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Introduction 
In this paper, I will describe my work on Volt DB and the graphical user interface I 

developed for it as my final project for a Master of Science in Computer Science at 
Brown University. 

1.1 Summary 
Volt is a high-performance, memory-resident, distributed, shared-nothing, 

transaction processing system built from scratch by a team comprised of students, 
professors, and professionals from Brown and Yale Universities, MIT, and Vertica Inc.  
The majority of the work thus far has been appropriately focused on the back-end and on 
the optimization of this benchmark bar-raising database system.  The existence of a 
comprehensive graphical user interface has not been designed, though it is needed to 
extend the system beyond the command-line.  We set out to develop a GUI that enhances 
demonstrations and allows developers and researchers to watch a ‘playback’ of a 
complete workload for study and exploration. 

 

1.2 Organization of Paper 
In the first section, I will give a brief overview of Volt and some of the more 

important characteristics.  Next, I will describe my top-level design goals.  Following 
that, I will dissect the design and the specifics of the GUI that I designed and built with 
the majority of the focus on my recent work on the Trace Simulator. I will also describe 
the existing visualizer package that I investigated before deciding to implement my own 
from scratch.  Finally, I will describe some of the setbacks I encountered (with 
suggestions for completing the implementation), and some ideas for future improvement 
and enhancement of the entire interface. 
 

2 Introduction to Volt 

2.1 Background 
Volt, previously called H-Store, is an open-source project built on the premise 

that the 'one-size fits all' legacy databases started in the 1970’s are being significantly 
outperformed by specialized databases built from the ground up for their vertical market 
(e.g., data warehouses, OLAP, OLTP); thus, they are unburdened by unnecessary 
overhead.  When many of these vintage databases were first developed and architected, 
hardware was much more expensive, yet not as robust as it is now.  Current enterprise 
systems can store their entire database in main memory among clusters of multi-core 
machines; yet access time between main memory and secondary storage has not had the 
same performance increases as has the storage capacity.  With such an abundance of 
primary storage, the database bottleneck can shift from being disk-bound to being 
network-traffic-bound or even CPU-bound.  It is not inconceivable to imagine an 
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enterprise’s computing grid having more than enough processor cores and main memory 
to process and hold even the largest on-line transactional data stores; ergo, the need for a 
DBMS designed specifically for short-lived, predictable, and fast transaction processing 
is obvious.  To strengthen the argument, Stonebraker, et. al. showed that on the New 
Order transaction of TPC-C, only 6.8% of the execution time of the transaction using a 
legacy system is actually 'useful' work. The remaining time is spent in overhead such as 
locking (16.3%), latching (14.2%), logging (11.9%), and buffer management (34.6%) all 
of which are unnecessary in Volt. [3].   

By using timestamps to maintain serializability and because all transactions are 
single-threaded, the majority of transactions have no danger of cascading rollbacks, and 
because procedures are stored, it is free of user stalls; therefore, the use of locks and the 
latching of data structures are largely unnecessary.  For general transactions that could 
have concurrency problems, we are investigating variants of a two-phase locking 
mechanism for these special cases.  We can avoid the need for logs by maintaining 
replica partitions on k sites (also known as k-safety).  If a partition fails, the duplicate will 
immediately rollover without requiring any damage control or downtime.  Furthermore, 
the expectation is that institutions will be able to add additional sites without restarting 
the system, so that when a site is restored, it can be seamlessly brought back online.  
Buffer management is needed by legacy systems in order to access pages through a buffer 
pool, while memory-resident databases are not burdened by this overhead [3].  
Harizopoulos, et. al. showed that stripping the database of these unnecessary features 
resulted in a substantial speed increase from about 640 transactions per second up to an 
amazing 12700 transactions per second [3]. 

Because of the way Volt accesses workload, transactions must be written and 
finalized at compile time (except for run-time parameters).  The optimal transactions (and 
the fastest) are executed in isolation on a single-node or partition.  Such single-site 
transactions will guarantee serializability because the single-thread can execute such a 
query without relying on external reads and minimizes the amount of messaging.  Also, 
because the stored procedure is accomplished on a single-site, there is no danger of 
cascading rollbacks should a transaction abort nor is any type of lock required.  If the 
partitioning scheme of the database is such that it precludes single-site execution of a 
transaction, then the next preferable type is a one-shot transaction of a stored procedure.  
This type of transaction is sent to 1-n sites for execution, but each site can perform its 
portion of the workload without requiring intermediate results from other sites.  The 
individual nodes can process the transaction as if it were single-sited and does not need 
knowledge of what the other sites are doing. If a transaction does not fit in the 
aforementioned categories, Volt can still execute the general transaction, but at much 
greater cost.  Recently, developers have implemented ad-hoc queries to the capabilities, 
again, at the expense of performance. 

2.2 Design Goals 
My overarching design goal was to deliver a graphical user interface for the Volt that was 
useful, efficient and user-friendly.  I wanted to use familiar interface objects such as 
buttons, combo boxes, and text fields so that the data entry and the operation of the 
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interface would be fairly intuitive.  The majority of the users will be very comfortable 
with computers, though they won’t want to be hindered by a clunky GUI. 

3 Volt GUI Console Architecture 

3.1 Introduction 
At VLDB ’08, our team demonstrated Volt against a version of the TPC-C 

benchmark, when the nascent program could only run on a server and on a single client.  
Volt is primarily ran through the command-line, but for the demo, we implemented a 
rudimentary graphical user interface which allowed conference attendees a chance to 
experiment with TPC-C after changing runtime parameters and settings.  Then, the GUI 
had the capability to allow the user to select a stored procedure from the TPC-C catalog, 
insert parameters (or generate random ones), execute the procedure, and view the results 
once completed [1].  It also allowed the user to inspect the catalog as a tree structure, and 
had a panel for table results.  Unfortunately, TPC-C does not have very interactive 
returns, so the table results were not very dramatic.  The focus of the demonstration was 
on high-performance, not on user-friendliness. Once the ‘Execute’ button was pressed, 
the procedure would finish in mere seconds without much fanfare or visual excitement.  
An additional console displayed runtime measured in transactions per second.  There is a 
need for better representation.  As the system matures and as features are added, 
academics and professionals will want to see the benefits of various partitioning schemes 
and to ensure serializability is maintained due to the very optimistic concurrency control 
scheme and much-reduced logging implementation.  Also, Volt has the potential for 
gaining much attention in academia and improved visuals will enhance our 
demonstrations at conferences. 

In section 2, I outlined the basic architectural concept of Volt; a high-
performance, specialized OLTP designed and built from scratch to excel in this domain.  
Since vital features are still being designed and implemented, the majority of software 
engineering focus has been on the execution engine, the catalog types, the query planner, 
supporting multiple sites, and the coding of the actual instructions making the system 
operate; hence, little attention has been 
focused on the user interface or the user 
experience. 

The graphical user interface that we 
designed and built for VLDB ’08 was 
focused on showing off our prototype and on 
demonstrating the execution of Stored 
Procedures from the industry-standard TPC-
C benchmark with few additional functions.  
The main GUI, then known as 
ConsoleVLDB, consisted of three tabbed 
panels: Stored Procedures, Table Results, 
and Catalog Tree Data. 

The Stored Procedure panel was the 
primary interface for VLDB ’08.  The user 
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could select any of the stored procedures that were listed in the catalog, enter parameters, 
and execute the chosen procedure.  The Table results would display the return of the 
aforementioned transaction in tabular form (if applicable).  Lastly, the Catalog Tree panel 
displayed the catalog hierarchy in a traditional interactive tree format.  In the time since 
that conference, we have designed and implemented a fourth section: the Visual Volt 
panel.   

3.2 Panel Specifics and Code 
The GUI and associated classes were written in Java SE 6 and were tested on a 

MacBook Pro (2.6 GHz dual-core Intel processor with 4 GB RAM), running Mac OS X 
10.5.7. 

3.2.1  Volt GUI Console 
The Volt GUI Console is the main program that runs the heavyweight Java Swing 

container that contains all of its lightweight subordinate panels. Prior to launching the 
GUI, a Volt server must be launched to accept query requests.  The server code requires 
that the number of execution sites be entered at run time.  The main console implements 
the program menu and initiates the instance of a Volt client and connects it to the 
aforementioned server.  One necessary improvement is adding code that launches the 
server at runtime in addition to the client(s). Throughout this project, I used the older 
version of Volt that only supported one site, though multi-sites are now being tested as 
part of the latest build. 

3.2.2  Stored Procedure Panel 
The Stored Procedure panel (Figure 1 in the Appendix) loads the parameterized 

catalog (passed at run-time) and stores each statement in a Hash Map (keyed on the 
procedure name). These procedures populate a combo box from which a user can select 
any of the procedures that are in the catalog.  The listener for the combo box loads the 
procedure and then updates the panel to display the specific parameter fields required for 
the query once a procedure is selected.  This dynamic feature allows users to see exactly 
which data types are necessary.  For demonstration purposes, the user can optionally 
select random values and the GUI controller will fill the fields with parameters of the 
correct type (e.g., long, string, timestamp).  Once the procedure is loaded and the 
parameters entered, the transaction can be executed.  Since the GUI is connected to an 
instance of the Volt server, the procedure and its parameters are packaged and sent to the 
execution engine provided the parameter values are of the correct Volt data type.  After 
the procedure is finished, the return table is displayed in an imbedded table on the panel.   

3.2.3  Catalog Tree Panel 
The Catalog Tree panel (Figure 2 in Appendix) provides an interface to show the 

various entities contained in the Volt Catalog.  After loading the current catalog (the 
same one throughout the entire console instance), the Catalog Tree controller piece 
iterates through each line in the catalog and organizes the entities into a common tree 
structure.  The user can then quickly expand or contract the branches to inspect the 
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contents of the DDL objects (e.g., tables) and/or Stored Procedures (with their associated 
parameters, fragments, etc.).  Though not as interesting as the other pieces of the GUI, the 
Catalog Tree Panel is a useful tool and can be used to understand the way the Volt 
catalog system is organized hierarchically in a graphical format.   If the format of the 
Volt catalog changes as the system matures, this class will need to be modified because it 
uses loops that depend on specific names of the catalog types and may not recognize 
attributes in the event they change.  The catalog is loaded upon creation and the GUI can 
only switch catalogs during a restart (provided the catalog path is revised in the ‘Load 
Catalog’ method). 

3.2.4  Visual Volt Panel 
The Trace Simulation Panel contains the workload trace visualizer.  The next section 

addresses this portion of the GUI in much more detail. 

4 Visual Volt Panel 

4.1 Introduction 
 In short, the Visual Volt Panel (Figure 3 in Appendix) was the crux of my work 
over the past 5 months.  Its purpose is to show a visual representation of a trace workload 
executing on a simulated multi-sited instance of Volt.  I spent the majority of my time 
investigating and experimenting with different visualizer packages, developing the back-
end trace mechanism, and figuring out how to translate plan fragments into a graphical 
object and then animating and synchronizing them as the workload comes in.  This 
portion of the GUI currently does not require an instance of Volt; since it uses an external 
file (e.g., trace file), it is self-contained and runs in isolation. 

4.2 Description 
By far the most complex panel of the graphic user interface, the Visual Volt Panel 

contains features from the other panels but does much more. My goal was to add 
appealing graphics to complement the execution of the transactions in such a way that 
demonstrates the various fragments as they are dispatched by the coordinator to the 
appropriate sites for execution.  The version of Volt that I used to develop this simulator 
only supported a single fragment for each query in a one-to-one relationship; herein laid 
the requirement for a trace backend to simulate them. 

Should this be visualized as a single-site (one coordinator and one client), it 
would be neither worthy of investigation, nor very interesting; the fragment would be 
sent out by the coordinator and the site would execute it.  When the site completes 
executing the plan fragment (which contains the entire plan), the coordinator will send 
out another one.  Only when the distributed Volt that can execute Plan Fragments on 1- n 
sites will there be significant benefits of this system.  In the interim, I modified a 
workload trace system developed by my colleague, Andy Pavlo, to introduce multiple 
plan fragments to each query statement. 

After a trace file is loaded and conditioned for the simulator, the program can 
execute.  Each query is divided into fragments, which are represented as colored circles  
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(hereafter referred to as fragment icons) grouped by their query, starting at the 
coordinator.  At the starting timestamp, the coordinator dispatches the fragments to their 
respective nodes.  If the node is available, the Plan Fragment is executed and the 
fragment icon will pass to the output of the graph and become part of the result.  If the 
node is still executing an older fragment, the newly arrived fragment must wait for the 
other to complete (as per the serializable order of fragments).  This sets up an execution 
queue that should be displayed on the GUI.  On the side of the animation window is an 
output showing the current transaction and query whose fragments are on display.  If one 
particular site is not partitioned correctly, it may be evident by consistently having such a 
queue. 

As of now, the GUI back-end sets up four sites as the default.  When the panel is 
created, the network is viewed as a rooted tree with the coordinator represented as the 
root.  To get things started, the user must load a trace file from the system directory (or 
the default).  After the file is loaded, the user can run the simulator. Each query creates a 
fragment thread that is ‘dispatched’ from the coordinator in serialized fashion as per the 
starting timestamp stored in the trace file.  When the fragment arrives at its appropriate 
execution site, it will stay there until the stop timestamp. 

4.3 Code 
The network graph and the animation are built onto a JPanel that is part of the 

Visual Volt Panel.  In order to ensure concurrency control of the GUI is maintained, I 
extended SwingWorker, a java class implemented with Java SE6.  As the name implies, 
the SwingWorker creates a thread for execution that is not event-driven.  This allows an 
event to be triggered, but the process does not block other processes during its routine.  
This worker class was used for the method that loads the catalog, the method that updates 
the textual information, and the animation controller, called ‘GraphMaster.’  Having 
never used SwingWorker, I gained a tremendous amount of experience implementing and 
tweaking this concurrency mechanism. 

For the animation of the plan fragments, I considered using Sprite animation, 
which uses a controller to create and control discrete animated objects referred to as 
Sprites.  After substantial effort, I did not have success with this animation paradigm.  As 
an alternative, I extended the Thread class in my GraphMaster.  Each instance of a plan 
fragment creates a thread that can be individually executed and disposed of.  The 
efficiency of this structure, coupled with the aforementioned SwingWorkers, allow the 
GUI to smoothly stay updated.  My intention was to synchronize the animation of the 
plan fragments with the update of the iterable trace data to simulate an actual workload.  
If this had worked out, a query would be simulated as follows:  when the query is active, 
the coordinator will compare system time with the timestamp.  When they are equal, the 
coordinator will ‘execute’ the query.  The text data on the left of the screen will show 
which Transaction is current, which query is running, and which fragments are sent out.  
Then, animated ovals, representing the correct number of fragments, will ‘travel’ from 
the coordinator (root) node to its respective assigned site node.  The node will switch its 
flag to ‘isBusy’ preventing other fragments from entering.  It will then compare system 
time with the stop timestamp, and when they are equal, will destroy the fragment, update 
the text data in the GUI, and will set ‘isBusy’ to false so that another fragment can be 
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processed. The process repeats until the entire workload is finished.  Due to time 
constraints, I was unable to coordinate the processes so that the trace iteration would 
match the fragment animation; I will come back to this issue later in the paper. 

5 Workload Trace Back-end 

5.1 Introduction 
Earlier, I wrote that the version of Volt on which this GUI sits on only supported 

one single client.  In order to make the simulator more interesting, I needed to simulate 
that the system had multiple sites running different types of transactions: single-sited, 
one-shot, and general.  The Workload Trace mechanism is the interim measure that I used 
until an actual stream of multi-fragmented queries is supported and implemented. 

5.2 Description 
Workload trace files must be created as a separate event than the execution of the 
graphical user interface because this file is used to initialize the simulator. The trace file 
contains all of the Transaction Traces, Query Traces, and Plan Fragment Traces created 
from the given catalog.  All three types of traces have the following attributes:  

• Transaction ID 
• Start Timestamp 
• Stop Timestamp 
• Parameters 
• Catalog Guid 
 
In addition to the attributes they inherit from the Abstract Trace Element, the 

Transaction Trace element has an Array List of Query Traces, the Query Trace element 
has a statement id and a list of plan fragment traces, and the Plan Fragment Trace hooks 
the actual Volt Plan Fragment out of the catalog.   

When I created the Trace File used for the simulator, I duplicated the Plan Fragment 
Trace (and its Plan Fragment) a random number of times (1 – n) for each query to 
emulate a multi-node stream.  In the current version, the start and stop timestamps are 
pre-contrived but the simulator should be able to easily handle actual timestamps.  The 
plan fragments appear at the coordinator site at their start time, and exit their nodes at 
their stop times, however long they take.  When I created the trace file, I randomly 
assigned an execution time between 10 and 200 milliseconds. 

5.3 Code 
When I started modifying the 

workload trace, I was given a trace 
file that had all of the catalog’s 
Transaction Traces and its Query 
Traces.  I had to implement a way to 
add the Plan Fragment traces to the 
existing trace file.  The significant 
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classes needed to create the trace files are: Abstract Workload and Frag Trace File Output 
(both of which are needed to load and create trace files), Abstract Trace Element, 
Transaction Trace, Query Trace, and Plan Frag Trace (all needed to populate the 
workload out of the trace file). The main method in Frag Trace File Output calls its 
‘Load’ method, which opens a Buffered Reader to read in each line of the trace file.  It 
then uses a series of nested loops to add the catalog elements to the trace elements.  It 
loops through every transaction, then every query, and finally, every fragment.  The 
entries in the trace files are stored as JSON entries, which are vastly more straightforward 
than straight text because each entry can be treated like an object and can have attributes 
associated with it.  We use a parser called ‘loadFromJSONObject’ that converts the 
JSON script into Strings.  The strings are used to create the trace elements.  If the trace 
file needs to be written, then the ‘writeToTraceFile must be called.  This method 
translates the trace elements back into JSON objects and then writes them into the trace 
file.  This conditioning only needs to be done once per catalog.  This workload trace 
back-end is necessary until we can develop a way to stream real-time execution data. 

6 Benefits of a Simulation 
In addition to serving as a useful demonstration tool, the simulation panel could 

be used and even modified to keep current with the latest releases of Volt.  At the time of 
this writing, this OLTP will now run transactions on multiple sites and will support one-
shot and general transactions in addition to the single-site transactions it previously 
supported (though the multi-site feature was only recently added).  Another benefit is that 
academics and professionals can study the console text after the routine runs for 
anomalies, inspection and investigation.  By perusing some of the transaction print outs, 
researchers have an opportunity to verify the correct nodes are executing the fragments 
and that the execution time is consistent. 

After the database designer is implemented, the administrator could review run-
times to determine if the designer automatically partitioned the tables appropriately.  
Excessive runtimes could illuminate a mistake in the assignment of the transaction type 
or could illuminate a logical error in the partitioning scheme.  In the meantime, the 
simulator gives researchers an opportunity to witness the execution at various speeds 
while implementing new modules and/or features.  The most exciting benefit of the 
simulator is the visualization of the transaction execution.  It is one thing for someone to 
watch command-line scrolling text as queries are run; it is another thing entirely to watch 
a simulation of the same process with graphics.  It would be a trivial matter to loop the 
simulator for future conference participation.  The appealing animation is sure to draw a 
crowd and could invite further interest in this ongoing research project. 

7 Visualization Details 
 The primary data structure that I implemented for the animation is a class called 
Graph Node.  As the name implies, it is the object that stores the positional data 
necessary for animation.  It is represents the Plan Fragment and is only a temporary 
object.  The node has a one-to-one relationship with a Plan Fragment Trace, which is 
created when the trace file is loaded.  All of the fragment traces for a particular query are 
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stored in an array list.  During the run-phase, the queries are iterated and the fragment  
icons are created and the nodes are released from the originating node that represents the 
workload coordinator.  As of now, this structure is divided into two separate classes: 
PlanFragTrace, which holds the execution data, and GraphNode, which contains the 
spatial data for the animation.  In the future, these two classes could be merged to 
streamline the code. Since the Graph nodes’ (x,y) position is available, the fragment icons 
travel from their initial position (x0, y0) to their execution node.  I calculate the path they 
take using the slope-intercept equation of a line.  
 The ‘GraphMaster’ class is responsible for drawing the network and for animating 
the execution of the fragments.  This class extends java.lang.Thread so that the animation 
can play without blocking the other portions of the GUI.  The JPanel that holds the 
GraphMaster uses the SwingWorker class for concurrency.  These two classes solved 
several problems I had with keeping the animation running.  Before extending them, I 
could not get the animation subroutine out of the event thread.  Once the ‘run’ button 
fired, the animation would freeze the entire GUI because it would block the other 
procedures.  Similarly, I also used the SwingWorker class for the workload iterator that 
updates the textual information in the panel.  Again, without the use of concurrency 
control, the fields would not update because the iterator wouldn’t trigger the 
paintComponent. 

8 JUNG – An Alternate Visualizer Library 
When I initially wrote the design of the visualizer, I anticipated using an open-source 

visualization package to implement the animation.  After spending quite a bit of time 
weighing the different options and packages available, I found a library called JUNG 2.0.  
This module is very robust and mature and it is used to generate sophisticated network 
diagrams.  It also implements several well-known graph algorithms (e.g., Djikstra’s 
Shortest Path, Edmond-Karp Min-Cut/Max-Flow).  Thought the documentation for the 
library left much to be desired, I was finally able to create the graph I wanted through 
experimentation.  To create a graph in JUNG, the programmer needs to create vertices 
and edges.  Both of these are completely customizable and can basically be anything.  
Once you add vertices to a graph and connect them with edges just by providing the 
to/from vertices. 
 Given that description, JUNG seemed to be the perfect fit as a base for my 
animation.  I planned on using the JUNG-created graph as the background onto which I 
would overlay my transaction execution.  Unfortunately, JUNG’s strength is in its 
algorithms, not in its display.  The user has NO control over HOW the graph is drawn.  
Vertices could be drawn in one order during one execution of the program and in another 
order during another.  The way it works is that the graph sends vertex and edge data to a 
layout manager that is responsible for arranging the most efficient representation of the 
graph.  It does not have access to the (x,y) coordinates of its vertices; consequently, I 
could not establish, with any degree of certainty, where to set my coordinator and where 
my sites would be located.  Finally, it dawned on me that it would be much easier to 
create my own graph visualizer since I did not need the sophistication (and the 
complexity) of the JUNG library.  I could not find a suitable package that would simplify 
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my task of animating my fragments from point A to B.  At any rate, I abandoned JUNG 
in favor of a ‘roll your own’ approach, which ended up being a good decision.  

9 Setbacks 
In spite of dedicating months of work and research to this project, I was unable to 

complete all of my design goals.  I spent so much time trying to force JUNG to work for 
me, I did not allow myself enough time to recover and fully implement my homegrown 
solution.  At the point of this writing, the Visual Volt Panel does the following: 

• A trace file can be loaded into the GUI (and ONLY .trace files) 
• Once the file is loaded, the simulation can be started. 
• The traces get created and are iterated in a series of nested loops. 
• The GUI gets updated for every 1-n fragment that is contained in the trace 

file. 
• A graph with n nodes is drawn on the GUI (Node count can only be 

changed at compile time, but it is a simple fix to pass it in as a runtime 
parameter). 

• The correct number of fragment icons are emitted from the coordinator 
node and sends them to its execution node. 

I was unable to implement the following: 
• The fragments get iterated serially.  In actuality, all fragments of a query 

should be dispatched simultaneously rather than one-at-a-time. 
• The animation and the iterator are not synchronized so that the user can 

see which query is being executed. 
• I didn’t implement a collision-detection algorithm to notify an incoming 

fragment icon that its site is busy, therefore, it goes into the site regardless 
of availability. 

• The simulator does not take either start or stop timestamps into 
consideration yet; it blindly animates the fragment icons. 

10 Possibilities for Future Enhancement 
Some of the enhancements that can be developed by students and researchers 

include the following unimplemented features (several of which were discussed in the 
previous sections): 

• The application could allow the user to capture actual workload streams and 
funnel them directly into a trace file (in the interim) that can be visualized rather 
than using a ‘canned’ file of contrived data. 

• It could allow the user to stream real-time workload execution into the Visualizer 
and be able to dial in a particular speed at which to animate. 

• Instead of only accepting special ‘trace’ files, optionally allowing system logs to 
be the source for the Visualizer. 

• The continuity and connectivity between the various GUI panels could be 
enhanced to simplify execution.  Currently, the software has to duplicate much of 
the effort, as does the user; for example, the GUI loads the catalog several times 
when only once could be necessary.   
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• During the animation, if a fragment is delayed, the output could explain the 
reason for the queue (e.g., coordinator or site stalls). 

• Provide the ability for the user to save the console output into an external file. 

11 Conclusion 
 After spending 18-months on the H-Store/Volt project team, I feel like a 
contributing member.  I am proud that my graphic user interface was displayed and used 
during our demonstration at VLDB ’08; from what I heard, our booth was one of the 
‘must-see’ exhibits at the conference.  This project enabled me to greatly expand my 
understanding of databases in general, and Volt specifically.  In order to capture the 
execution into a visual form, I had to delve into the way fragments are going to be 
executed.  Also, my skills as a Java programmer were significantly improved because I 
used libraries and packages that were completely foreign to me beforehand. .  Finally, the 
project served as an excellent capstone for my Master’s program in Brown University’s 
Computer Science Department.  My membership in the Data Management group has 
revealed the importance of the field and the ubiquitous nature of its subject. 

On my first day of classes over two years ago, Stan Zdonik said that Database 
technology is the best of all Computer Science disciplines.  According to him, it involves 
aspects from every area of the field: algorithmic, theoretic, programmatic, and 
systematic.  How right he was; every class I took during the degree program 
complemented my knowledge of data management holistically.  From the introductory 
Database Management class, through Algorithm design, Combinatorial Optimization, 
Data Warehousing, and Complex Data Processing seminars, I cannot quantify the amount 
of knowledge that I gained.  I am excited about the future possibilities that are inherent in 
the next generation of databases as we move into a specialty vertical market and away 
from the ‘one-size’ fits all paradigm of yesterday. 
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Figure 1: Stored Procedure Panel 
 

 
 
Figure 2: Catalog Panel 
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Figure 3: Visual Volt Panel 
 


