traditional optimizer.

We check to see how often our query plan is
equivalent to traditional optimizer. We have
considered the following optimizations explored
throughout the year to minimize costs:

• Indexes - This tool is reflected in terms of
space paid for. On both S3 and EBS this is
negligible in comparison to the cost of
renting an instance or EBS accesses.
Finding the utility of each index and
selecting the best ones is the greatest
challenge. Adding an index does not
modify our query execution plan in many
cases. Still, it will save money in latency
reductions, usually in a manner that
greatly outweighs the cost of storing it.

• Materialized Views - Materialized views
help pre-compute the most common read-
intensive queries. Well-designed
materialized views save enough in IO to
amortize the cost of maintaining a view.
Consequently this is most beneficial in a
read-intensive environment. In order to

determine whether a materialized view is
a good choice for a given workload we
calculate a break-even point for the
projected cost of our query. Materialized
views may be useful in cases where the
select statement and predicates only
access a small percentage of the columns
in the original tables, saving IO.

• Compression - Compression helps save
IO at the cost of more latency. This trade-
off benefits the clouds, but not traditional
optimizers where latency is the primary
concern. More intuitively, it saves space
and thus money on the cloud.

Implemented together for a given dataset, our
preliminary results show that our meta-optimizer
can predict the same plan or better than the
traditional optimizer for 60% of the queries. This
means that our meta-optimizer can choose the
same or cheaper instance to run a given query
60% of the time more than the standard MySQL
optimizer. Of course instance selection is
workload dependent, so for the future we must
abstract our meta-optimizer on a higher level to
evaluate whole workloads for instance allocation
rather than individual queries.

5.CONCLUSION

Cloud computing is a relatively new and highly
desirable infrastructure for both businesses and
researchers. Numerous papers have previously
explored the cloud, specifically the Amazon Web
Services, to determine the efficacy of such an
architecture. As of the writing of this paper, we
are the first group to not only deploy and fully
stress a database system on the cloud, but also to
analyze how to minimize the costs of deploying
an entire database system, in our case MySQL,
on Amazon.

We utilized a standard database benchmarking
tool to stress the various instances available on
Amazon. Gathering information on the
bottlenecks of performance, such as IO and CPU,
we were able to generate a meta-optimizer that
additionally evaluates monetary cost based on
Amazon's cloud services pricing structure. The
uniqueness of our approach lies in our priority for

cost savings over maximizing performance.
Given a budget and a minimum quality of
service, this optimizer has already proven to
choose the same, if not better, option for instance
allocation than the standard query optimizer for
MySQL for more than half of all query plans,
even at the expense of sacrificing performance
for cost.

Going forward, we can continue to make strides
in tuning the optimizer to continuously provide
accurate and cost-saving choices for instance
selection on the Amazon cloud. This contribution
has a truly monumental impact, with the potential
of saving businesses hundreds upon thousands of
dollars over conventional instance acquisition
and allocation.

6.FUTURE WORK
This project aims to be a stepping-stone for
future work on cost reduction of any cloud
computing architecture, such as Windows Azure
and Google App Engine. We encourage
continued research to further explore database
optimizations for CPU, disk and query response
latency in an aim to achieve optimal
configurations of databases on all cloud
interfaces. Specifically, as the next steps we
would like to find an interface to generalize our
optimizer to any DBMS. Further, we want to
explore read-intensive OLAP architectures and
data warehousing, which more accurately depict
the workloads of web applications. In addition,
we hope to explore an intelligent
advisor/optimizer that can dynamically allocate
instances to the database as the data changes
from user input over time.

7.REFERENCES
[1] "MySQL DBT2 Benchmark on EC2"

http://blog.dbadojo.com/2007/08/mysql-dbt2-benchmark-on-
ec2-part-1_31.html

[2] "Running MySQL on Amazon EC2 with Elastic Block
Store"
http://developer.amazonwebservices.com/connect/entry.jspa?
externalID=1663

[3] "EC2 Results for Stressing DBT2 "
http://spreadsheets.google.com/ccc?
key=p106rdN5ml86j58V8wFMOGA

[4] "Updateable and Insertable Views"
http://dev.mysql.com/doc/refman/5.0/en/view-
updatability.html

[5] "InnoDB Data Compression"
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-
compression.html

Figure 3: UNIXBench Total System Performance

	1.INTRODUCTION
	2.DEPLOYING MYSQL
	3.BENCHMARKING
	4.OPTIMIZATIONS AND RESULTS
	4.1Buffer Pool and Indexing
	4.2Tuning Workload Parameters
	4.3Materialized Views and Compression
	4.4Modifying the MySQL Query Optimizer

	5.CONCLUSION
	6.FUTURE WORK
	7.REFERENCES

