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Introduction

Linear dynamical systems are a class of probabilistic models capable of capturing
the temporal structure of Gaussian stochastic processes. This paper presents an
application of the linear dynamical system paradigm and the associated machine
learning algorithms to financial time series analysis. In particular, we develop an
unsupervised learning framework to represent the evolution of observed market
returns for an individual asset as a perturbed random walk controlled by a set of
unknown parameters. In the first part of our study, the maximum likelihood model
parameters are found numerically via the Kalman Filter EM algorithm. In the
second part it is shown that, given a series of observed market returns, the fitted
model can be used to estimate the associated series of unobserved mean returns.
The efficacy of our model is tested in a trading simulation of six real financial assets.

1. Definitions and Terminology

The following definitions from probability theory provide the basis for our dis-
cussion of stochastic models and dynamical systems.

Definition 1.0.1. A random variable X is a function from the sample space Ω to
the real line R . Its cumulative distribution function (cdf) F is a non-decreasing
function between zero and one, such that ∀ x ∈ R

(1.0.1) F (X) .= P (X ≤ x)

Definition 1.0.2. A random variable is said to be discrete if it can take on at most
a countable set of possible values with probability

(1.0.2) P (X = xi)
.= p(xi)

where
∑
i p(xi) = 1.

Definition 1.0.3. A random variable is called continuous if there exists a nonneg-
ative function f(x), called the density, such that ∀ B ⊆ R

(1.0.3) P (X ∈ B) .=
∫
B

f(x)dx

where
∫

R f(x)dx = 1.
1
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Definition 1.0.4. A random vector is a collection of random variables X =
[X1, X2, ..., Xk] that maps the sample space Ω to R+. Its cdf is defined

(1.0.4) F (x1, x2, ..., xk) .= P (X ≤ x1, x2, ..., xk)

Definition 1.0.5. A real valued random variable X is said to follow a normal or
Gaussian distribution, if its continuous probability density function is the Gaussian
function

(1.0.5) N =
1

(2πσ2)1/2
exp[− 1

2σ2
(x− x̄)2]

A Gaussian random variable is fully characterized by its mean x̄ and variance σ,
denoted, N(x̄, σ).

Definition 1.0.6. The multivariate Gaussian distribution is the generalization
of a one dimensional Gaussian distribution X = [X1, X2, ...XD] such that every
linear combination X = a1X1 + a2X2+, ...,+aDXD is normally distributed. The
multivariate Gaussian distribution takes form

(1.0.6) N =
1

(2π)D/2

1
|Σ|1/2

exp[−1
2

(~x− [x̄])TΣ−1(~x− [x̄])]

where [x̄] is a D-dimensional mean vector, Σ is a DXD covariance matrix, and |Σ|
denotes the determinant of Σ. A multivariate Gaussian random variable is fully
described by its parameters, the collection of means [x̄] and covariance Σ, denoted
N([x̄],Σ).

Definition 1.0.7. In general a stochastic process is defined as a collection of ran-
dom variables X = [Xt : t ∈ T ] on some probability space (Ω, P) where Xt is an X
valued random variable and t is the time index of the process. An event ω in the
sample space Ω is referred to as a sample path denoted [X(ω ) = Xt(ω ) : t ∈ T ]
The possible paths of the process X is known as the state space denoted ς.

Definition 1.0.8. For a stochastic process X if T is a grid then X is referred to
as a discrete time process. If T ∈ R++ X is said to be a continuous time process.

2. Types of Stochastic Processes

2.1. Random Walk. A random walk is a simple stochastic process that models
an individual walking on a straight line who at each point of time either takes one
step to the right with probability p or one step to the left with probability 1 - p.
Let x0∈ R be the fixed starting point of the process.

Definition 2.1.1. A stochastic process S = [St] is referred to as a simple random
walk if

(2.1.1) St = x0 +
t∑
1

Xt

where Xt ∈ [−1, 1] and Xt ∼ P (Xt = 1) = p, P (Xt = −1) = 1− p
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2.2. Markov Processes. A Markov process, is a stochastic process such that the
conditional distribution for any future stateXn+1 given the past statesX0, X1, ..., Xn−1

and the present state Xn, is independent of the past states and depends only on
the present state. Let P denote the matrix of one step transition probabilities Pij ,
so that Pij ≤ 0 and

∑
j Pij = 1.

Definition 2.2.1. A stochastic process X = [X0, X1, ..., Xn] is said to be a Markov
Chain with transition probability matrix P if

(2.2.1) P (Xn+1 = j|Xn = in, Xn−1 = in−1, ..., X0 = i0)

(2.2.2) = P (Xn+1 = j|Xn = in)

(2.2.3) = Pij

It follows that a Markov chain is completely defined by its transition probability
matrix and the initial distribution of X0. A one-dimensional random walk can
be looked at as a Markov process whose state space ς, is given by the integers
i = ±1, 2..., and for some number 0 ≤ p ≤ 1, P (Yk = +1) = p, P (Yk = −1) = 1− p.

2.3. Gaussian Processes and White Noise. A stochastic process X = [Xt :
t ∈ R+] is called a Gaussian process, if Xt1, Xt2, ..., Xtn has a multivariate normal
distribution for all t1, t2, ..., tn. It follows that a Gaussian process is fully described
by its parameters of mean [x̄] and covariance Σ. If Xt1, Xt2, ..., Xtn are serially
uncorrelated normally distributed random variables with zero mean and constant
variance the process is known as Gaussian white noise. In this case, Xt1, Xt2, ..., Xtn

are independent for all t1, t2, ..., tn.
There are two particularly useful characteristics of Gaussian processes 1.Gaussian

processes are stationary in the strict sense and 2. Any linear function of a jointly
Gaussian process results in another Gaussian process. (Rasmussen and Williams
2006)

3. Linear Dynamical Systems

A linear dynamical system is a model of a stochastic process with latent variables
in which the observed output Yt and hidden state Xt are related by first order
differential equations. The basic, generative model for the dynamical system can
be written

(3.0.1) Xt+1 = AXt +Wt

(3.0.2) Yt = CXt + Zt

Xt : mx1 A : mxm Wt : mx1
Yt : nx1 C : nxm Zt : nx1

where equation (3.0.1) is said to be the state equation and (3.0.2) is said to be the
measurement equation (Welch and Bishop 2001). The latent process X is assumed
to evolve according to simple first-order Markov dynamics with an associated state
transition matrix A. The state of the process Xt is a vector valued continuous
random variable. At each time step the system produces an output or observable
measurement Yt generated from the current state by a simple linear observation
process described by the matrix C. Both the state evolution and the observation
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processes are corrupted by zero mean white Gaussian noise, Wt and Zt, with re-
spective covariance matrices denoted Q and R. Further, Wt and Zt are assumed to
be independent(Roweis and Ghahramani 1999).

It follows that X is a first order Gauss-Markov random process. By the Markov
property X is fully characterized by the distribution π1 of the initial state X1. By
the Gaussian property X1 is fully characterized by its mean, which is the distribu-
tion π1, and covariance V1. As a result:

(3.0.3) X1 ∼ N(π1, V1)

We can also formulate the following conditional probability distributions for the
states and measurements:

(3.0.4) P (Xt+1|Xt) ∼ N(AXt, Q)

(3.0.5) P (Yt|Xt) ∼ N(CXt, R)

4. Kalman Filter EM Algorithm

Technically, linear dynamical systems of the form outlined in (3.0.1) and (3.0.2)
are called Kalman filter models. Our primary interest is in the learning or system
identification problem associated with Kalman filter models: given an observed
sequence of outputs Y1, ..., Yt find parameters Ψ = [A,C,Q,R, π1, V1] which max-
imize the likelihood, P (X,Y|Ψ), of the observed data. To learn these parameters
we utilize the Kalman Filter EM algorithm.

4.1. Mathematical Theory. Due to the Markov and gaussian properties of the
Kalman Filter model, we can formulate the complete likelihood P (X,Y|Ψ) of the
observed and latent variables as follows:

(4.1.1) P (X,Y|Ψ) =
T∏
1

P (Yt|Xt)
T∏
1

P (Xt|Xt−1) P (X1)

In matrix notation the complete log likelihood can be written as the sum of qua-
dratic forms

(4.1.2) L(Ψ) .= log P (X,Y|Ψ) =
T∑
1

(
1
2

[Yt − CXt]′R−1[Yt − CXt])−
T

2
log|R|

−
T∑
1

(
1
2

[Xt −AXt]′Q−1[Xt −AXt])−
T − 1

2
log|Q|

−(
1
2

[X1 − π1]′V −1
1 [X1 − π1])− T − 1

2
log|V1| −

T (m+ n)
2

log2π

Let Γ(X) be any distribution over hidden variables. We construct the following
equality for the log likelihood.

(4.1.3) L(Ψ) = log

∫
X

P (X,Y|Ψ)dX = log

∫
X

Γ(X)
P (X,Y|Ψ)

Γ(X)
dX

Then by Jensen’s Inequality

(4.1.4) ≥
∫
X

Γ(X)log
P (X,Y|Ψ)

Γ(X)
dX
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(4.1.5) =
∫
X

Γ(X)logP (X,Y|Ψ)−
∫
X

Γ(X)logΓ(X)dX

(4.1.6) = F (Γ,Ψ)

The Expectation Maximization (EM) algorithm alternates between maximizing
F with respect to the distribution Γ and the parameters Ψ, respectively.

(4.1.7) E step: Γk+1 = argmax
Γ

F (Γ,Ψk)

(4.1.8) M step: Ψk+1 = argmax
Ψ

F (Γk+1,Ψ)

It can be shown that, given a set of known parameters, the maximum in the E step
results when Γ is exactly the conditional distribution of X denoted log P (X,Y|Y):
at which point the bound becomes an equality F (Γ,Ψ) = L(Ψ). Since F= L at
the beginning of each M step, and since the E step does not change Ψ, we are
guaranteed not to decrease the likelihood after each combined EM step (Roweis
and Ghahramani 1999). The E and M steps are alternated repeatedly until the
difference

(4.1.9) L(Ψk+1)− L(Ψk)

changes by an arbitrarily small amount ε. Given F is bounded from above by L,
under the appropriate conditions the algorithm will converge to a global maximum,
yielding the set of maximum likelihood parameters Ψ∗ (McLachlan and Krishnan
2008).

4.2. E Step. The goal of the E Step is to compute the function Γ that maximizes
F. All that is necessary is the specification of the complete data X, and conditional
density of X given the observed data Y. As the choice of the complete data vector
X is not unique, specification of the conditional density is chosen for computa-
tional convenience (McLachlan and Krishnan 2008). We follow the specification
of Ghahramini and Hinton (1996), who present the E step inference algorithm to
compute

(4.2.1) Γ = E[logP (X,Y|Y)]

which depends on the following quantities

(4.2.2) X̂t ≡ E[Xt|Y]

(4.2.3) Pt ≡ E[XtX
′
t|Y]

(4.2.4) Pt,t−1 ≡ E[XtX
′
t−1|Y]

Given X is a Gaussian process and the covariance matrices V1, and Q are assumed
to be known, the computational problem of inferring Γ amounts to finding the vec-
tor [X̂t] of mean values for the process X. The Kalman Filter inference algorithm is
decomposed into a forward and backward recursion, called Kalman Filtering, and
Kalman Smoothing, respectively . Let Xτ

t
.=E(Xt|Y), V τt

.=Var(Xt|Y), and Ψ be
an initialization of the parameters A, C, Q, R, π1, V1. In matrix notation the E
step is specified as follows:

E-Step(Y,Ψ)
Kalman Filter
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(4.2.5) X1
0 = π1

(4.2.6) V 1
0 = V1

compute the foward recursion

(4.2.7) Xt
t
−1 = AXt−1

t−1

(4.2.8) V t−1
t = AV t−1

t−1
A′ +Q

(4.2.9) Kt = V t−1
t C ′(CV t−1

t C ′ +R)−1

(4.2.10) Xt
t = Xt−1

t +Kt(Yt − CXt−1
t )

(4.2.11) V tt = V t−1
t −KtCV

t−1
t

Kalman Smoothing

(4.2.12) V TT,T−1 = (I −KTC)AV T−1
T−1

compute the backward recursion

(4.2.13) Jt−1 = V t−1
t−1 A

′(V t−1
t )−1

(4.2.14) XT
t−1

= Xt−1
t−1 + Jt−1(XT

t −AXt−1
t−1 )

(4.2.15) V Tt−1 = V t−1
t−1 + Jt−1(V Tt − V t−1

t )J
′

t−1

(4.2.16) V Tt−1,t−2
= V t+1

t−1 J
′
t−2 + Jt−1(V Tt,t−1 −AV t−1

t−1 )J
′

t−2

(4.2.17) X̂t = XT
t

(4.2.18) Pt = V Tt +XT
t X

T ′

t

(4.2.19) Pt,t−1 = V Tt,t−1 +XT
t X

T ′

t−1

RETURN([X̂t], [Pt], [Pt,t−1])

Given X̂t solve for L(Ψ) for this iteration of EM.
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4.3. M Step. The M step re-estimates the parameters to be used in the E step.
Each iteration of the M step computes the values Ψ that maximizes F, by 1. taking
the respective partial derivatives ( ∂F∂π1

, ∂F∂V1
, ∂F∂C ,

∂F
∂R ,

∂F
∂A ,

∂F
∂Q ) 2. setting them to zero

3. then solving for the value of the respective parameter. In matrix notation the
updated parameters are computed as follows:

M-Step([X̂t], [Pt], [Pt,t−1])

(4.3.1) πnew1 = X̂1

(4.3.2) V new1 = P1 − X̂1X̂ ′1

Re− estimateParameters

(4.3.3) Cnew = (
T∑
1

YtX̂t)(
T∑
1

Pt)

(4.3.4) Rnew =
1
T

T∑
1

(YtY ′t − CnewX̂tY
′
t )

(4.3.5) Anew = (
T∑
2

Pt,t−1)(
T∑
2

Pt−1)−1

(4.3.6) Qnew =
1

T − 1
(
T∑
2

Pt −Anew
T∑
2

Pt−1,t)

RETURN(πnew1 , V new1 , Rnew, Anew, Qnew)

This completes one iteration or cycle of the Kalman Filter EM algorithm.

5. The Kalman Filter Model applied to Financial Assets

The Kalman filter model as defined in equations (3.0.1) and (3.0.2)is the simplest
state space model of a stochastic process and is often used in control theory to
describe the imprecise measurement of a stochastic system whose dynamics are
assumed to follow a random walk (Harvey 1989). We utilize the same model of a
random walk plus noise in the financial setting to describe the relationship between
the measured or observed market return and the mean return of an asset at any
time t. Accordingly we introduce the following notation:

(5.0.7) µt+1 = Aµt +Wt

(5.0.8) Yt = Cµt + Vt

Equation(5.0.7) specifies the random walk process of the mean return and equa-
tion(5.0.8) specifies the market return or the signal emitted from the underlying
random walk plus noise. We can now use the EM algorithm to find the parameters
of the perturbed random walk which maximize the likelihood of observed return
data.
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5.1. Convergence Results. We implement the EM algorithm for linear dynami-
cal systems per Ghahramini and Hinton as outlined in 4.1. Given the values of the
log likelihood for our data sets we choose a stopping condition of ε = .01 or one
hundred iterations (combined EM cycles) of the algorithm. 2D vectors are used to
represent the states (the first dimension being the actual value, the second being
the rate of change) while the observations are represented by scalars. Secondly, for
the E step we choose a random initialization of the parameters. It can be shown
that when the distribution in question is assumed to be a simple Gaussian process
the initialization is arbitrary (McLachlan and Krishnan 2008).

We test the model on two Gaussian processes with known parameters. Specif-
ically we generate one hundred corrupted observations of Gaussian white noise
(Xt ∼ N(0, 2)) and white noise (Xt ∼ N(4, 2)), (the difference being that the
respective means are not zero). Figure 1. and Figure 2. present the average con-
vergence results for 20 runs of the EM algorithm for each asset - first in terms of
the value of the log likelihood per cycle of the EM algorithm then in terms of the
change in log likelihood per cycle.

Figure 1. Convergence Results for Gaussian White Noise

Figure 2. Convergence Results for White Noise

The dummy examples showed that the Kalman filter model is a rich model for true
Gaussian processes. The EM algorithm computed values very close to the known
parameters (see Appendix). Convergence was also fast for reasonable values of
epsilon, specifically ε = .01.

Next the EM algorithm is utilized to find the unknown parameters of six finan-
cial assets which we assume follow a hidden random walk. We start with 43 years
(1960 to 2003) of annual return data for six indices: the Standard and Poors 500
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(SP 500), the one year US Treasury bill, the US Money Market Index, the Nasdaq,
FTSE, and Nikkei, listed in the order of their annual volatility (standard deviation
from the mean) Figures 3. through Figure 9. show the convergence results for these
empirical data sets. Some of the final computed parameters are presented in the
Appendix.

Figure 3. EM Convergence Results for SP 500

Figure 4. EM Convergence Results for US Treasury

Figure 5. EM Convergence Results for US Money Market



10 KEMBEY GBARAYOR JR

Figure 6. EM Convergence Results for Nasdaq

Figure 7. EM Convergence Results for FTSE

Figure 8. EM Convergence Results for Nikkei

As was the case for the true Gaussian processes, convergence was fast for each
financial data set. In few cases did the algorithm take one hundred iterations to
terminate. In traditionally volatile markets like the Nasdaq and FTSE the values of
the log likelihood were mostly negative, a promising result. Although not a rigorous
fact, a rule of thumb is that while the log likelihood may be positive, it is usually a
sign that the model does not fit the data or that something has gone wrong in terms
of the E-Step initialization (Roweis and Gharamani 1999). In the case of the SP
500, Treasury markets, and Money markets, we computed strictly positive values
for the log likelihood. Per the rule of thumb, it may be that these markets follow
more complicated stochastic process other than a random walk or are deterministic.
There is also a possibility that prior analysis of the distribution is required to choose
the best initialization in the E step. Unlike in the simple Gaussian case, if the log
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likelihood has several local or global maxima and stationary points, convergence
of the EM algorithm to either type of point depends on the choice of initialization
(Wu 1983). In any case, the random walk model seems to work well in terms
of computed values for the log likelihood and speed of convergence, for relatively
noisier markets than the SP 500,Treasuries,and Money Market which the Nasdaq,
Nikkei, FTSE are,as measured by historical volatility (FinFacts.com 2008). From
here on we will refer to value markets as the equal weighted portfolio of the SP
500, Money Market and Treasuries. We will on the other hand refer to the more
volatile markets, the equal weighted portfolio of the Nasdaq, Nikkei, and FTSE as
the growth markets.

5.2. Kalman Filter Inference. The Kalman Filter paradigm is not only useful
for the estimation of unknown model parameters but also useful in determining
the most likely hidden states given a series of observations. With the maximum
likelihood parameters calculated from the EM algorithm, we utilize the Kalman
Filter inference algorithm, effectively the E step of the EM algorithm, to compute
values of the most likely hidden states, or mean returns of the asset. We follow an
analogous setup as in the convergence study, first testing the inference algorithm
on the two corrupted Gaussian processes with known parameters, Gaussian white
noise (Xt ∼ N(0, 2)) and white noise (Xt ∼ N(4, 2)); then finding the hidden states
or mean returns of the real financial data sets.

Figure 10. shows the results of carrying out the inference procedure on the gen-
erated data sets with known parameters. It should be noted that for consistency, a
mean of four for a Gaussian process corresponds to a return of four hundred percent.

Figure 10. Inference: Gaussian White Noise and White Noise

The Kalman Filter inference algorithm derived accurate estimates of the values of
the hidden states of the dummy processes, (Xt ∼ N(0, 2)) and (Xt ∼ N(4, 2)),
respectively. Thus if a process is truly Gaussian, the Kalman Filter framework is
effective at finding the latent states of such a process given a series of observations.

6. Technical Analysis in Financial Markets

Financial theory is built upon the idea that all assets have some intrinsic although
unobserved expected return. It is assumed that assets are mean reverting and
that an asset which is dislocated (has a return higher or lower than its expected
return) will eventually trend towards the unobserved mean. If one can infer the
mean over a given time period one can in theory profit from actively trading the
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asset rather than a buy and hold strategy. Traditionally this mean is computed as
the arithmetic mean of the asset returns over some time period. We hypothesize
that because the arithmetic mean assumes that returns at each decision epoch
are independent, and our model assumes returns have temporal structure (first
order Markov dependence), we will better capture the mean level of the asset and
subsequently attain higher profit in the trading simulation. For specificity we define
the following:

Definition 6.0.1. A buy and hold strategy (BH) is one in which an investor simply
buys an asset and does not sell it.

Definition 6.0.2. A LDS trading strategy (LDS)is one in which a trader at any
decision epoch shorts the asset(sells the asset) if it its market return is above the
mean inferred from the Kalman Filter inference algorithm and goes long the asset
(buys the asset) if its market return is below the mean return derived from the the
Kalman Filter inference algorithm.

Definition 6.0.3. An Simple Arithmetic Mean trading strategy (STMA) is one
in which a trader at any decision epoch goes short the asset(sells the asset) if
it its market return is above the moving three year arithmetic mean return and
takes a long position in the asset (buys the asset) if its market return is below
the moving three year arithmetic mean return. The three year moving average
is a popular metric in many quantitative macro trading strategies. Let yt be the
observed market return at time t. Then the simple three year moving average at
time t is computed as follows:

(6.0.1) STMAt =
yt−1 + yt−2 + yt−3

3

6.1. Inferring the Asset Mean. As demonstrated with the gaussian dummy
processes in the previous section, with the maximum likelihood model parameters
computed fore each asset, we can apply the Kalman Filter inference algorithm
outlined in the E step to yield the unobserved series of mean returns [µ̂t] associated
with the observed market returns; that is [µ̂1, µ̂2, ..., µ̂t] given a series of observations
Y1, Y2, ...Yt. In Figure 11, Figure 12 and Figure 13., we present the results of
carrying out the inference procedure to find [µ̂1, µ̂2, ..., µ̂t] for each of the financial
data sets, along with the computed three year moving arithmetic average.

Figure 11. Inference: SP and US Treasury
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Figure 12. Inference: Money Market and Nasdaq

Figure 13. Inference: FTSE and Nikkei

6.2. Trading Results. In Table 1 we present the results for the trading simulation
as described in section 6. The values in the table represent the return at year end
2003 for an investor who invests one dollar in 1963 in each strategy, takes profit/loss
each year, and then invests another dollar in each strategy.

Table 1. Inference: Individual Asset Trading Simulation Results

Case BH STMA LDS
SP 518.45 516.03 1.87

MM 337.56 369.42 -1.67
TR 271.89 7.04 -1.35

NSDQ 554.66 757.63 879.89
FTSE 455.30 961.17 820.79
Nikkei 320.03 543.76 590.94

In Table 2 we present the aggregate results for the trading simulation as de-
scribed in section 6. We refer to two styles of equal weighted portfolios value and
growth. The main distinction is historical volatility of the underlying assets. We
compare how our model performs in each type of market. We then use these mean
returns to simulate the three trading strategies defined in section 6.
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Table 2. Aggregate Results: Equal Weighted Style Portfolios

Case BH STMA LDS LDS Edge over BH LDS Edge over STMA
Market 2457.89 2290.48 3155.05 -706.09 -1209.039
Value 1127.90 -1.15 892.49 -1129.05 -893.64

Growth 1329.99 2291.62 2262.56 961.63 29.07

6.3. Analysis Table 1 and 2. Although the true mean returns, [µ1, µ2, ..., µt], in
this framework are unknown there were some interesting observations that support
our hypothesis that asset returns can be modeled as linear Gaussian systems. We
focus our analysis on generalizations about the performance of the LDS model in
value versus growth markets as summarized in Table 2. We again saw a discrepancy
between the less volatile value markets (SP 500, Treasury, Money Market) and
the more volatile growth markets (Nasdaq, FTSE, Nikkei). For the more volatile
markets, those which in the previous section had negative likelihoods, the inference
algorithm computed a smooth progression of estimated mean returns given the
temporal structure of the data. In these markets, our strategy outperformed the
buy and hold strategy and the arithmetic mean trading strategy by a significant
margin, 960 percent and 29 percent respectively.

On the other hand, for the three assets, those which comprise the value markets,
and had positive likelihoods (SP,Treasuries,Money Markets),the estimated returns
derived from the LDS inference algorithm were characterized by significant dis-
parities between the estimated LDS return and the market return, consistently in
excess of three hundred percent and at times as great as seven hundred percent).
Although the LDS model under-performs in the trading simulation in these mar-
kets, the model still provides valuable information. In fact, in these markets the
model always signals to buy, in other words, the SP, Treasuries, and Money Market
are systematically undervalued. In fact this is what we found, as the buy and hold
strategies outperformed the other two strategies in these markets. From our results,
the LDS mean when computed for growth markets is effective at providing excess
return over both the buy and hold and simple three year average trading strategies.

6.4. Statistical Significance of LDS Model. For a given asset, the statistical
significance of differences between the mean of a sample of observed market returns
and a sample of LDS estimated returns, can be assessed using the p-value calcu-
lated as part of a t-test (Mackay 2003). In this case the metric for significance is a
p-value of 0.05; that is, if the calculated p-value for the difference of means t-test is
below 0.05 we reject the null hypothesis that the two means are from independent
samples of the same population. Therefore for p-values above 0.05 we conclude the
means are from independent samples from the same population, in our case, this
means the LDS returns estimated for the asset are drawn from the same population
as the observed market returns for that asset. We present these results in Table
3. For those assets for which we can conclude that the LDS mean and market
return are from the same population, we further conclude that the LDS model is
statistically significant and that trading around the LDS mean is a valid trading
strategy for that asset.
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Table 3. Inference: Statistical Significance of LDS Model

Case p-value Are LDS returns
from a statistically

different
population than the

Observed Market Returns?
SP 1.97239E-18 yes

MM 1.85905E-15 yes
TR 6.6273E-20 yes

NSDQ 0.533402074 no
FTSE 0.001884883 yes
Nikkei 0.795323065 no

Table 4 shows of the result of performing the trading simulation only in the
markets in which our model is statistically significant, meaning the LDS model
computes mean values from the same poulation as the observed market returns.
We compare the results across the three trading strategies for an equal weighted
portfolio of the Nasdaq and Nikkei (the previous growth portfolio without the
FTSE).

Table 4. Inference: Trading Simulation for Statistically Signifi-
cant Portfolio

BH STMA LDS
Growth Ex FTSE 874.69 1301.39 1470.83

LDS Edge 596.14 169.44 NA

6.5. Analysis Table 3 and 4. We find that in the case of the Nikkei and Nasdaq
we get p-values that indicate that the LDS returns computed are from the same
population or stochastic process that generated the observed market returns. This
is promising given these are the two markets in which our model outperformed
the other two strategies. The result from our empirical study, is that we can attain
higher profibility using the LDS mean in the markets where our model is statistically
significant. In particular, given our data set, over the forty year span from 1963
to 2003 for every dollar put into our strategy one would earn 516 percent, and 169
percent, excess return over a buy and hold strategy, and arithmetic mean trading
strategy, respectively.

7. Conclusion

This paper is an investigation of linear dynamical systems, a useful tool for the
artificial intelligence practitioner, notably those interested in unsupervised learn-
ing, pattern recognition and time series analysis. In particular we use a Kalman
filter framework as a model for financial time series which we assume have tem-
poral covariance and spatial Gaussian structure. We ultimately showed that the
linear dynamical systems framework provides an effective solution to two problems
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encountered in the examination of financial time series 1. estimating the param-
eters that control the stochastic behavior of market returns, and 2. inferring the
true mean return given a noisy market return. Further, we showed that trading in
financial markets with moderate levels of volatility (noise) using the LDS mean is a
profitable trading strategy which outperforms both a buy and hold strategy as well
as a arithmetic mean trading strategy. Future work may include time series analysis
using nonlinear models such as extended Kalman filters or discrete state analogs
to the LDS framework, namely hidden Markov models, both capable of parameter
estimation and inference for more complex stochastic processes than random walks.
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