An Energy Minimization Approach to Surface
Reconstruction

Scott Daniel

Gabriel Taubin

Brown University

Abstract— In this paper we describe a novel approach
to reconstructing a three dimensional digital model from
surface samples of a real object. Our approach computes
an surface modeled by the sample points from a implicit
function defined over a uniform grid. The implicit function
is obtained from an energy minimization problem by
constraining the gradient field of the function to match the
sample normals as closely as possible. Our problem can be
discretized into a symmetric positive definite linear system
whose solution is the global minimum of the quadratic
form. We then present results of our approach and possible
methods for improvement.

Index Terms— Surface Reconstruction, Energy Mini-
mization, Conjugate Gradients.

I. INTRODUCTION

In recent years the problem of surface reconstruction
has gained a noticable amount of attention from the
computer graphics community. Reconstructing digital
models from sample data of real world objects had
been explored by researchers in previous decades but
a motivation to solve the problem efficiently for large
models started with the Michelangelo Project.

Over the course of the Michelangelo Project scientists
and researchers from Stanford and the University of
Washington reconstructed 3D models from Michaelan-
gelo’s sculptures in Rome, the largest being Michelan-
gelo’s statue of David [7]. Since then other scientific dis-
ciplines along with the entertainment and manufacturing
industries have relied on surface reconstruction methods
to digitize the shape of real objects.

The goal of this paper is to provide an overview of
the process of surface reconstruction in the context of
our approach. Over the course of this paper we will
explain the motivation and mechanics behind surface
reconstruction, how we formulate and discretize our
approach to the surface reconstruction problem, and how
the resulting model can be obtained from the solution to
a linear system of equations. Finally, we conclude with
the results from our approach along with possible areas
for improvement.

II. RELATED WORK

Surface reconstruction is a challenging problem that
involves research in efficient algorithms and data struc-
tures for generating smooth, detailed models from noisy,
irregular, and even missing data. According to [5] the
various approaches to the surface reconstruction problem
can be grouped into three categories, namely computa-
tional geometry techniques, fitting of surface geometry
directly to sample points, and fitting an implicit function
over the domain of the sample points. In the last method
a digital model is generated from an isosurface of the
implicit function using an isosurface extraction algorithm
such as Marching Cubes.

The focus of this paper will be on the implicit function
approach, the goal being to find an implicit function
with an isosurface that cloesly approximates the surface
represented by the point samples. For our purposes an
isosurface is a surface, S, in the implicit function, f,
where the points in Cartesian space tangent to S all
evaluate to the same value [1]. Typically, the isosurface
value is zero. All other points in the spatial domain either
evaluate to a value greater than zero if they are on one
side, such as the exterior, of S and less than or equal to
zero if they are on the other side, in this case the interior.
One of the benefits of the implicit function approach is
that it is not constrained by the topology of the sampled
real world object and can thus handle a wide range of
real world objects [5].

In a related approach, [9] use an octree that subdivides
the space of sample points into local domains . For each
leaf in the octree they fit a local quatric function that
approximates the sample points in the cell. The global
implicit function is then obtained by a proper weighting
of the local functions so that they blend across the leaves
of the octree. One of the benefits of their approach is
that the resulting surface can be ray traced due to the
mathematical properties of the local functions.

Another surface reconstruction method described in
[5] uses an approach similar to ours by computing an
indicator function that is defined as one on the interior
of the isosurface and zero elsewhere. They obtain the

indicator function by first computing its Fourier coef-
ficients from surface integrals using Stoke’s Theorem.
Then they apply an inverse Fourier transform to extract
the indicator function from the coefficient values.

Our approach is similar to [9] and [5] in that we also
define an implicit function over a spatial grid domain.
One significant difference, however, is that we do not
need to fit local function approximations nor perform
any signal analysis operations.

III. APPROACH

The general approach we use to solve the surface
reconstruction problem is similar to [11]. Rather than
attempt to fit an implicit function directly to the sample
points we instead place constraints on the implicit func-
tion and its gradient. Given a cloud of sample data points
and their associated normals obtained from surface M
we want to compute an implicit function f : R® — R
such that

V(pi,ni) €D f(pi) =0 and V f(p;) = n;.

The resulting isosurface is then M’ = {p|f(p) = 0}.
The values f(p) are computed as a trilinear interpolation
of the function values of f at the lattice points on the
uniform grid, thus

Fi) = da(pi)fa
a€lp;]

where [p;] denotes the neighborhood of latice points
at p; and ¢, is the trilinear weight of the lattice node
a. To find the desired isosurface M’ we must also
compute an appropriate isovalue. The isovalue is found
by minimizing the least squares problem Y_,(f(p;) —s)*.
The solution is the mean of f evaluated at the points
in p. Once we have f and s we can use an isosurface
extraction algorithm such as Marching Cubes to obtain
the resulting polygonal mesh, S, that approximates the
surface of M.

Given the above requirements our main objective
is to compute an implicit function f whose gradient
closely matches the normals of the sample points p.
The approach we take is to convert this constraint into
an energy minimization problem and find the implicit
function f that minimizes a scalar energy function E(f).
The first term of the energy function is then

ZMiHVf(Pi) — ||

We will call this energy term the data contribution.
The parameter p; is used to weight the contribution
of p; to compensate for non-uniform sampling density.
However the single constraint that the gradient of f
approximate the sampled normals as closely as possible
is not sufficient for solving for an implicit function f.

One of the observations about our current energy
function E(f) is that it only constrains the gradient of
the implicit function f near the input sample points. This
constraint does not dictate what the gradient of f should
be further away from the sample data. When we solve
for the implicit function we want to ensure that regions
far from the data do not evaluate to zero, otherwise they
would be considered part of the isosurface M’ and would
appear as artifacts.

To prevent sudden changes in f that might cause
artifacts to appear away from the data points we can
impose an additional constraint on the gradient that it
must be smooth across the domain of the grid. In smooth
functions changes between neighboring points are small.
Analogously, we would like to constrain the gradient of
the function at a given point in the grid to be close to the
gradient of other points in its proximity. This constraint
implies that difference in f along the edges of the lattice
points should be small. We add this additional constraint
to our energy function as

> AapllVia — Vsl
(c,8)

where o and 3 are the adjacent lattice nodes of a grid
edge and A\, g controls how smooth the gradient should
be across an edge. We call this additional constraint the
regularization term. The energy equation now constrains
the gradient of the implicit function over the entire grid
domain.

To complete our energy equation we make one last
observation. Our last observation comes from the fact
that a minimizing function f plus a constant term is
also a minimizer of E(f) because the gradient remains
unchanged. This observation presents a problem for our
current approach because we would like to find a unique
function f that minimizes the energy function. In order
to constrain f to be the smallest function that minimizes
E(f) we add one last energy term

Z |f(pi)%.

We call this last energy term the data minimizer. With
this term we are restricting the minimizing function f to
have values as small as possible near the sample points.

The result is that there is now a unique function f that
minimizes E(f). In general this last term in will make
our linear system symmetric positive definite. We will
later see that this is an important attribute when we
solve for f numerically. Putting together all the energy
terms the problem now becomes one of finding a scalar
function f that minimizes the energy function

E(f)= ZiwllVip) —nalf
+Z(a,ﬁ))‘ocﬂ”vfa - Vfﬁ||2
+35 1 ()]

IV. DISCRETIZATION

Now that we have defined constraints for an implicit
function that produces M’ we focus our attention on
how we will discretize E'(f) so we can later solve for f
numerically. As is common in many partial differential
problems we want to discretize the energy function into
a system of linear equations using finite differences.
In particular, we use a form of the finite difference
method known as central differences. Consider the two
dimensional case for a function defined over a uniform
square grid. The equation for the horizontal gradient
component at lattice node « is

f(ao+1,a1) - f(ao,al) if g =0
Vfa,[) = %(f(aOJrl,al) - f(a0,17a1)) if 0 < op < g
f(Oéo,Oél) - f(a(,—l,al) if ag = Nyg

The vertical component is similarly defined by in-
crementing over «7 instead of ag. Since Vf, is a
homogeneous linear combination of the function values
we can rewrite it as

V=Y (] s m

where an is a constant vector defined according to

the posmons of o and 3. For simplicity we denote this
expression as the constant vector g, 3. Note that g, g is
zero if a« = [or if 3 is not adjacent to «. Since f(p)
is a trilinear combination of f at the nodes [p] we can
compute V f(p) as

=Y ¢a(p)Vfa)
ozE[p
Combining 1 and 2 we can then express ag}fﬁ(p) as
oV f(p
afﬂ Z ¢a gOé ﬂ

aE[p

At this point it would also be helpful to describe
the implicit function f as a vector of function values
evaluated at each lattice node of the grid. We use a
lexicographic ordering such that a node’s index into the
vector function f is increasing fastest along the x axis,
then the y axis, and then the z axis. With these definitions
we are ready to discretize our energy function into a
linear system of equations.

To begin our discretization process we note that since
our energy function is homogenous in the unkown func-
tion f we can express it in a quadratic form. A quadratic
form is a function of a vector expressed as

B(f) = 5 fTAf " f +c

or in the coordinates:

= éZZfaAaﬁfﬁ_Zbgfa‘i‘C
a g a

where A is an nxn matrix, b an n length vector,
and c a constant. By using matrix calculus we can
obtain the entries of the matrix A and vector b from
the coordinate form by differentiating with respect to
the variables of the function f. Since the algebraic and
quadratic form of the energy function are equivalent we
conclude that differentiating the algebraic form is the
same as computing the entries in the quadratic form. We
use v and p to designate indices into the variables of f
by which we will differentiate, in the case of the matrix
A we will always differentiate by f, before f,. Note also
that in the coordinate form the variable v will correspond
to the row of a matrix or vector and p to the column of
a matrix.

From the data contribution we have

IVFi) = nill®? = (Vf(i) = na)" (Y f(pi) — i)
= Vf(pi)Vf(pi) =2V f(pi)ni + ning
Then by differentiating

10 o VW), Vi)
23f7{|’vf(pz) nl = 5 V)
= ey V@) Vi)
oy, (V00 -nif) = G5
From the regularizer term
1 Ot ol
2af a7, = UIVia = Visll°} =
(Vfa B Vfﬁ)T(Vfa B Vfﬁ)
af’? 8f'y afﬂ afu

And finally from the minimizer term

1 0 N2 _f(Pi)f(Pi)

From the definitions above it follows that

1 &
A’yu = im{E(f)}

=i Mi Zae[pi] Zﬁe[pi] Pa(pi)ds(pi) [nggﬁu}
+ 3 (0,8 Aa8(9ay = 98)" (Jan — 95u)

+ ZZ Migbv(pi)ﬁbu(pi)
b’Y = Z g1 Z (boz(pi)gom
i a€[p]

V. ENERGY MINIMIZER

At this point we now have a quadratic form of our
energy equation, F(f), with a known A matrix and
b vector. All that is left is to solve for the function
f defined over our uniform grid that minimizes E(f).
We noted earlier that the matrix A has the property of
being symmetric positive definite. A matrix is symmetric
positive definite if for every nonzero z, z’ Az > 0.
Using this definition and some rules from basic calculus
we can derive an equation for finding an implicit function
that minimizes the energy equation.

In calculus we can find the critical points of a function
by settings its derivative to zero and solving for the
unknowns in the resulting equation. In our quadratic
form for the energy equation we take its derivative as

E'(f) = %ATer%Af—b
= Af—b

The second equality follows from the fact that A is
symmetric. Hence, by setting this equation to zero we
obtain a linear system Ax = b and by finding a solution
to this linear system we have found a critical point of
our energy function. We also know that the solution z =
A~'bis a global minimum because A is positive definite.
To show that the solution x is the global minimum of the
energy equation consider another vector y in R". From
the quadratic form we can show that if A is symmetric
then:

Bly) = B(f) + 50— N1 Aly - f)

If A is positive definite then by the definition of a
symmetric positive definite matrix the second term is
positive, thus the energy of E is greater at y than f and
f is the global minimum of E.

VI. LINEAR SYSTEM SOLVER

The final step is to obtain the implicit function that
minimizes our energy equation by solving a linear sys-
tem. The most common and straightforward approaches
for solving linear systems is Gaussian elimination. How-
ever, it requires O(n?) operations where n is the the di-
mension of the matrix. It is not atypical for grids to have
over 100 nodes along each dimension, corresponding to
linear systems having on the order of a million variables.
Solving such a system using Gaussian elimination is not
very practical.

Another approach to solving linear systems first de-
composes the matrix into lower and upper triangular ma-
trices which can then be solved through simple forward
and backward substitutions. Due to the fact that our
matrix A is symmetric positive definite we can apply
a variant of this matrix decomposition approach known
as the Cholesky decomposition. Cholesky decomposition
decomposes the matrix A into the product of a lower
triangular matrix L and it’s transpose L7 . Although this
approach is potentially more effective than a straight-
forward Gaussian elimination it suffers from overhead
needed to order rows and columns of the matrix in order
to reduce fill in [12].

One of the problems that these two methods for
solving linear systems do not address is the fact that our
matrix A is sparse. Generally speaking, a sparse matrix
is a matrix that is dominated by zero entries. This is true
of our matrix because for a given lattice node, -, only a
small neighborhood of variables around it will contribute
to the row A., in our case only 135 at most. All of the
other entries in the row of « are zero because variable
outside its neighborhood do not influence it.

Another branch of linear system solvers that work well
with sparse matrices are iterative solvers. Unlike direct
solvers like Gaussian elimination or Cholesky decompo-
sition they do not attempt to solve the system directly
but instead generate a sequence of approximations that
ideally converge to the correct solution. One of the
benefits of an iterative approach is that it takes advantage
of the fact that most of the entries in a sparse matrix are
zero, thereby conserving computational resources only
to values that contribute to the result.

To enable efficient linear operations such as vector
dot products and matrix-vector multiplications we store
our A matrix in a compact column storage (ccs) repre-
sentation (See Figure 1). In this representation n is the
dimension of the matrix, rowndx is the list of nonzero
entries per row for each column in the matrix, data is
the list of nonzero values corresponding to entries in
rowndx, and colptr is a list of indices where each index

gtruct CCS_Matrix {

1
int I
int# colptr;
int# rowind;
double* daota;
b

Fig. 1. C-like psuedo code for a sparse matrix

points to the first entry in rowndx of its column. For
example, the first index in colptr always points to the
beginning of rowndx since its first entry belongs to the
first column of a symmetric positive definite matrix and
the next index in colptr will point to the first entry in
rowndx that belongs to the second column. Note that
since the matrix is symmetric we only store the lower
half of the matrix.

Once we’ve decided on using an iterative solver we
have choice of which iterative solver to use. One of
the simplest is the Jacobi method, also known as the
method of simultaneous displacements. The basic idea
behind the Jacobi method is that we start with an initial
guess for the implicit function and then solve for each
variable independently. After each iteration we update
our approximation with the new computed values. The
Jacobi method can be written mathematically as

= L (0 S
Q44 —
J#i

One of the benefits of the Jacobi method is that it is
easy to implement. However, the Jacobi method is not
very effective for large linear systems because it takes
several iterations to converge and in some cases may not
even converge to the correct solution.

An improved iterative solver is the conjugate gradients
method. Although the conjugate gradients method is
more complicated than the Jacobi method it is guaranteed
to converge in n steps, although it is often the case that
fewer steps are required to obtain a good approximation.
One of the requirements for using the conjugate gradients
method is that it also requires the matrix A to be
symmetric positive definite. Further details of conjugate
gradients and its derivation are beyond the scope of this
paper. A good introduction to the subject can be found
in [10].

Although the conjugate gradients method is an im-
proved iterative solver it too can often take a cumber-
some number of iterations to converge for large systems.
To improve the convergence rate of the conjugate gra-
dients method we can use a matrix preconditioner. A

matrix preconditioner is another matrix whose product
with A has a lower condition number than A by itself.
Generally speaking, linear systems with matrices of
a lower condition number converge faster than those
with matrices having larger condition numbers. Although
multiple preconditioners are available we stick with
the simplest one, namely the diagonal preconditioner.
The diagonal preconditioner is formed by inverting the
diagonal matrix whose entries are the diagonal entries in
A.

VII. RESULTS

The results in Figure 2 show the output of our algo-
rithm. The two examples shown are a Chiquita-like bust
with over 700K oriented points and an angel with 24K
oriented points. These results were produced with 1103
uniform grids. The faceted looks are partly attributed to
per face shading. The surfaces would look smoother with
a better shading algorithm like Gouraud shading. Note
that the holes in the models are filled. Both the recon-
structions were done with standard implementations of
the Marching Cubes algorithm.

VIII. IMPROVEMENTS

Although our approach produces decent results it is
encumbered by the fact that the quality of the mesh
dictates the size of the grid. Our global approach of
solving for the implicit function over the entire grid
is not scalable. For example, a high quality mesh that
captures the fine details of a well sampled model requires
on the order of a thousand variables along each grid
axis, resulting in over a billion variables. Grids of this
order require more memory than available on commodity
computers.

In order to compensate for the memory requirement
we devised a block based version of our approach. The
motivation behind this approach is that we can partition
the grid into a collection of disjoint, fixed size blocks
and solve for each block independently. This block based
approach theoretically enables us to use a large global
grid while only needing to store a small subset of it in
memory at any given time. The independent nature of
the blocks also allows them to be solved in parallel over
a distributed computing system such as a cluster.

Although we implemented this approach in the 2D
case for relatively small grids we conjecture that this
approach will not be amenable to the 3D case with larger
grids. One of the problems of the block based approach
is that we end up wasting computational resources on
blocks with little or no sample points in them. More
generally, the problem that this alternative solution does

not address is that more function variables are needed
near the surface of M and fewer variables in regions
further from the surface.

The idea that we would like to have a varying density
of function variables leads us to consider an adaptive
approach. In an adaptive approach we would use a
hierarchical grid structure such as an octree to hold
more variables near the sample data where the surface
of M resides and fewer variables further away. By using
this adaptive structure for the domain of our implicit
function we could apply a hierarchical solver such as
the adaptive multigrid method. Other works related to
this project show promising results for adaptive methods
and it is likely the correct way that we should approach
the surface reconstruction problem.

IX. CONCLUSION

We have presented a novel approach to the surface re-
construction problem whose solution comes from solving
the linear system of a symmetric positive definite matrix.
Our approach has a straightforward formulation and
compact representation. In addition, we are able to apply
many of the common linear system solvers that are avail-
able, the most effective being the conjugate gradients
method with a preconditioner. Although our results are
fair we find that there is room for improvement. In future
iterations of our work we will use an adaptive approach
which we feel will make our results comparable to those
obtained in other published research.

REFERENCES

[1] Bloomenthal J., Wyvill B. 1997. Introduction to implicit sur-
faces. Morgan Kaufmann Publishers Inc., San Francisco, Cali-
fornia.

[2] Bolitho M., Kazhdan M., Burns R., Hoppe H. 2007. Multilevel
streaming for out-of-core surface reconstruction. Proceedings of
Eurographics symposium on Geometry Processing 2007.

[3] Bolz J., Farmer I., Grinspun E., Schréoder P. 2003. Sparse
matrix solvers on the gpu: conjugate gradients and multigrid.
ACM SIGGRAPH 2003 Papers.

[4] Briggs, W., Henson, V. E., McCormick, S. 2000. A multigrid
tutorial, second edition. SIAM, Philadelphia, Pennsylvania.

[5] Kazhdan, Michael. 2005. Reconstruction of solid models from
oriented point sets. Proceedings of Eurographics symposium on
Geometry Processing 2005.

[6] Kazhdan, M., Bolitho, M., Hoppe, H. 2006. Poissson surface
reconstruction. Proceedings of Eurographics symposium on
Geometry Processing 2006.

[7]1 Levoy, M., Pulli, K., Curless, B., et al. 2000. The digital
michelangelo project: 3D scanning of large statues. Proceedings
of ACM SIGGRAPH 1999, 131-144.

[8] Lorensen W., Cline, H. 1987. Marching cubes: a high resolu-
tion 3d surface reconstruction algorithm. Proceedings of ACM
SIGGRAPH 1987, 163-169.

[9] Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-
P. 2003. Multi-level partition of unity implicits. ACM Trans.
Graph. 22, 3, 463-470.

(10]

(11]

[12]

Shewchuck, J. R. 1994. An introduction to the
conjugate gradient method without the agonizing pain.
http://www.cs.cmu.edu/~quake—papers/
painless-conjugate-gradient.ps

Sibley, P., Taubin, G. 2005. Vectorfield isosurface-based recon-
struction from oriented points. ACM SIGGRAPH 2005 Sketch.
Stewart, G. W. 2003. Building an old-fashioned sparse solver.
http://www.cs.umd.edu/~stewart

WY=T5375
F=0

=1

(b) Chiquita Reconstruct

EECS R

=1

=in

=20

(c) Angel Points (d) Angel Reconstruct

Fig. 2. Reconstruction results

